1
|
Kong Z, Zhu L, Liu Y, Liu Y, Chen G, Wang H. Effects of different stages, dosages and courses of prenatal dexamethasone exposure on testicular development in mice. Food Chem Toxicol 2025; 201:115468. [PMID: 40262731 DOI: 10.1016/j.fct.2025.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Observe the effects of prenatal dexamethasone exposure (PDE) at different stages, dosages, and courses on testicular morphology and multicellular function in offspring mice. METHODS Pregnant Kunming mice were subjected to subcutaneous injections of dexamethasone at different stages [GD (gestational day) 14-15 and 16-17], dosages (0.2, 0.4, and 0.8 mg/kg·d), and courses (GD 14-15 and 14-17). Pregnant mice were euthanized on GD 18, and fetal serum and testicular samples were collected to assess serum testosterone level, testicular morphology, cellular proliferation/apoptosis function, expression of multicellular marker/functional gene, and the expression of developmental regulatory signalling pathways such as Notch and Wnt. RESULTS PDE could lead to widening of the interstitial area and reduction of seminiferous tubules in fetal testicular tissue, accompanied by significant impairment of Sertoli cell function, particularly evident during late gestation, at high doses, and with multiple courses. However, changes in Leydig cells and spermatogonia function of PDE are not significant. Furthermore, we discovered that PDE could activate the Notch signalling pathway in Sertoli cells while inhibiting the Wnt signalling pathway. CONCLUSION PDE could affect fetal testicular development, especially for Sertoli cells during late gestation, at high doses and multiple courses. This study confirms the effects of PDE on testicular tissue morphology and multicellular function, providing a comprehensive understanding of the testicular developmental toxicity of dexamethasone and evidence for guiding rational medication during pregnancy.
Collapse
Affiliation(s)
- Ziyu Kong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yi Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
2
|
Cao J, Hu W, Chen Y, Ailikaiti A, Zhang Z, Rong L, Yu H, Wang H. Adrenal High-Expressional CYP27A1 Mediates Bile Acid Increase and Functional Impairment in Adult Male Offspring by Prenatal Dexamethasone Exposure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413299. [PMID: 39950753 PMCID: PMC11984885 DOI: 10.1002/advs.202413299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/16/2025] [Indexed: 04/12/2025]
Abstract
Prenatal dexamethasone exposure (PDE) can impact adrenal corticosteroid synthesis in adult offspring. Furthermore, the adrenal gland can autonomously synthesize bile acids, but local bile acids accumulation has cytotoxic effects. This study found that PDE increased histone 3 lysine 27 acetylation (H3K27ac) levels in the promoter region of cholesterol 27 hydroxylase (CYP27A1) and its expression, as well as total bile acids (TBA) concentrations and enhanced endoplasmic reticulum stress (ERS) and inhibit steroid synthesis in adult male offspring rat adrenal glands. However, it is reversed in females. Tracing back to the prenatal stage and in combination with cellular experiments, it is further revealed that dexamethasone can regulate glucocorticoid receptor (GR)/SET binding protein 1 (SETBP1)/CYP27A1 signal pathway, consequently cause intracellular increase of bile acids. Finally, administration of nilvadipine (CYP27A1 inhibitor) to male offspring for 4 weeks after birth resulted in the reversal of PDE-induced adrenal morphological and functional damage. In conclusion, PDE induces fetal adrenal corticosteroid dysfunction in adult male offspring by upregulating CYP27A1 promoter region H3K27ac levels and expression in the adrenal gland through the GR/SETBP1 signaling pathway. This effect persists beyond birth, leading to bile acids local increase and subsequent enhancement of ERS, ultimately inducing cellular dysfunction in adult adrenal glands.
Collapse
Affiliation(s)
- Jiangang Cao
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Institute of Clinical Pharmacy ResearchThe Affiliated Nanhua HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Wen Hu
- Department of PharmacyZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Yawen Chen
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | | | - Ziyi Zhang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Lingbo Rong
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
| | - Hong Yu
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical SciencesWuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
3
|
Lu YY, Yang R, Cao M, Lu L, Zhu W, Hua W, Tian M, Sun Y, Huang Q. Reversibility of polystyrene nanoplastics-induced disruption of testosterone biosynthesis in mice: The role of histone modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125506. [PMID: 39662582 DOI: 10.1016/j.envpol.2024.125506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Nanoplastics (NPs) exposure could disrupt the synthesis of steroid hormones, thereby posing a potential threat to male reproductive health. However, the existing comprehension of the molecular mechanisms participating in this process remains limited, and the reversibility of NPs-triggered male reproductive toxicity is poorly understood. This investigation focused on the impact of histone modification on testosterone production in mice under long-term exposure to environmentally relevant doses of polystyrene nanoplastics (PS-NPs). The results showed 500 nm and 100 nm PS-NPs could accumulate in mouse testis, with a subsequent significant decrease following a period of self-recovery. The testosterone levels significantly increased after exposure to 500 nm and 100 nm PS-NPs, and the protein levels of CYP11A1, CYP17A1, and 17β-HSD were upregulated. Furthermore, PS-NPs exposure decreased the levels of multiple histone modifications (H3K9me1/2, H3K4me2/3, and H3K4/9ac) while increased H3K9me3 in mouse testis. Histone H3K9 methylation is linked with gene inhibition, whereas H3K4 methylation and H3K4/9 acetylation contribute to gene activation. ChIP analysis further confirmed that H3K9me2 was markedly decreased in the promoter regions of Cyp11a1 and Hsd17b. Additionally, H3K9me2 demethylase Jhdm2a was significantly increased. These findings suggested that low-level PS-NPs inhibited H3K9me2 through upregulating Jhdm2a, thereby activating key steroidogenic proteins CYP11A1 and 17β-HSD, ultimately promoting testosterone synthesis in mouse testis. Importantly, the changes in testosterone, steroidogenic proteins and histone modifications were effectively reversed upon the cessation of exposure to 500 nm and 100 nm PS-NPs. Collectively, these discoveries offer fresh perspectives on the epigenetic mechanisms underlying male reproductive endocrine disruption caused by PS-NPs, and contribute to assessing the human health hazards associated with exposure to environmental NPs.
