1
|
Yildiz MM, Ates I, Gurbuz HN, Unal MA, Nazir H, Uzunoglu A, Ozkan SA, Topal BD. Exploring efavirenz-DNA interactions: A multidisciplinary approach through electrochemical, toxicological, and in silico investigations. J Pharm Biomed Anal 2025; 259:116763. [PMID: 40024028 DOI: 10.1016/j.jpba.2025.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Recently, there has been a growing approach that approved drugs have been tested for additional purposes. Efavirenz is a non-nucleoside reverse transcriptase inhibitor used to treat human immunodeficiency virus infection. In addition, it has selective cytotoxic effects against cancer cells. This study constructed an electrochemical dsDNA nanobiosensor to monitor Efavirenz-dsDNA interaction based on the amine-functionalized multi-walled carbon nanotubes. The experimental conditions of the nanobiosensor, such as dropping the volume of nanomaterial suspension, activation of the nanosensor, and dsDNA concentration, were optimized. The peak currents of dsDNA bases were enhanced, and the peak potentials of Efavirenz have shifted to the less positive potential thanks to the modified sensor with amine-functionalized multi-walled carbon nanotubes. The interaction mechanism was also evaluated in incubated solutions. Docking calculations showed that Efavirenz is active in the large cleft regions of DNA that suggest minor groove binding. The effect of efavirenz on the expression profile of particular stress and possible DNA genotoxicity was studied via examining gene polymorphisms in hepatic cells. These findings align with previously released research that shows Efavirenz-treated hepatic cells to have altered mitochondrial function and elevated ROS levels.
Collapse
Affiliation(s)
- Manolya Mujgan Yildiz
- Ankara University, Graduate School of Health Science, Dışkapı, Ankara 06110, Turkiye; Lokman Hekim University, Faculty of Pharmacy, Department of Analytical Chemistry, Çankaya, Ankara 06510, Turkiye
| | - Ilker Ates
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara 06560, Turkiye
| | - Havva Nur Gurbuz
- Selcuk University, Department of Nanotechnology and Advanced Materials, Konya 42075, Turkiye
| | - Mehmet Altay Unal
- Ankara University, Stem Cell Institute, Balgat, Ankara 06520, Turkiye
| | - Hasan Nazir
- Ankara University, Faculty of Science, Department of Chemistry, Beşevler, Ankara 06100, Turkiye
| | - Aytekin Uzunoglu
- Istanbul Technical University, Faculty of Chemistry-Metallurgical Engineering, Department of Materials and Metallurgical Engineering, Istanbul 34467, Turkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06560, Turkiye.
| | - Burcu Dogan Topal
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara 06560, Turkiye.
| |
Collapse
|
2
|
Liu J, Chen Y, Pu H, Chen X, Yang W, Ouyang Z, Pang Q, Fan R. A new mechanism involved in cardiovascular senescence induced by environmentally relevant dose of 16 priority-controlled PAHs. ENVIRONMENT INTERNATIONAL 2025; 197:109326. [PMID: 39970779 DOI: 10.1016/j.envint.2025.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are closely related to the occurrence of cardiovascular diseases, nevertheless the toxicological mechanism remains ambiguous. To verify whether PAHs exposure leads to cardiovascular senescence, 8-week-old male sprague-dawley rats and primary human umbilical vein endothelial cells were exposed to different concentrations of 16 priority-controlled PAHs for 90 d and 48 h respectively. In in vitro study, PAHs exposure promoted aryl hydrocarbon receptor (AhR) activation, and then directly or indirectly inhibited SIRT6 expression leading to telomere dysfunction, which further caused DNA damage and subsequently promoted endothelial cells senescence. But the treatment of CH-223191 (an AhR inhibitor) rescued the aging phenotypes induced by PAHs, suggesting that AhR plays an important role in PAHs-induced endothelial cells senescence. In in vivo study, PAHs exposure raised AhR expression, affected SIRT6-related aging signaling pathway, and induced myocardial and vascular remodeling in rats. Molecular dynamics simulations demonstrated that, in addition to benzo[a]pyrene-7,8-diol-9,10-epoxide (the mediate metabolite of benzo[a]pyrene), typical parent PAHs (phenanthrene, benzo[a]pyrene) can directly bind to known DNA strand binding sites of SIRT6 through hydrophobic force, which was further validated by electrophoretic mobility shift assay. All above indicates for the first time that in addition to classical AhR dependent pathway, parent PAHs may affect DNA damage response and telomere maintenance function of SIRT6, which is a new mechanism of PAHs induced cardiovascular senescence.
Collapse
Affiliation(s)
- Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hao Pu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wucheng Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Kurowska P, Berthet L, Ramé C, Węgiel M, Maślanka A, Guérif F, Froment P, Rak A, Dupont J. Polycyclic aromatic hydrocarbons in human granulosa cells: first in vivo presence and positive correlation with body mass index and in vitro ovarian cell steroidogenesis regulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104611. [PMID: 39674531 DOI: 10.1016/j.etap.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) exposure leads to disorders reported in female infertility patients. Our hypothesis is that PAHs accumulate in granulosa cells (Gc) according to body mass index (BMI) and directly affects its functions. All 16 high-priority PAHs were in human FF, Gc and blood plasma with the highest concentration in Gc (GC-MS/MS). Their highest concentration was in obese Gc, except for acenaphthene and acenaphthylene, and positively correlated with BMI. In FF, we noted only positive correlation between naphthalene and BMI, whereas in blood plasma positive correlation between naphthalene, acenaphthene, pyrene and BMI. Phenanthrene and naphthalene but not fluoranthene inhibited totally steroidogenesis (ELISA), CYP19A1 mRNA expression (real-time PCR) and increased oxidative stress index and catalase expression in Gc independently on BMI. While all studied PAHs decreased Gc proliferation (BrdU assay) and viability (Cell Count kit-8 assay). Thus, Gc PAHs concentrations are positively correlated with BMI and alter ovarian functions.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Lucille Berthet
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Małgorzata Węgiel
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Anna Maślanka
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France.