Collapse
Affiliation(s)
- Yan-Yang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Rui Yang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, China
| | - Meiyi Cao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lu Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Wanqing Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Weizhen Hua
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, China.
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
4
|
Besong EE, Akhigbe RE. Sodium acetate prevents testicular damage in Wistar rats subjected to testicular ischaemia/reperfusion injury. Exp Mol Pathol 2024; 137:104901. [PMID: 38749364 DOI: 10.1016/j.yexmp.2024.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024]
Abstract
AIMS The aim of this study was to investigate the potential antioxidant, anti-inflammatory, and sperm function-preserving properties of sodium acetate (ACE), a histone deacetylase (HDAC) inhibitor, in a rat model of testicular torsion/detorsion (T/D). MAIN METHODS Littermate Wistar rats of identical weight were subjected to sham surgery or testicular T/D by rotating the left testis at 720° around its axis along the spermatic cord clockwise and fixing it in this position for two and a half hours. 1 h before detorsion, T/D + ACE-treated rats were treated with ACE (200 mg/kg/day, per os) while T/D rats were vehicle-treated by administering 0.5 mL of distilled water. After 72 h, animals were euthanized, and the left testes were harvested for bio-molecular and histological analysis. KEY FINDINGS Acetate administration attenuated T/D-induced rises in serum and testicular HDAC and testicular xanthine oxidase, uric acid, MDA, GSSG, MPO, TNF-α, IL-1β, IL-6, NFkB, HIF-1α, and VCAM-1. In addition, acetate treatment alleviated T/D-induced decline in sperm quality (count, motility, viability, and normal morphology) and testicular 3β-HSD, 17β-HSD, testosterone, GSH, GSH/GSSG, SOD, catalase, GPx, GST, Nrf2, and HO-1. Furthermore, acetate prevented T/D-distorted testicular histoarchitecture and spermatogenic germ cell loss. SIGNIFICANCE Sodium acetate during the post-ischaemic phase of testicular T/D may be beneficial in preventing I/R injury and maintaining fertility.
Collapse
Affiliation(s)
- Elizabeth Enohnyket Besong
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria.
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| |
Collapse
|
5
|
Liu Y, Chen SJ, Ai C, Yu PX, Fang M, Wang H. Prenatal dexamethasone exposure impairs rat blood-testis barrier function and sperm quality in adult offspring via GR/KDM1B/FSTL3/TGFβ signaling. Acta Pharmacol Sin 2024; 45:1237-1251. [PMID: 38472317 PMCID: PMC11130295 DOI: 10.1038/s41401-024-01244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Both epidemiological and animal studies suggest that adverse environment during pregnancy can change the offspring development programming, but it is difficult to achieve prenatal early warning. In this study we investigated the impact of prenatal dexamethasone exposure (PDE) on sperm quality and function of blood-testis barrier (BTB) in adult offspring and the underlying mechanisms. Pregnant rats were injected with dexamethasone (0.1, 0.2 and 0.4 mg·kg-1·d-1, s.c.) from GD9 to GD20. After weaning (PW4), the pups were fed with lab chow. At PW12 and PW28, the male offspring were euthanized to collect blood and testes samples. We showed that PDE significantly decreased sperm quality (including quantity and motility) in male offspring, which was associated with impaired BTB and decreased CX43/E-cadherin expression in the testis. We demonstrated that PDE induced morphological abnormalities of fetal testicle and Sertoli cell development originated from intrauterine. By tracing to fetal testicular Sertoli cells, we found that PDE dose-dependently increased expression of histone lysine demethylases (KDM1B), decreasing histone 3 lysine 9 dimethylation (H3K9me2) levels of follistatin-like-3 (FSTL3) promoter region and increased FSTL3 expression, and inhibited TGFβ signaling and CX43/E-cadherin expression in offspring before and after birth. These results were validated in TM4 Sertoli cells following dexamethasone treatment. Meanwhile, the H3K9me2 levels of FSTL3 promoter in maternal peripheral blood mononuclear cell (PBMC) and placenta were decreased and its expression increased, which was positively correlated with the changes in offspring testis. Based on analysis of human samples, we found that the H3K9me2 levels of FSTL3 promoter in maternal blood PBMC and placenta were positively correlated with fetal blood testosterone levels after prenatal dexamethasone exposure. We conclude that PDE can reduce sperm quality in adult offspring rats, which is related to the damage of testis BTB via epigenetic modification and change of FSTL3 expression in Sertoli cells. The H3K9me2 levels of the FSTL3 promoter and its expression in the maternal blood PBMC can be used as a prenatal warning marker for fetal testicular dysplasia.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Si-Jia Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Peng-Xia Yu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Man Fang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Lu X, Chen B, Xu D, Hu W, Wang X, Dai Y, Wang Q, Peng Y, Chen K, Zhao D, Wang H. Epigenetic programming mediates abnormal gut microbiota and disease susceptibility in offspring with prenatal dexamethasone exposure. Cell Rep Med 2024; 5:101398. [PMID: 38301654 PMCID: PMC10897547 DOI: 10.1016/j.xcrm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Prenatal dexamethasone exposure (PDE) can lead to increased susceptibility to various diseases in adult offspring, but its effect on gut microbiota composition and the relationship with disease susceptibility remains unclear. In this study, we find sex-differential changes in the gut microbiota of 6-month-old infants with prenatal dexamethasone therapy (PDT) that persisted in female infants up to 2.5 years of age with altered bile acid metabolism. PDE female offspring rats show abnormal colonization and composition of gut microbiota and increased susceptibility to cholestatic liver injury. The aberrant gut microbiota colonization in the PDE offspring can be attributed to the inhibited Muc2 expression caused by decreased CDX2 expression before and after birth. Integrating animal and cell experiments, we further confirm that dexamethasone could inhibit Muc2 expression by activating GR/HDAC11 signaling and regulating CDX2 epigenetic modification. This study interprets abnormal gut microbiota and disease susceptibility in PDT offspring from intrauterine intestinal dysplasia.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Xia Wang
- Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Qian Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dongchi Zhao
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Pediatrics, Children's Digital Health, and Data Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
7
|
Matsuyama S, DeFalco T. Steroid hormone signaling: multifaceted support of testicular function. Front Cell Dev Biol 2024; 11:1339385. [PMID: 38250327 PMCID: PMC10796553 DOI: 10.3389/fcell.2023.1339385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Embryonic development and adult physiology are dependent on the action of steroid hormones. In particular, the reproductive system is reliant on hormonal signaling to promote gonadal function and to ensure fertility. Here we will describe hormone receptor functions and their impacts on testicular function, focusing on a specific group of essential hormones: androgens, estrogens, progesterone, cortisol, and aldosterone. In addition to focusing on hormone receptor function and localization within the testis, we will highlight the effects of altered receptor signaling, including the consequences of reduced and excess signaling activity. These hormones act through various cellular pathways and receptor types, emphasizing the need for a multifaceted research approach to understand their critical roles in testicular function. Hormones exhibit intricate interactions with each other, as evidenced, for example, by the antagonistic effects of progesterone on mineralocorticoid receptors and cortisol's impact on androgens. In light of research findings in the field demonstrating an intricate interplay between hormones, a systems biology approach is crucial for a nuanced understanding of this complex hormonal network. This review can serve as a resource for further investigation into hormonal support of male reproductive health.
Collapse
Affiliation(s)
- Satoko Matsuyama
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Kong Z, Zhu L, Liu Y, Liu Y, Chen G, Jiang T, Wang H. Effects of azithromycin exposure during pregnancy at different stages, doses and courses on testicular development in fetal mice. Biomed Pharmacother 2024; 170:116063. [PMID: 38154271 DOI: 10.1016/j.biopha.2023.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Azithromycin is a commonly used antibiotic during pregnancy, but some studies have suggested its potential developmental toxicity. Currently, the effects and mechanisms of prenatal azithromycin exposure (PAzE) on fetal testicular development are still unclear. The effects of prenatal exposure to the same drug on fetal testicular development could vary depending on different stages, doses, and courses. Hence, in this study, based on clinical medication characteristics, Kunming mice was administered intragastrically with azithromycin at different stages (mid-/late-pregnancy), doses (50, 100, 200 mg/kg·d), and courses (single-/multi-course). Fetal blood and testicular samples were collected on GD18 for relevant assessments. The results indicated that PAzE led to changes in fetal testicular morphology, reduced cell proliferation, increased apoptosis, and decreased expression of markers related to Leydig cells (Star), Sertoli cells (Wt1), and spermatogonia (Plzf). Further investigation revealed that the effects of PAzE on fetal testicular development were characterized by mid-pregnancy, high dose (clinical dose), and single course having more pronounced effects. Additionally, the TGFβ/Smad and Nrf2 signaling pathways may be involved in the changes in fetal testicular development induced by PAzE. In summary, this study confirmed that PAzE influences fetal testicular morphological development and multicellular function. It provided theoretical and experimental evidence for guiding the rational use of azithromycin during pregnancy and further exploring the mechanisms underlying its developmental toxicity on fetal testicles.