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Joelle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| |
Collapse
|
4
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
5
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
6
|
Samardzija Nenadov D, Tesic B, Tomanic T, Opacic M, Stanic B, Pogrmic-Majkic K, Andric N. Global gene expression analysis reveals a subtle effect of DEHP in human granulosa cell line HGrC1. Reprod Toxicol 2023; 120:108452. [PMID: 37536456 DOI: 10.1016/j.reprotox.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor that exerts anti-steroidogenic effects in human granulosa cells; however, the extent of this effect depends on the concentration of DEHP and granulosa cell models used for exposure. The objective of this study was to identify the effects of low- and high-dose DEHP exposure in human granulosa cells. We exposed human granulosa cell line HGrC1 to 3 nM and 25 μM DEHP for 48 h. The whole genome transcriptome was analyzed using the DNBSEQ sequencing platform and bioinformatics tools. The results revealed that 3 nM DEHP did not affect global gene expression, whereas 25 µM DEHP affected the expression of only nine genes in HGrC1 cells: ABCA1, SREBF1, MYLIP, TUBB3, CENPT, NUPR1, ASS1, PCK2, and CTSD. We confirmed the downregulation of ABCA1 mRNA and SREBP-1 protein (encoded by the SREBF1 gene), both involved in cholesterol homeostasis. Despite these changes, progesterone production remained unaffected in low- and high-dose DEHP-exposed HGrC1 cells. The high concentration of DEHP decreased the levels of ABC1A mRNA and SREBP-1 protein and prevented the upregulation of STAR, a protein involved in progesterone synthesis, in forskolin-stimulated HGrC1 cells; however, the observed changes were not sufficient to alter progesterone production in forskolin-stimulated HGrC1 cells. Overall, this study suggests that acute exposure to low concentration of DEHP does not compromise the function of HGrC1 cells, whereas high concentration causes only subtle effects. The identified nine novel targets of high-dose DEHP require further investigation to determine their role and importance in DEHP-exposed human granulosa cells.
Collapse
Affiliation(s)
| | - Biljana Tesic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Tamara Tomanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Marija Opacic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| |
Collapse
|
7
|
Benzo(a)pyrene and Cerium Dioxide Nanoparticles in Co-Exposure Impair Human Trophoblast Cell Stress Signaling. Int J Mol Sci 2023; 24:ijms24065439. [PMID: 36982514 PMCID: PMC10049531 DOI: 10.3390/ijms24065439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Human placenta is a multifunctional interface between maternal and fetal blood. Studying the impact of pollutants on this organ is crucial because many xenobiotics in maternal blood can accumulate in placental cells or pass into the fetal circulation. Benzo(a)pyrene (BaP) and cerium dioxide nanoparticles (CeO2 NP), which share the same emission sources, are found in ambient air pollution and also in maternal blood. The aim of the study was to depict the main signaling pathways modulated after exposure to BaP or CeO2 NP vs. co-exposure on both chorionic villi explants and villous cytotrophoblasts isolated from human term placenta. At nontoxic doses of pollutants, BaP is bioactivated by AhR xenobiotic metabolizing enzymes, leading to DNA damage with an increase in γ-H2AX, the stabilization of stress transcription factor p53, and the induction of its target p21. These effects are reproduced in co-exposure with CeO2 NP, except for the increase in γ-H2AX, which suggests a modulation of the genotoxic effect of BaP by CeO2 NP. Moreover, CeO2 NP in individual and co-exposure lead to a decrease in Prx-SO3, suggesting an antioxidant effect. This study is the first to identify the signaling pathways modulated after co-exposure to these two pollutants, which are common in the environment.
Collapse
|
8
|
Jiang L, Xiao Q, Zhang J, Zhao Y, Chen L, Lu S. Association between fetal exposure to polycyclic aromatic hydrocarbons and low birth weight: a case-control study in Shenzhen, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88779-88787. [PMID: 35840835 DOI: 10.1007/s11356-022-21965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The potential hazards of polycyclic aromatic hydrocarbons (PAHs) on fetus development have raised widespread concerns in recent years, although current epidemiological findings are conflicting. The aim of this case-control study was to investigate the relationship between PAH concentrations in maternal serum and low birth weight (LBW). A questionnaire survey was conducted among 144 (72 pairs) neonates with normal or LBW and their mothers at four different hospitals in Shenzhen, China. Peripheral blood from primiparas and umbilical cord blood from neonates were collected. Concentrations of PAHs were determined by gas chromatography-mass spectrometry. The detection frequencies of PAHs were relatively higher in the peripheral blood samples, while levels of low molecular weight PAHs were greater than high molecular weight PAHs in both peripheral and umbilical cord blood samples. Phenanthrene was frequently detected in blood samples from the case and control groups. Logistic regression analysis showed that acenaphthene in peripheral blood was positively associated with LBW (p < 0.05). This study found a relationship between exposure to certain PAHs and LBW, although future studies are needed to confirm these results.
Collapse
Affiliation(s)
- Lei Jiang
- Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, 518028, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lihua Chen
- Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, 518028, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Chen Q, Nwozor KO, van den Berge M, Slebos DJ, Faiz A, Jonker MR, Boezen HM, Heijink IH, de Vries M. From Differential DNA Methylation in COPD to Mitochondria: Regulation of AHRR Expression Affects Airway Epithelial Response to Cigarette Smoke. Cells 2022; 11:3423. [PMID: 36359818 PMCID: PMC9656229 DOI: 10.3390/cells11213423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 08/01/2023] Open
Abstract
Cigarette smoking causes hypomethylation of the gene Aryl Hydrocarbon Receptor Repressor (AHRR), which regulates detoxification and oxidative stress-responses. We investigated whether AHRR DNA methylation is related to chronic obstructive pulmonary disease (COPD) and studied its function in airway epithelial cells (AECs). The association with COPD was assessed in blood from never and current smokers with/without COPD, and in AECs from ex-smoking non-COPD controls and GOLD stage II-IV COPD patients cultured with/without cigarette smoke extract (CSE). The effect of CRISPR/Cas9-induced AHRR knockout on proliferation, CSE-induced mitochondrial membrane potential and apoptosis/necrosis in human bronchial epithelial 16HBE cells was studied. In blood, DNA methylation of AHRR at cg05575921 and cg21161138 was lower in smoking COPD subjects than smoking controls. In vitro, AHRR DNA methylation at these CpG-sites was lower in COPD-derived than control-derived AECs only upon CSE exposure. Upon AHRR knockout, we found a lower proliferation rate at baseline, stronger CSE-induced decrease in mitochondrial membrane potential, and higher CSE-induced late apoptosis/necroptosis. Together, our results show lower DNA methylation of AHRR upon smoking in COPD patients compared to non-COPD controls. Our data suggest that higher airway epithelial AHRR expression may lead to impaired cigarette smoke-induced mitochondrial dysfunction and apoptosis/necroptosis, potentially promoting unprogrammed/immunogenic cell death.