Collapse
Affiliation(s)
- Ziyu Kong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Wuhan University People's Hospital, Wuhan 430071, China
| | - Tao Jiang
- Suizhou Emergency Medical Center, Suizhou 441300, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
9
|
Liu Y, Liu Y, Chen S, Kong Z, Guo Y, Wang H. Prenatal exposure to acetaminophen at different doses, courses and time causes testicular dysplasia in offspring mice and its mechanism. CHEMOSPHERE 2023; 345:140496. [PMID: 37865203 DOI: 10.1016/j.chemosphere.2023.140496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Epidemiological investigation suggested that the use of acetaminophen during pregnancy may cause offspring testicular dysplasia, but no systematic study has been conducted. In this study, Kunming mice were given acetaminophen at different doses (100/200/400 mg/kg.d), courses (single/multiple), time (second/third trimester) during pregnancy. Fetal blood and testes were collected on gestaional day 18 for detection. The results indicated abnormal testicular development in the PAcE (prenatal acetaminophen exposure) groups. The maximum diameter/cross-sectional area decreased, the interstitial space widened, and decreased proliferation/increased apoptosis were observed, especially in the high-dose, multi-course and second-trimester groups. Meanwhile, the serum testosterone level decreased in PAcE groups, and the steroid synthesis function in Leydig cells, Sertoli and spermatogenic cell function were inhibited, it was more significant in high-dose, multi-course and second-trimester groups. Furthermore, Wnt signal pathway was activated but Notch signal pathway was inhibited in the PAcE groups. Finally, in vitro experiment, acetaminophen could inhibit spermatogonial cell proliferation, enhance apoptosis, and change Wnt/Notch signal pathway. In conclusion, this study confirmed that PAcE can change fetal testicular development in a dose, course and time-dependent manner, and found that multicellular function impaired. This study provides theoretical and experimental basis for systematically elucidating the developmental toxicity of acetaminophen in testis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yi Liu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Sijia Chen
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ziyu Kong
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
10
|
Li X, Shen K, Yuan D, Fan J, Yang Y, Tian F, Quan J, Li C, Wang J. Sodium arsenite exposure enhances H3K14 acetylation and impairs male spermatogenesis in rat testes. Reprod Toxicol 2023; 122:108474. [PMID: 37757915 DOI: 10.1016/j.reprotox.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Histone modifications play important roles in the epigenetic regulation of spermatogenesis via mediating gene transcription. Steroidogenic regulatory enzymes control testosterone biosynthesis, which are essential for spermatogenesis. Arsenic exposure inhibits the expression of steroidogenic genes by significantly increasing tri-methylation of H3K9 (H3K9me3) level in rat testis, finally diminishes testosterone release and lowers the rat sperm quality. Acetylation of H3K14 (H3K14ac) is associated with testosterone production and spermatogenesis. Co-occurrence of H3K9me3/H3K14ac has been identified previously by mass spectrometry in histone H3 isolated from different human cell types. H3K9me3/H3K14ac dually marked regions are in a poised inactive state to inhibit the gene expression. Whereas, whether inorganic arsenic exposure affects spermatogenesis and steroidogenic regulatory enzymes via mediating H3K14ac level has not been studied. Thereupon, the male Sprague-Dawley (SD) rats were exposed to (NaAsO2) for 6 weeks, then the sperm density and motility, testosterone level in serum, arsenic in rat testis were detected. mRNA expression of steroidogenic regulatory enzymes Star, Cyp11a1, Hsd3b and Hsd17b were determined by RT-PCR. H3K14ac level and the expression of histone acetylases of H3K14 (KAT2A and EP300), histone deacetylases of H3K14 (HDAC6 and HDAC3), the reader of H3K14ac (BAZ2A) were determined. The results suggested arsenic enhances H3K14ac in rat testis, which was associated with repression of steroidogenic regulatory genes expression, further reduced testosterone production, and impaired the spermatogenesis.
Collapse
Affiliation(s)
- Xiangli Li
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Kaina Shen
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Dunxuan Yuan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Jinping Fan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Yan Yang
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Fangzhou Tian
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Jinrou Quan
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Chengyun Li
- School of Public Health, Lanzhou University, Lanzhou 730030, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
11
|
He Z, Zhang J, Chen Y, Ai C, Gong X, Xu D, Wang H. Transgenerational inheritance of adrenal steroidogenesis inhibition induced by prenatal dexamethasone exposure and its intrauterine mechanism. Cell Commun Signal 2023; 21:294. [PMID: 37853416 PMCID: PMC10585925 DOI: 10.1186/s12964-023-01303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Adrenal gland is the synthesis and secretion organ of glucocorticoid, which is crucial to fetal development and postnatal fate. Recently, we found that prenatal dexamethasone exposure (PDE) could cause adrenal dysfunction in offspring rats, but its multigenerational genetic effects and related mechanisms have not been reported. METHODS The PDE rat model was established, and female filial generation 1 (F1) rats mate with wild males to produce the F2, the same way for the F3. Three generation rats were sacrificed for the related detection. SW-13 cells were used to clarify the epigenetic molecular mechanism. RESULTS This study confirmed that PDE could activate fetal adrenal glucocorticoid receptor (GR). The activated GR, on the one hand, up-regulated Let-7b (in human cells) to inhibit steroidogenic acute regulatory protein (StAR) expression directly; on the other hand, down-regulated CCCTC binding factor (CTCF) and up-regulated DNA methyltransferase 3a/3b (Dnmt3a/3b), resulting in H19 hypermethylation and low expression. The decreased interaction of H19 and let-7 can further inhibit adrenal steroidogenesis. Additionally, oocytes transmitted the expression change of H19/let-7c axis to the next generation rats. Due to its genetic stability, F2 generation oocytes indirectly exposed to dexamethasone also inhibited H19 expression, which could be inherited to the F3 generation. CONCLUSIONS This cascade effect of CTCF/H19/Let-7c ultimately resulted in the transgenerational inheritance of adrenal steroidogenesis inhibition of PDE offspring. This study deepens the understanding of the intrauterine origin of adrenal developmental toxicity, and it will provide evidence for the systematic analysis of the transgenerational inheritance effect of acquired traits induced by PDE. Video Abstract.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinzhi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Xiaohan Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, China.
| |
Collapse
|
12
|
Chen G, Ai C, Duan F, Chen Y, Cao J, Zhang J, Ao Y, Wang H. Low H3K27 acetylation of SF1 in PBMC: a biomarker for prenatal dexamethasone exposure-caused adrenal insufficiency of steroid synthesis in male offspring. Cell Biol Toxicol 2023; 39:2051-2067. [PMID: 35246761 DOI: 10.1007/s10565-021-09691-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Dexamethasone is widely used to treat pregnancy disorders related to premature delivery. However, lots of researches have confirmed that prenatal dexamethasone exposure (PDE) could increase the risk of offspring multiple diseases. This study was designed to elucidate the epigenetic mechanism of adrenal developmental programming and explore its early warning marker in peripheral blood mononuclear cells (PBMC). We found the adrenal morphological and functional changes of PDE male offspring rats before and after birth, which were mainly performed as the decreased serum corticosterone concentration, steroidogenic acute regulatory (StAR) protein expression, and histone 3 lysine 27 acetylation (H3K27ac) level of steroidogenic factor 1 (SF1) promoter region and its expression. Simultaneously, the expressions of glucocorticoid receptor (GR) and histone acetylation enzyme 5 (HDAC5) in the PDE male fetal rats were increased. In vitro, dexamethasone reduced the expression of SF1, StAR, and cortisol production and still increased the expression of GR and HDAC5, the binding between GR and SF1 promoter region, and protein interaction between GR and HDAC5. GR siRNA or HDAC5 siRNA was able to reverse the above roles of dexamethasone. Furthermore, in vivo, we confirmed that H3K27ac levels of SF1 promoter region and its expression in PBMC of the PDE group were decreased before and after birth, showing a positive correlation with the same indexes in adrenal. Meanwhile, in clinical trials, we confirmed that prenatal dexamethasone application decreased H3K27ac of SF1 promoter region and its expression in neonatal PBMC. In conclusion, PDE-caused adrenal insufficiency of male offspring rats was related to adrenal GR activated by dexamethasone in uterus. The activated GR, on the one hand, increased its direct binding to SF1 promoter region to inhibit its expression, on the other hand, upregulated and recruited HDAC5 to decrease H3K27ac level of SF1 promoter region, and strengthened the inhibition of SF1 and subsequent StAR expression.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, 430071, People's Republic of China
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, 430071, People's Republic of China
| | - Fangfang Duan
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, 430071, People's Republic of China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, 430071, People's Republic of China
| | - Jiangang Cao
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, 430071, People's Republic of China
| | - Jinzhi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, 430071, People's Republic of China
| | - Ying Ao
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, 430071, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
13
|