Collapse
Affiliation(s)
- Qing Chen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
| | - Kingsley Okechukwu Nwozor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- Centre for Heart Lung Innovation, Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology Disease, 9713 GZ Groningen, The Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology Disease, 9713 GZ Groningen, The Netherlands
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology Disease, 9713 GZ Groningen, The Netherlands
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Marnix R. Jonker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
| | - H. Marike Boezen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, 9713 GZ Groningen, The Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology Disease, 9713 GZ Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
10
|
Ssepuya F, Odongo S, Musa Bandowe BA, Abayi JJM, Olisah C, Matovu H, Mubiru E, Sillanpää M, Karume I, Kato CD, Shikuku VO, Ssebugere P. Polycyclic aromatic hydrocarbons in breast milk of nursing mothers: Correlates with household fuel and cooking methods used in Uganda, East Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156892. [PMID: 35760175 DOI: 10.1016/j.scitotenv.2022.156892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Maternal breast milk, which is a complete food for the infant's growth, development, and health, contains fats and lipids making it susceptible to accumulation of lipophilic compounds like polycyclic aromatic hydrocarbons (PAHs). This study aimed at analyzing correlates of measured levels of PAHs in breast milk of nursing mothers to frequently used household fuels and cooking methods in Uganda, and estimate the potential health risks of PAHs to infants through breastfeeding. Sixty breast milk samples were collected from healthy and non-smoking mothers who had lived in Kampala capital city (urban area) and Nakaseke district (rural area) for at least five years. Sample extracts were analyzed for PAHs using a gas chromatograph coupled with a triple quadrupole mass spectrometer. ∑13PAHs in samples from Kampala ranged from 3.44 to 696 ng/g lw while those from Nakaseke ranged from 0.84 to 87.9 ng/g lw. PAHs with 2-3 rings were more abundant in the samples than PAHs with 4-6 rings. At least 33 % of the variance in the levels of ∑13PAHs in the breast milk samples was attributable to the fuel type and cooking methods used. Nursing mothers who used charcoal for cooking accumulated higher levels of ∑13PAHs in their breast milk samples compared to those who used firewood. Levels of ∑13PAHs in breast milk of mothers increased depending on the cooking methods used in the order; boiling< grilling< deep-frying. In all samples, hazard quotients for PAHs were <1 and estimated incremental cancer risks were all between 10-6 and 10-4, indicating that the health risks to infants due to the ingestion of PAHs in breast milk was tolerable. Further studies with large datasets on PAHs and their derivatives and, larger samples sizes are needed to confirm these findings.
Collapse
Affiliation(s)
- Fred Ssepuya
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Silver Odongo
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Benjamin A Musa Bandowe
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Juma John Moses Abayi
- Department of Chemistry, School of Applied and Industrial Sciences, University of Juba, P. O. Box 82, Juba, South Sudan
| | - Chijioke Olisah
- Department of Botany, the Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - Henry Matovu
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda; Department of Chemistry, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Edward Mubiru
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Ibrahim Karume
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Charles Drago Kato
- School of Bio-Security, Biotechnical and Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Bio-Security, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | | - Patrick Ssebugere
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda; Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany.
| |
Collapse
|
11
|
Zhang W, Tang Y, Han Y, Huang L, Zhou W, Zhou C, Hu Y, Lu R, Wang F, Shi W, Liu G. Immunotoxicity of pentachlorophenol to a marine bivalve species and potential toxification mechanisms underpinning. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129681. [PMID: 36104908 DOI: 10.1016/j.jhazmat.2022.129681] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitous presence of pentachlorophenol (PCP) in ocean environments threatens marine organisms. However, its effects on immunity of marine invertebrates at environmentally realistic levels are still largely unknown. In this study, the immunotoxicity of PCP to a representative bivalve species was evaluated. In addition, its impacts on metabolism, energy supply, detoxification, and oxidative stress status were also analysed by physiological examination as well as comparative transcriptomic and metabolomic analyses to reveal potential mechanisms underpinning. Results illustrated that the immunity of blood clams was evidently hampered upon PCP exposure. Additionally, significant alterations in energy metabolism were detected in PCP-exposed clams. Meanwhile, the expressions of key detoxification genes and the in vivo contents (or activity) of key detoxification enzymes were markedly altered. Exposure to PCP also triggered significant elevations in intracellular ROS and MDA whereas evident suppression of haemocyte viability. The abovementioned findings were further supported by transcriptomic and metabolomic analyses. Our results suggest that PCP may hamper the immunity of the blood clam by (i) constraining the cellular energy supply through disrupting metabolism; and (ii) damaging haemocytes through inducing oxidative stress. Considering the high similarity of immunity among species, many marine invertebrates may be threatened by PCP, which deserves more attention.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Rongmao Lu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Fang Wang
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Zhou S, Zhang L, Guo C, Zhong Y, Luo X, Pan X, Yang Z, Tan L. Comparing liquid-liquid, solid-phase, and supported-liquid extraction for the determination of polycyclic aromatic hydrocarbons in serum samples and their application for human biomonitoring. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Attafi IM, Bakheet SA, Ahmad SF, Belali OM, Alanazi FE, Aljarboa SA, Al-Alallah IA, Korashy HM. Lead Nitrate Induces Inflammation and Apoptosis in Rat Lungs Through the Activation of NF-κB and AhR Signaling Pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64959-64970. [PMID: 35482242 PMCID: PMC9481511 DOI: 10.1007/s11356-022-19980-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/25/2022] [Indexed: 05/28/2023]
Abstract
Lead (Pb) is one of the most frequent hazardous air contaminants, where the lungs are particularly vulnerable to its toxicity. However, the Pb distribution and its impact on lung inflammation/apoptosis and particularly the involvement of nuclear factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways in Pb-induced lung toxicity have not yet been fully investigated. Adult male Wistar albino rats were exposed to Pb nitrate 25, 50, and 100 mg/kg b.w. orally for 3 days. The histopathological changes of several rat organs were analyzed using hematoxylin and eosin staining. The concentrations of Pb ion in different organ tissues were quantified using inductive coupled plasma mass spectrometry, while gas chromatography-mass spectrometry was used to identify organic compounds. The changes in the mRNA and protein expression levels of inflammatory and apoptotic genes in response to Pb exposure were quantified by using RT-PCR and Western blot analyses, respectively. Treatment of rats with Pb for three consecutive days significantly increased the accumulation of Pb in lung tissues causing severe interstitial inflammation. Pb treatment also increased the percentage of lung apoptotic cells and modulated apoptotic genes (Bc2, p53, and TGF-α), inflammatory markers (IL-4, IL-10, TNF-α), and oxidative stress biomarkers (iNOS, CYP1A1, EphX) in rat lung tissues. These effects were associated with a significant increase in organic compounds, such as 3-nitrotyrosine and myeloperoxidase, and some inorganic elements, such as selenium. Importantly, the Pb-induced lung inflammation and apoptosis were associated with a proportional increase in the expression of NF-κB and AhR mRNAs and proteins. These findings clearly show that Pb induces severe inflammation and apoptosis in rat lungs and suggest that NF-κB and AhR may play a role in Pb-induced lung toxicity.