Liu Y, Liu Y, Chen G, Wang H. Epigenetic programming of TBX2/CX43 mediates lower sperm quality in male offspring induced by prenatal dexamethasone exposure. Toxicol Sci 2023; 192:kfad016. [PMID: 36790081 DOI: 10.1093/toxsci/kfad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Decreased sperm quality is the main cause of male infertility. Studies have found that prenatal dexamethasone exposure (PDE) decreases sperm quality in male offspring after birth, but the mechanism is unclear. Wistar pregnant rats were subcutaneously injected with 0.1, 0.2 and 0.4 mg/kg.d dexamethasone at gestational day 9-20. The testes and sperm of first-generation (F1) offspring were collected, and F1 offspring were mated with wild-type female rats to obtain F2. Compared with the control group, F1 offspring in PDE group had lower sperm count and motility after birth, and the deformity rate increased. F2 fetal rats' body length and weight decreased, and the intrauterine growth retardation rate increased. Meanwhile, PDE decreased the expression of connexin 43 (CX43) in offspring testes, while T-box transcription factor 2 (TBX2) promoter region histone 3 lysine 9 acetylation (H3K9ac) level and its expression were increased. Traced back to F1 fetus testes, PDE increased the expression of glucocorticoid receptor (GR) and P300, activated GR protein into the nucleus, and made GR act on the TBX2 promoter region. Further, a series of Sertoli cell interventions confirmed that dexamethasone promoted GR to recruit P300, increased the H3K9ac level of TBX2 promoter region and its expression, and inhibited the expression of CX43. This study confirmed that PDE decreased sperm quality of male offspring, which is related to the epigenetic programming of TBX2/CX43 in the Sertoli cells, provided a theoretical and experimental basis for guiding the rational use of drugs during pregnancy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| |
Collapse
|
14
|
Developmental toxicity window of fetal testicular injury in offspring mice induced by prenatal amoxicillin exposure at different time, doses and courses. Toxicol Lett 2023; 374:85-95. [PMID: 36529298 DOI: 10.1016/j.toxlet.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Amoxicillin is widely used in the clinical treatment of syphilis, gonorrhea and other infectious diseases during pregnancy, but the effects of prenatal amoxicillin exposure (PAmE) on fetal testicular development have not been reported. Based on the characteristics of clinical medication, Kunming mice were orally gavaged with amoxicillin during pregnancy at different time (mid- or late-pregnancy), doses (75, 150 or 300 mg/kg·d) or courses (single- or multi-course). The results showed that compared with the control group, PAmE resulted in fetal testicular abnormal morphological development, cell proliferation inhibition and apoptosis enhancement, Leydig cell steroid synthase system (SF1, StAR, P450scc, CYP17a1) expression inhibition, and fetal blood testosterone levels decreased. Among them, the late-pregnancy and high-dose amoxicillin groups had severe damage, while the damage in different course groups was basically the same. Meanwhile, PAmE could damage the number and function of germ cells at all time, doses and courses, but had no obvious effect on Sertoli cells. It was further found that PAmE inhibited fetal testis AKT and ERK signaling pathways in late pregnancy and high dose, while the damage in different course groups was basically the same. In summary, this study proposed the developmental toxicity window of fetal testicular injury induced by PAmE in late-pregnancy and high-dose and its related mechanism of AKT and ERK signaling pathway, which provided a theoretical and experimental basis for guiding rational drug use during pregnancy and effectively evaluating the risk of fetal testicular developmental toxicity.
Collapse
|
15
|
Lu Z, Guo Y, Xu D, Xiao H, Dai Y, Liu K, Chen L, Wang H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm Sin B 2023; 13:460-477. [PMID: 36873163 PMCID: PMC9978644 DOI: 10.1016/j.apsb.2022.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Medication during pregnancy is widespread, but there are few reports on its fetal safety. Recent studies suggest that medication during pregnancy can affect fetal morphological and functional development through multiple pathways, multiple organs, and multiple targets. Its mechanisms involve direct ways such as oxidative stress, epigenetic modification, and metabolic activation, and it may also be indirectly caused by placental dysfunction. Further studies have found that medication during pregnancy may also indirectly lead to multi-organ developmental programming, functional homeostasis changes, and susceptibility to related diseases in offspring by inducing fetal intrauterine exposure to too high or too low levels of maternal-derived glucocorticoids. The organ developmental toxicity and programming alterations caused by medication during pregnancy may also have gender differences and multi-generational genetic effects mediated by abnormal epigenetic modification. Combined with the latest research results of our laboratory, this paper reviews the latest research progress on the developmental toxicity and functional programming alterations of multiple organs in offspring induced by medication during pregnancy, which can provide a theoretical and experimental basis for rational medication during pregnancy and effective prevention and treatment of drug-related multiple fetal-originated diseases.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| |
Collapse
|
16
|
Figueiredo TM, de Barros JWF, Dos Santos Borges C, Pacheco TL, de Lima Rosa J, Anselmo-Franci JA, Kempinas WDG. Reproductive outcomes of neonatal exposure to betamethasone in male and female rats. J Appl Toxicol 2022; 43:752-763. [PMID: 36511433 DOI: 10.1002/jat.4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Betamethasone (BM) is the drug of choice for antenatal corticosteroid therapy for women at risk of preterm delivery because it induces fetal lung maturation and enhances survival after birth. However, our group reported evidence of fetal programming and impaired reproductive development and function in rats exposed during the critical window of genital system development. Therefore, we aimed to investigate the effects of BM on the sexual development of rats in the period that corresponds to antenatal corticosteroid therapy in humans. Male and female rats were exposed subcutaneously to BM at 0.1 μg/g of pups' body weight or to a NaCl 0.9% solution (control) on postnatal days 1-3. It was observed that neonatal exposure to BM decreased body weight and weight gain in male and female rats during treatment. The estrous cycle was deregulated and LH level was decreased in female rats. In male rats, the sperm concentration in the caput-corpus of the epididymis was decreased, whereas the sperm transit time and sperm concentration in the cauda of the epididymis were increased. Our results demonstrated that neonatal exposure to BM impaired body growth of male and female rats, deregulated the estrous cycle of female rats, and altered sperm quality of male rats. Therefore, BM exposure from postnatal days 1 to 3 corroborated results previously observed after prenatal exposure to this drug. Despite the recognized importance of human antenatal corticosteroid therapy, the findings of this study should encourage further studies in order to minimize possible adverse postnatal effects.
Collapse
Affiliation(s)
- Thamiris Moreira Figueiredo
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Jorge Willian Franco de Barros
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Cibele Dos Santos Borges
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Tainá Louise Pacheco
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Josiane de Lima Rosa
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Janete Aparecida Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
17
|
Li X, Hu W, Li L, Chen Z, Jiang T, Zhang D, Liu K, Wang H. MiR-133a-3p/Sirt1 epigenetic programming mediates hypercholesterolemia susceptibility in female offspring induced by prenatal dexamethasone exposure. Biochem Pharmacol 2022; 206:115306. [PMID: 36326533 DOI: 10.1016/j.bcp.2022.115306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
Mounting evidence indicates that adverse intrauterine conditions increase offspring's hypercholesterolemia susceptibility in adulthood. This study aimed to confirm prenatal dexamethasone exposure (PDE)-induced hypercholesterolemia susceptibility in female adult offspring rats, and elucidate its intrauterine programming mechanism. Pregnant Wistar rats were injected with dexamethasone subcutaneously (0, 0.1 and 0.2 mg/kg·d) from gestational day (GD) 9 to 20. Serum and liver of the female offspring were collected at GD21 and postnatal week (PW) 12 and 28. PDE offspring showed elevated serum total cholesterol (TCH) levels and a cholesterol phenotype of high cardiovascular disease risk at PW12 and PW28. The histone acetylation levels of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) and its expression were consistently increased in the PDE offspring both in utero and after birth. Moreover, PDE promoted glucocorticoid receptor (GR) nuclear translocation and miR-133a-3p expression and inhibited sirtuin-1 (Sirt1) expression in the fetal liver. In vitro, dexamethasone increased intracellular and supernatant TCH levels and miR-133a-3p expression, decreased SIRT1 expression, and promoted HMGCR histone acetylation and expression in bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and HepG2 cell line. GR siRNA, miR-133a-3p inhibitor or SIRT1 overexpression reversed dexamethasone-induced downstream molecular and phenotypic changes. Furthermore, elevated TCH levels in umbilical cord blood and increased HMGCR expression in peripheral blood mononuclear cells (PBMCs) were observed in human female neonates who had received dexamethasone treatment during pregnancy. In conclusion, PDE can cause persistent enhancement of hepatic cholesterol synthesis function before and after birth through GR/miR-133a-3p/Sirt1 pathway, eventually leading to increased hypercholesterolemia susceptibility in female offspring rats.
Collapse
Affiliation(s)
- Xufeng Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ze Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
18
|
Shangguan Y, Li X, Qin J, Wen Y, Wang H, Chen L. Positive programming of the GC-IGF1 axis mediates adult osteoporosis susceptibility in male offspring rats induced by prenatal dexamethasone exposure. Biochem Pharmacol 2022; 206:115264. [PMID: 36174767 DOI: 10.1016/j.bcp.2022.115264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Prenatal dexamethasone exposure (PDE) can lead to offspring long bone dysplasia and continue to postnatal, and this is an important cause of fetal-derived osteoporosis. Studies have confirmed that intrauterine endogenous GC overexposure mediates multiple organ dysplasia and adult-related disease susceptibility in offspring through the glucocorticoid-insulin-like growth factor1 (GC-IGF1) axis. However, it remains unknown if exogenous dexamethasone can regulate bone development in offspring through the GC-IGF1 axis. We determined that the PDE fetal rats exhibited poor osteogenic differentiation, decreased bone mass that continued to adolescence, and increased susceptibility to osteoporosis in adulthood. Concurrently, PDE decreased the serum corticosterone concentration and IGF1 expression in offspring before and after birth, while the increased serum corticosterone concentration induced by chronic stress reversed the inhibition of IGF1 expression induced by PDE. Furthermore, PDE decreased the expression of GRα and miR-130a-5p, increased HDAC4, and decreased H3K27 acetylation in the IGF1 promoter region in bone tissue, and the above changes were negatively compensated after chronic stress. In vitro, a low concentration of corticosterone inhibited the expression of GRα and miR130a-5p, upregulated the expression of HDAC4, inhibited the promoter region H3K27 acetylation, and expression of IGF1 in bone marrow mesenchymal stem cell (BMSCs) osteoblast differentiated cells and inhibited osteogenic differentiation of BMSCs. GRα overexpression, miR-130a-5p mimic treatment, or HDAC4 siRNA exposure reversed the downstream molecular alterations caused by low corticosterone concentrations. In conclusion, PDE-induced intrauterine hypoglucocorticoid exposure could positively program IGF1 expression in bone tissue through the GRα/miR-130a-5p/HDAC4 pathways, thus mediating osteogenic dysdifferentiation and adult osteoporosis susceptibility in male offspring rats.