Collapse
Affiliation(s)
- Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Poison Control and Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osamah M Belali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Aseer Central Hospital, Asser health affairs, Ministry of Health, Abha, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Suliman A Aljarboa
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Al-Alallah
- Pathology and Clinical Laboratories Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
14
|
Perono GA, Petrik JJ, Thomas PJ, Holloway AC. The effects of polycyclic aromatic compounds (PACs) on mammalian ovarian function. Curr Res Toxicol 2022; 3:100070. [PMID: 35492299 PMCID: PMC9043394 DOI: 10.1016/j.crtox.2022.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/09/2022] Open
Abstract
Toxicity of polycyclic aromatic compounds (PACs) is limited to a subset of PACs. Exposure to these compounds impact major processes necessary for ovarian function. PAC exposure causes follicle loss and aberrant steroid production and angiogenesis. PAC exposure may increase the risk for impaired fertility and ovarian pathologies. The study of PACs as ovarian toxicants should include additional compounds.
Polycyclic aromatic compounds (PACs) are a broad class of contaminants ubiquitously present in the environment due to natural and anthropogenic activities. With increasing industrialization and reliance on petroleum worldwide, PACs are increasingly being detected in different environmental compartments. Previous studies have shown that PACs possess endocrine disruptive properties as these compounds often interfere with hormone signaling and function. In females, the ovary is largely responsible for regulating reproductive and endocrine function and thus, serves as a primary target for PAC-mediated toxicity. Perturbations in the signaling pathways that mediate ovarian folliculogenesis, steroidogenesis and angiogenesis can lead to adverse reproductive outcomes including polycystic ovary syndrome, premature ovarian insufficiency, and infertility. To date, the impact of PACs on ovarian function has focused predominantly on polycyclic aromatic hydrocarbons like benzo(a)pyrene, 3-methylcholanthrene and 7,12-dimethylbenz[a]anthracene. However, investigation into the impact of substituted PACs including halogenated, heterocyclic, and alkylated PACs on mammalian reproduction has been largely overlooked despite the fact that these compounds are found in higher abundance in free-ranging wildlife. This review aims to discuss current literature on the effects of PACs on the ovary in mammals, with a particular focus on folliculogenesis, steroidogenesis and angiogenesis, which are key processes necessary for proper ovarian functions.
Collapse
|
15
|
Wu H, Zhan T, Cui S, Chen J, Jin Q, Liu W, Zhang C, Zhuang S. Endothelial barrier dysfunction induced by anthracene and its nitrated or oxygenated derivatives at environmentally relevant levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149793. [PMID: 34454143 DOI: 10.1016/j.scitotenv.2021.149793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are epidemiologically associated with cardiovascular diseases characterized by early key events involving in the disruption of endothelial barrier function. Whether PAHs can induce adverse cardiovascular outcome by directly destabilizing endothelial barrier function remains elusive. Herein, we investigated the effect of anthracene (ANT), 9-nitroanthracene (9-NANT), and 9,10-anthraquinone (9,10-AQ) on vascular endothelial barrier functions in human umbilical vein endothelial cells (HUVECs). The integrity of endothelial barrier in HUVECs was disturbed with a 1.15-1.42 fold increase in fluorescein leakage, and 21.8%-58.3% downregulated transendothelial electrical resistance. ANT, 9-NANT and 9,10-AQ promoted paracellular gap formation as revealed by transmission electron microscope. The disrupted cell junctions after 24 h exposure to ANT, 9-NANT and 9,10-AQ at 0.01 μM were indicated by the downregulated mRNA expression of vascular endothelial cadherin (VE-cadherin), zona occludens-1 (ZO-1) and occludin by 33.2%-71.4%, 19.1%-21.0%, and 31.9% respectively, and the downregulated protein expression of ZO-1 and occludin, and by the internalization of VE-cadherin. We demonstrated that ANT and its derivatives at environmentally relevant concentrations induced endothelial barrier dysfunction via the disruption of cell junctions, providing essential in vitro evidence on the association with their adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingjie Zhan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shixuan Cui
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinyang Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Weiping Liu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058, USA.
| | - Shulin Zhuang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Zhang W, Sun C, Liu G. The toxic impacts of microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) on haematic parameters in a marine bivalve species and their potential mechanisms of action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147003. [PMID: 33865135 DOI: 10.1016/j.scitotenv.2021.147003] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are universally detected in the marine ecosystem and may exert adverse impacts on marine species. Although under realistic pollution scenarios, PAH pollution usually occurs as a mixture of different PAH compounds, the toxic impacts of PAH mixtures on marine organisms remain largely unknown to date, including their interactions with other emergent pollutants such as MPs. In this study, the single and combined toxic impacts of polystyrene MPs and a mixture of PAHs (standard mix of 16 representative PAHs) on haematic parameters were evaluated in the blood clam Tegillarca granosa. Our data demonstrated that blood clams treated with the pollutants examined led to decreased total haemocyte count (THC), changed haematic composition, and inhibited phagocytosis of haemocytes. Further analyses indicated that MPs and a mixture of PAHs may exert toxic impacts on haematic parameters by elevating the intracellular contents of reactive oxygen species (ROS), giving rise to lipid peroxidation (LPO) and DNA damage, reducing the viability of haemocytes, and disrupting important molecular signalling pathways (indicated by significantly altered expressions of key genes). In addition, compared to clams treated with a single type of pollutant, coexposure to MPs and a mixture of PAHs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect of MPs and PAHs.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Changsen Sun
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China.
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
Khalili Doroodzani A, Dobaradaran S, Akhbarizadeh R, Raeisi A, Rahmani E, Mahmoodi M, Nabipour I, Keshmiri S, Darabi AH, Khamisipour G, Mahmudpour M, Keshtkar M. Diet, exposure to polycyclic aromatic hydrocarbons during pregnancy, and fetal growth: A comparative study of mothers and their fetuses in industrial and urban areas in Southwest Iran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116668. [PMID: 33611204 DOI: 10.1016/j.envpol.2021.116668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The presence of polycyclic aromatic hydrocarbons (PAHs) in the fetal environment is a high-priority concern due to the fetus being more sensitive than adults to these ubiquitous xenobiotics. The aim of the present study was to compare the maternal and fetal serum levels of ΣPAHs and their effects on fetal growth in an industrial and an urban area in Southwest Iran. The industrial area was the petrochemical and gas area (PGA) of the Central District of Asaluyeh County and the urban area (UA) was the Central District of Bushehr County, Ninety-nine maternal serum (MS) and 99 cord serum (CS) samples from the PGA and 100 MS and 100 CS samples from the UA were collected during May 2018 to February 2019. The mean concentrations of ΣPAHs were significantly (p < 0.05) higher in the PGA than the UA in both MS (157.71 vs. 93.56 μg/L) and CS (155.28 vs. 93.19 μg/L) samples. Naphthalene (NAP) was the predominant PAH detected in all the studied samples. Significant negative associations were found between birth weight and anthracene (ANT) level in MS (β = -22.917, p = 0.032; weight decrement = 22.917 g for a 1 μg/L increase in ANT); head circumference and chrysene (CHR) level in MS (β = -0.206, p = 0.023; head circumference decrement = 0.206 cm for a 1 μg/L increase in CHR); and birth height and NAP level in CS (β = -0.20, p = 0.005; height decrement = 0.20 cm for a 1 μg/L increase in NAP). Maternal diet had a significant effect on the serum levels of PAHs. The results of this study showed that transmission of PAHs from mother to fetus through the cord blood is an important issue and mothers who live in industrial areas and consume PAH-containing foodstuffs, and their fetuses, are more at risk than those living in a non-industrial urban area.
Collapse
Affiliation(s)
- Atefeh Khalili Doroodzani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Raeisi
- Department of Internal Medicine, School of Medicine Shiraz University of Medical Sciences, Bushehr, Iran
| | - Elham Rahmani
- OB and GYN Ward, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Marzieh Mahmoodi
- Department of Biostatistics and Epidemiology, School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Keshmiri
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Hossein Darabi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamreza Khamisipour
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mozhgan Keshtkar
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
18
|
Alzahrani AM, Rajendran P. Pinocembrin attenuates benzo(a)pyrene-induced CYP1A1 expression through multiple pathways: An in vitro and in vivo study. J Biochem Mol Toxicol 2021; 35:e22695. [PMID: 33393179 DOI: 10.1002/jbt.22695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022]
Abstract
Benzo(a)pyrene [B(a)P], which is a carcinogen, is a substance most typically known in cigarette smoke and considered as an important intermediary of lung cancer. The enzyme CYP1A1 is crucial for the metabolic conversion of B(a)P into the intermediates that induce carcinogenesis. Stimulation of the aryl hydrocarbon receptor, which is regulated by B(a)P, is thought to induce numerous signaling cascades. Interruption in the mitogen-activated protein kinase (MAPK) pathway causes changes in cellular processes and may alter the AhR pathway. The aim of this investigation is to examine the potential ability of a flavonoid pinocembrin (PCB) to alleviate B(a)P toxicity and analyze the underlying molecular mechanisms. We found that PCB inhibited DNA adduct formation by attenuating CYP1A1 expression through the suppression of the AhR/Src/ERK pathways. PCB mitigated the B(a)P-stimulated DNA damage, inhibited Src and ERK1/2 expression, decreased CYP1A1 expression, and reduced the B(a)P-induced stimulation of NF-κB and MAPK signaling in lung epithelial cells. Finally, the activity of CYP1A1 and Src in lung tissues from mice supplemented with PCB was noticeably decreased and lower than that in lung tissues from mice supplemented with B(a)P alone. Collectively, these data suggest that PCB may alleviate the toxic effects of PAHs, which are important environmental pollutants.
Collapse
Affiliation(s)
- Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
19
|
Goodson WH, Lowe L, Gilbertson M, Carpenter DO. Testing the low dose mixtures hypothesis from the Halifax project. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:333-357. [PMID: 32833669 DOI: 10.1515/reveh-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
In 2013, 60 scientists, representing a larger group of 174 scientists from 26 nations, met in Halifax, Nova Scotia to consider whether - using published research - it was logical to anticipate that a mixture of chemicals, each thought to be non-carcinogenic, might act together in that mixture as a virtual carcinogen. The group identified 89 such chemicals, each one affecting one or more Hallmark(s) - collectively covering all Hallmarks of Cancer - confirming the possibility that a chemical mixture could induce all the Hallmarks and function as a virtual carcinogen, thereby supporting the concern that chemical safety research that does not evaluate mixtures, is incomplete. Based on these observations, the Halifax Project developed the Low-Dose Carcinogenesis Hypothesis which posits "…that low-dose exposures to [mixtures of] disruptive chemicals that are not individually carcinogenic may be capable of instigating and/or enabling carcinogenesis." Although testing all possible combinations of over 80,000 chemicals of commerce would be impractical, prudence requires designing a methodology to test whether low-dose chemical mixtures might be carcinogenic. As an initial step toward testing this hypothesis, we conducted a mini review of published empirical observations of biological exposures to chemical mixtures to assess what empirical data exists on which to base future research. We reviewed studies on chemical mixtures with the criteria that the studies reported both different concentrations of chemicals and mixtures composed of different chemicals. We found a paucity of research on this important question. The majority of studies reported hormone related processes and used chemical concentrations selected to facilitate studying how mixtures behave in experiments that were often removed from clinical relevance, i.e., chemicals were not studied at human-relevant concentrations. New research programs must be envisioned to enable study of how mixtures of small doses of chemicals affect human health, starting, when at all possible, from non-malignant specimens when studies are done in vitro. This research should use human relevant concentrations of chemicals, expand research beyond the historic focus on endocrine endpoints and endocrine related cancers, and specifically seek effects that arise uniquely from exposure to chemical mixtures at human-relevant concentrations.
Collapse
Affiliation(s)
- William H Goodson
- Department of Surgery, California Pacific Medical Center Research Institute, San Francisco, CA, 94115, USA
| | - Leroy Lowe
- Getting to Know Cancer (NGO), Truro, NS, B2N 1X5, Canada
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA
| |
Collapse
|
20
|
Oliveira M, Duarte S, Delerue-Matos C, Pena A, Morais S. Exposure of nursing mothers to polycyclic aromatic hydrocarbons: Levels of un-metabolized and metabolized compounds in breast milk, major sources of exposure and infants' health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115243. [PMID: 32702605 DOI: 10.1016/j.envpol.2020.115243] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, biomonitoring of nursing Portuguese mothers to polycyclic aromatic hydrocarbons (PAHs) exposure and assessment of potential health risks of their infants were performed through determination of 18 PAHs and 6 major metabolites (OH-PAHs) in breast milk. Concentrations of total PAHs ranged between 55.2 and 1119 ng/g fat, being naphthalene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, and phenanthrene the most abundant compounds (68.4% of ∑PAHs). Benzo(a)pyrene, known carcinogenic, was not detected. Total levels of OH-PAHs ranged from 6.66 to 455 ng/g fat with 1-hydroxyphenanthrene, 1-hydroxynaphthalene and 1-hydroxyacenaphthene as major compounds (96% of ∑OH-PAHs). Concentrations of ∑PAHs and ∑OH-PAHs were strongly correlated between each other (r = 0.692; p ≤ 0.001) and moderately-to-strongly associated with individual compounds (0.203 < r < 0.841; p ≤ 0.001). The attained data suggest increased levels of PAHs in older nursing mothers (>30 years) and in those whose child had lower weight (up to 3.0 kg). Breast-fed infant presented a median PAHs daily intake of 1.41 μg/kg body weight (total benzo(a)pyrene equivalents of 0.0679 μg/kg) and were exposed to 0.024 μg/kg body weight of ∑PAH4 [benz(a)anthracene, benzo(b)fluoranthene, benzo(j)fluoranthene, and chrysene]. Although breast milk is a secure food for newborns, un-metabolized and metabolized PAHs should be included in biomonitoring surveillance studies during breastfeeding to prevent potential health risks for infants.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Sofia Duarte
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia, Universidade de Coimbra, Polo Das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, Avenida José R. Sousa Fernandes, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Angelina Pena
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia, Universidade de Coimbra, Polo Das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
21
|
Cheng Z, Huo X, Dai Y, Lu X, Hylkema MN, Xu X. Elevated expression of AhR and NLRP3 link polycyclic aromatic hydrocarbon exposure to cytokine storm in preschool children. ENVIRONMENT INTERNATIONAL 2020; 139:105720. [PMID: 32289583 DOI: 10.1016/j.envint.2020.105720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), as a group of persistent organic pollutants, are linked to impaired immune function and low-grade inflammation in adults and children. However, the potential of PAHs to lead to a cytokine storm associated with AhR (aryl hydrocarbon receptor) and NLRP3 (NLR family pyrin domain containing 3) in humans has been poorly studied. OBJECTIVES We aimed to investigate the associations between PAH exposure, AhR and NLRP3 expression, and cytokines associated with a cytokine storm in healthy preschoolers. METHODS Basic demographic surveys and physical examinations were conducted on 248 preschoolers from an electronic waste (e-waste) recycling area (Guiyu, n = 121) and a reference area (Haojiang, n = 127). Ten urinary PAH metabolite (OH-PAH) concentrations were measured. We also measured the expression levels of AhR and NLRP3 and seventeen serum cytokine levels. RESULTS The concentrations of multiple OH-PAHs were significantly higher in the exposed group than those in the reference group, especially 1-hydroxynaphthalene (1-OH-Nap) and 2-hydroxynaphthalene (2-OH-Nap). PAH exposure was closely related to a child's living environment and hygiene habits. Expression levels of AhR and NLRP3 were significantly higher in the exposed group than in the reference group. Similarly, serum IL-1β, IL-4, IL-5, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-22, IL-23, and IFN-γ levels were notably higher in the e-waste-exposed children than in the reference children. After adjusting for age, gender, BMI, family income, parental education level, and second-hand smoke exposure, we found that increased PAH exposure was associated with higher AhR and NLRP3 expression and elevated IL-4, IL-10, IL-12p70, IL-18, IL-22, IL-23, TNF-α, and IFN-γ levels. The associations between PAH exposure and IL-1β, IL-18, IFN-γ, and TNF-β were mediated by NLRP3 expression, and the relationships between PAH exposure and IL-4, IL-10, IL-12p70, IL-22, IL-23, and TNF-α were mediated by AhR expression. CONCLUSIONS Our findings suggest that the association between PAH exposure and a cytokine storm may be mediated by AhR and NLRP3 expression among preschoolers.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
22
|
Gao H, Ye G, Lin Y, Chi Y, Dong S. Benzo[a]pyrene at human blood equivalent level induces human lung epithelial cell invasion and migration via aryl hydrocarbon receptor signaling. J Appl Toxicol 2020; 40:1087-1098. [PMID: 32166782 DOI: 10.1002/jat.3969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
Benzo[a]pyrene (B[a]P), a typical carcinogenic polycyclic aromatic hydrocarbon, exists worldwide in vehicle exhaust, cigarette smoke and other polluted environments. Recent studies have demonstrated a strong association between B[a]P and lung cancer. However, whether B[a]P at human blood equivalent level can promote epithelial-mesenchymal transition (EMT), a crucial molecular event during cell malignant transformation, remains unclear. Besides, whether B[a]P facilitates this progress via aryl hydrocarbon receptor (AhR) signaling pathway also lacks scientific evidence. In our study, the transwell assay showed that 5 μg/L of B[a]P promoted BEAS-2B cell invasion and migration. In addition, the mRNA and protein expression levels of AhR and its target genes involved in B[a]P metabolism, such as AhR nuclear translocator, heat shock protein 90 and CYP1A1, were significantly increased by B[a]P exposure. Moreover, the mRNA expression levels of downstream regulatory factors related to both AhR signaling pathway and EMT, such as NRF2, K-RAS and hypoxia-inducible factor 1-alpha, were significantly increased. Furthermore, the expression level of the epithelial marker E-cadherin was significantly downregulated, while the mRNA expression of mesenchymal phenotype markers, N-cadherin, fibronectin and vimentin, were significantly upregulated. Notably, the above changes induced by B[a]P were significantly attenuated or even stopped by resveratrol (RSV), a natural phenol, also an AhR inhibitor, when the AhR signaling pathway was inhibited by RSV, demonstrating the regulatory role of AhR signaling pathway in B[a]P-induced EMT. In conclusion, B[a]P at the human blood equivalent level induces BEAS-2B cell invasion and migration through the AhR signaling pathway.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guozhu Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yulang Chi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Sijun Dong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
23
|
Gogola J, Hoffmann M, Nimpsz S, Ptak A. Disruption of 17β-estradiol secretion by persistent organic pollutants present in human follicular fluid is dependent on the potential of ovarian granulosa tumor cell lines to metabolize estrogen. Mol Cell Endocrinol 2020; 503:110698. [PMID: 31891770 DOI: 10.1016/j.mce.2019.110698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Endocrine-disrupting chemicals (EDCs), such as perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyl 153 are persistent pollutants that are found in human follicular fluid (FF). These compounds may affect endocrine function, disrupt steroid secretion by granulosa cells, and play a role in granulosa cell tumor (GCT) development. GCTs demonstrate endocrine activity, expressing aromatase and secreting 17β-estradiol (E2). We aimed to determine the effects of a mixture of EDCs, similar to that found in human FF, on human granulosa tumor cell lines representing the juvenile (JGCT) and adult (AGCT) forms (COV434 and KGN cells, respectively). We found that all the individual compounds and mixtures tested altered granulosa tumor cell function by disrupting E2 secretion. In KGN cells, which possess significantly higher basal aromatase gene expression, and therefore secrete more E2 than JGCT cells, EDC mixtures activated estrogen receptors (ERs) and G protein-coupled receptor-30 signaling, thereby stimulating E2 secretion, without affecting aromatase expression. By contrast, in COV434 cells, which demonstrate higher CYP1A1 expression, a key mediator of estrogen metabolism, than KGN cells, EDC mixtures reduced E2 secretion in parallel with increases in the 2-hydroxyestrogen 1/E2 ratio and CYP1A1 expression, implying an upregulation of E2 metabolism. These results indicate that the EDC mixture present in FF disrupts E2 secretion in JGCT and AGCT cells according to the estrogen metabolic potential of the cell type, involving both classical and non-classical ER pathways.
Collapse
Affiliation(s)
- Justyna Gogola
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Marta Hoffmann
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Samantha Nimpsz
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
24
|
Zajda K, Gregoraszczuk EL. Environmental polycyclic aromatic hydrocarbons mixture, in human blood levels, decreased oestradiol secretion by granulosa cells via ESR1 and GPER1 but not ESR2 receptor. Hum Exp Toxicol 2019; 39:276-289. [DOI: 10.1177/0960327119886027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tissue-dependent oestrogenic and anti-oestrogenic activity of polycyclic aromatic hydrocarbons (PAHs) has been suggested. In this study, the effect of two PAH mixtures, M1 composed of all 16 priority pollutants and M2 composed of five (noted in the highest levels) compounds, on follicle-stimulating hormone receptor (FSHR) expression, basal or FSH-induced oestradiol (E2) secretion and aromatase cytochrome P450 (P450arom) protein expression, by non-luteinised human granulosa cell line (HGrC1) was determined. In addition, the consequences of gene silencing of oestrogen receptor alfa (siESR1), oestrogen receptor beta (siESR2) and a G protein-coupled receptor (siGPER1) on the above parameters were described. Neither PAH mixture had an effect on basal FSHR protein expression; however, both mixtures increased FSH-induced FSHR expression. Decreased E2 secretion and P450arom expression was also demonstrated. In both basal and FSH treated cells, siESR1 and siGPER1 reversed the inhibitory effect of the mixtures on E2 secretion; however, in siESR2 cells, the inhibitory effect was still observed. This study showed that both classic ESR1 and GPER1 were involved in the inhibitory effect of both PAH mixtures on E2 secretion and confirmed that expression of P450arom could be downregulated through the aryl hydrocarbon receptor and additionally through the ESR2.
Collapse
Affiliation(s)
- K Zajda
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - EL Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| |
Collapse
|
25
|
Yan H, Zhang Y, Zhang L, Liu J, Jin L, Pang Y, Yan L, Qin Y, Wang B, Ye R, Li Z, Ren A. Associations of AHR, CYP1A1, EPHX1, and GSTP1 genetic polymorphisms with small-for-gestational-age infants. J Matern Fetal Neonatal Med 2019; 34:2807-2815. [PMID: 31575313 DOI: 10.1080/14767058.2019.1671336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate the influences of aryl hydrocarbon (AHR), cytochrome P450 (CYP1A1), epoxide hydrolase 1 (EPHX1), and glutathione S-transferase P1 (GSTP1) genetic polymorphisms on small-for-gestational-age (SGA) infants. METHODS This nested case-control study (126 cases and 381 controls) was based on a prospective cohort study in Shanxi Province, China. We collected the general information of subjects using questionnaire and identified their single nucleotide polymorphisms by the MassARRAY genotyping platform. RESULTS The polymorphisms of CYP1A1 (rs4646421 and rs4646903) and EPHX1 (rs1051740) were significantly associated with SGA. Neonates of women with EPHX1 (rs1051740) and GSTP1 (rs1695) variant alleles were at a significantly increased risk of SGA compared with the reference group (OR = 5.26; 95% CI, 1.08-25.66), as were neonates of women with CYP1A1 (rs4646903) and EPHX1 (rs1051740) variant alleles (OR = 7.11; 95% CI, 1.55-32.62). The results of strata analysis by AHR (rs2282883 and rs17137566) showed that the associations between the polymorphisms of CYP1A1 (rs4646421 and rs4646903) EPHX1 (rs1051740), GSTP1 (rs1695) and SGA were of significance in women with variant heterozygous or homozygous genotype. CONCLUSIONS CYP1A1 (rs4646421 and rs4646903), EPHX1 (rs1051740), and GSTP1 (rs1695) genetic variances might increase the risk of SGA. AHR (rs2282883 and rs17137566) resulted in estimated effects varying across strata on CYP1A1 (rs4646421 and rs4646903), EPHX1 (rs1051740), and GSTP1 (rs1695).
Collapse
Affiliation(s)
- Huina Yan
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yali Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Yanan Qin
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Rongwei Ye
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
26
|
Drwal E, Rak A, Gregoraszczuk EL. Differential effects of ambient PAH mixtures on cellular and steroidogenic properties of placental JEG-3 and BeWo cells. Reprod Toxicol 2019; 86:14-22. [DOI: 10.1016/j.reprotox.2019.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
|
27
|
Zajda K, Rak A, Ptak A, Gregoraszczuk EL. Compounds of PAH mixtures dependent interaction between multiple signaling pathways in granulosa tumour cells. Toxicol Lett 2019; 310:14-22. [PMID: 30980910 DOI: 10.1016/j.toxlet.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023]
Abstract
Mechanism of PAH mixtures, using granulosa tumour cells, was investigated. Cells were exposed to a mixture of all 16 priority PAHs (M1) or a mixture of five PAHs not classified as human carcinogens (M2). The effect of siAHR, siAHRR and siNFKB2 on the expression of CYP1A1, CYP1B1, GSTM1, ERα, AR and cell proliferation was described. M1 decreased AhR and CYP1A1, while increased AhRR and ARNT expression. M2 also decreased AhR and CYP1A1 but had no effect on AhRR expression. siAHRR reversed the inhibitory effect of M1 on AhR and CYP1A1,while inhibitory effect of M2 was still observed. siNFKB2 reversed inhibitory effect of both mixtures on AhR and CYP1A1 expression and stimulatory effect of M1 on AhRR expression. siAHR reversed stimulatory effect of both mixtures on ERα expression. Stimulatory effect of M1 on cell proliferation was not observed in siAHR, was still observed in siESR1 cells. M2 had no effect on cell proliferation, however stimulatory effect was appeared in siAHR and siESR1cells. In conclusion: M1 by activation of AhRR and NFkB p52, but M2 only by activation of NFκB attenuated AhR signalling and ligand-induced CYP1A1 expression. Interaction between AhR and ER following M1 and M2 exposure is primarily initiated through AhR.
Collapse
Affiliation(s)
- K Zajda
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - A Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - A Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - E L Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland.
| |
Collapse
|
28
|
Cabrera-Rodríguez R, Luzardo OP, Almeida-González M, Boada LD, Zumbado M, Acosta-Dacal A, Rial-Berriel C, Henríquez-Hernández LA. Association between prenatal exposure to multiple persistent organic pollutants (POPs) and growth indicators in newborns. ENVIRONMENTAL RESEARCH 2019; 171:285-292. [PMID: 30708232 DOI: 10.1016/j.envres.2018.12.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Despite the fact that many of persistent organic pollutants (POPs) have been banned for decades, they still constitute a group of harmful substances to human health. Prenatal exposure can have adverse effects on one's health as well as on their newborns. The present cross-sectional study, which includes 87% of the births registered in La Palma Island (Canary Islands, Spain) during 2016 (n = 447), aims to evaluate the potential adverse health effects exerted by a wide range of POPs on newborns. We quantified blood cord levels of twenty organochlorine pesticides, eighteen polychlorinated biphenyls (PCBs), eight bromodiphenyl ethers (BDEs), and sixteen polycyclic aromatic hydrocarbons (PAHs) using the method of gas chromatography-mass spectrometry. By groups, p,p'-DDE, PCB-28, BDE-47, and phenanthrene were the most frequently detected compounds (median values = 0.148, 0.107, 0.065, and 0.380 ng/mL, respectively). p,p'-DDE was found to be significantly associated with an increase in neonatal birth weight, with a special emphasis on girls. An inverse association between PCB-28 and PCB-52 with birth weight was observed, and these associations were determined by the gender. A similar trend was obtained for BDE-47 but not for any of the PAHs. When assessing the effect of mixtures, boys exhibiting ≥ 3 OCPs were at lower risk of having higher birth weight (OR = 0.25; 95% CI = 0.07 - 0.89; P = 0.032). The effect of these pollutants on birth weight does not go in the same direction, a fact that is conditioned by several factors, including the chemical nature of the substance or the gender of the newborn. Additional research is needed to understand the role of POPs on fetal development.
Collapse
Affiliation(s)
- Raúl Cabrera-Rodríguez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain.
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| |
Collapse
|
29
|
Santos PM, del Nogal Sánchez M, Pavón JLP, Cordero BM. Determination of polycyclic aromatic hydrocarbons in human biological samples: A critical review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Drwal E, Rak A, Gregoraszczuk EL. Review: Polycyclic aromatic hydrocarbons (PAHs)-Action on placental function and health risks in future life of newborns. Toxicology 2018; 411:133-142. [PMID: 30321648 DOI: 10.1016/j.tox.2018.10.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/18/2018] [Accepted: 10/11/2018] [Indexed: 01/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants, which are released as products of incomplete combustion processes. Harmful effects of PAHs exposure on human health are observed in increased morbidity of respiratory, cardiovascular and immunological diseases. A particularly sensitive group to PAHs exposure are pregnant women and their developing offspring. PAHs can cross the placental barrier and a lot of published data indicated that prenatal or early postnatal exposure to PAHs can lead to developmental toxicity. Epidemiological data shows increased incidence and prevalence of conditions associated with PAHs exposure, like intrauterine growth retardation. Even more, negative effect of PAHs are observed later in development, low IQ, problems with behavior, allergies or asthma. This review will briefly summarize currently available data on the effects of PAHs on placental function with a specific emphasis on placental differentiation, angiogenesis, hormone signaling and consequences of exposure to PAHs in childhood and adulthood.
Collapse
Affiliation(s)
- Eliza Drwal
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa L Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
31
|
Ambient air emissions of polycyclic aromatic hydrocarbons and female breast cancer incidence in US. Med Oncol 2018; 35:88. [DOI: 10.1007/s12032-018-1150-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
|
32
|
Schiering C, Vonk A, Das S, Stockinger B, Wincent E. Cytochrome P4501-inhibiting chemicals amplify aryl hydrocarbon receptor activation and IL-22 production in T helper 17 cells. Biochem Pharmacol 2018; 151:47-58. [PMID: 29501585 DOI: 10.1016/j.bcp.2018.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AHR) controls interleukin 22 production by T helper 17 cells (Th17). IL-22 contributes to intestinal homeostasis but has also been implicated in chronic inflammatory disorders and colorectal cancer, highlighting the need for appropriate regulation of IL-22 production. Upon activation, the AHR induces expression of cytochrome P4501 (CYP1) enzymes which in turn play an important feedback role that curtails the duration of AHR signaling by metabolizing AHR ligands. Recently we described how agents that inhibit CYP1 function potentiate AHR signaling by disrupting metabolic clearance of the endogenous ligand 6-formylindolo[3,2-b]carbazole (FICZ). In the present study, we investigated the immune-modulating effects of environmental pollutants such as polycyclic aromatic hydrocarbons on Th17 differentiation and IL-22 production. Using Th17 cells deficient in CYP1 enzymes (Cyp1a1/1a2/1b1-/-) we show that these chemicals potentiate AHR activation through inhibition of CYP1 enzymes which leads to increases in intracellular AHR agonists. Our findings demonstrate that IL-22 production by Th17 cells is profoundly enhanced by impaired CYP1-function and strongly suggest that chemicals able to modify CYP1 function or expression may disrupt AHR-mediated immune regulation by altering the levels of endogenous AHR agonist(s).
Collapse
Affiliation(s)
- Chris Schiering
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Anne Vonk
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden.
| | - Srustidhar Das
- Karolinska Institutet, Department of Medicine, Solna (MedS), K2, L2:04 171 76 Stockholm, Sweden.
| | | | - Emma Wincent
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden; Karolinska Institutet, Institute of Environmental Medicine, Box 210, 171 77 Stockholm, Sweden.
| |
Collapse
|
33
|
Three-dimensional ionic liquid-ferrite functionalized graphene oxide nanocomposite for pipette-tip solid phase extraction of 16 polycyclic aromatic hydrocarbons in human blood sample. J Chromatogr A 2018; 1552:1-9. [PMID: 29673765 DOI: 10.1016/j.chroma.2018.03.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously found in the environment and have been proved to be prospectively associated with the risk of cancer. In this study, a simple method based on pipette-tip solid phase extraction (PT-SPE) and gas chromatography-mass spectrometry (GC-MS) has been firstly developed for the determination of 16 PAHs in human whole blood. Three-dimensional ionic liquid-ferrite functionalized graphene oxide nanocomposite (3D-IL-Fe3O4-GO) was used as sorbent in PT-SPE. Compared with conventional SPE method, the PT-SPE method was solvent-saving (1.0 mL), reusable (at least 10 times) and required less blood sample (200 μL). Affecting parameters on extraction efficiency were investigated and optimized. Under the optimized conditions, a good linearity was obtained and the recoveries of 16 PAHs at three spiked levels ranged from 85.0% to 115%. The limits of quantification (LOQs) were in the range of 0.007-0.013 μg/L. Furthermore, the developed method was successfully applied to the analysis of 16 PAHs in 14 human blood samples. The results showed that the predominant PAHs in human whole blood was low-molecular-weight PAHs, with the rank order phenanthrene (PHE)> naphthalene (NAP)> fluorene (FLU)> fluoranthene (FLT)> pyrene (PYR). Because of its simplicity, accuracy and reliability, the PT-SPE method combined with GC-MS demonstrated the applicability for clinical analysis and provided more information for PAHs exposure studies.
Collapse
|
34
|
Drwal E, Rak A, Grochowalski A, Milewicz T, Gregoraszczuk EL. Cell-specific and dose-dependent effects of PAHs on proliferation, cell cycle, and apoptosis protein expression and hormone secretion by placental cell lines. Toxicol Lett 2017; 280:10-19. [DOI: 10.1016/j.toxlet.2017.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
|