Collapse
Affiliation(s)
- Yangfan Shangguan
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xufeng Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Jun Qin
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
19
|
Dai Y, Kou H, Gui S, Guo X, Liu H, Gong Z, Sun X, Wang H, Guo Y. Prenatal dexamethasone exposure induced pancreatic β-cell dysfunction and glucose intolerance of male offspring rats: Role of the epigenetic repression of ACE2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154095. [PMID: 35219660 DOI: 10.1016/j.scitotenv.2022.154095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of diabetes in children and adolescents has been rising gradually, which is relevant to adverse environment during development, especially prepartum. We aimed to explore the effects of prenatal dexamethasone exposure (PDE) on β-cell function and glucose homeostasis in juvenile offspring rats. Pregnant Wistar rats were subcutaneously administered with dexamethasone [0.1, 0.2, 0.4mg/(kg.d)] from gestational day 9 to 20. PDE impaired glucose tolerance in the male offspring rather than the females. In male offspring, PDE impaired the development and function of β-cells, accompanied with lower H3K9ac, H3K14ac and H3K27ac levels in the promoter region of angiotensin-converting enzyme 2 (ACE2) as well as suppressed ACE2 expression. Meanwhile, PDE increased expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) in fetal pancreas. Dexamethasone also inhibited ACE2 expression and insulin production in vitro. Recombinant expression of ACE2 restored insulin production inhibited by dexamethasone. In addition, dexamethasone activated GR and HDAC3, increased protein interaction of GR with HDAC3, and promoted the binding of GR-HDAC3 complex to ACE2 promoter region. Both RU486 and TSA abolished dexamethasone-induced decline of histone acetylation and ACE2 expression. In summary, suppression of ACE2 is involved in PDE induced β-cell dysfunction and glucose intolerance in juvenile male offspring rats.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China
| | - Shuxia Gui
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
20
|
Liu M, Liu Y, Pei LG, Zhang Q, Xiao H, Chen YW, Wang H. Prenatal dexamethasone exposure programs the decreased testosterone synthesis in offspring rats by low level of endogenous glucocorticoids. Acta Pharmacol Sin 2022; 43:1461-1472. [PMID: 34697420 PMCID: PMC9159998 DOI: 10.1038/s41401-021-00789-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Prenatal dexamethasone exposure (PDE) can decrease maternal endogenous glucocorticoid level and induce testicular dysplasia in male offspring rats. In this study we investigated low level endogenous glucocorticoid-mediated testicular dysplasia in PDE offspring and elucidated the intrauterine epigenetic programming mechanisms. Pregnant rats were injected with dexamethasone (0.2 mg·kg-1·d-1, sc) on gestational day (GD) 9-20. The offspring rat blood and testis were collected after euthanasia on GD20, postnatal week (PW) 12 or PW28. We showed that PDE induced abnormal morphology of testis and significantly decreased the expression of testosterone synthesis-related genes as well as testosterone production before and after birth. Meanwhile, serum corticosterone, the expression and histone 3 lysine 14 acetylation (H3K14ac) of testicular insulin-like growth factor 1 (IGF1) were significantly decreased. After the pregnant rats were subjected to chronic stress for 2 weeks (PW10-12), serum corticosterone level was increased in the adult PDE offspring, and the above-mentioned other indicators were also improved. Cultured Leydig cells (TM3) were treated with corticosterone (62.5-500 nM) in vitro. We showed that corticosterone concentration-dependently inhibited glucocorticoid receptor α (GRα) and miR-124-3p expression, increased histone deacetylase 5 (HDAC5) expression, and decreased IGF1 H3K14ac level and the expression of IGF1/steroidogenic acute regulatory protein (StAR), suggesting that corticosterone at lower than physiological level (<500 nM) inhibited testosterone synthesis by reducing H3K14ac and the expression level of IGF1 through GRα/miR-124-3p/HDAC5 pathway. In conclusion, PDE can cause persistent inhibition of testosterone synthesis before and after birth in the offspring rats by low level of endogenous glucocorticoids.
Collapse
Affiliation(s)
- Min Liu
- grid.49470.3e0000 0001 2331 6153Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 China ,grid.49470.3e0000 0001 2331 6153Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 China
| | - Yi Liu
- grid.49470.3e0000 0001 2331 6153Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 China
| | - Lin-guo Pei
- grid.49470.3e0000 0001 2331 6153Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 China ,grid.49470.3e0000 0001 2331 6153Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 China
| | - Qi Zhang
- grid.49470.3e0000 0001 2331 6153Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 China
| | - Hao Xiao
- grid.49470.3e0000 0001 2331 6153Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 China
| | - Ya-wen Chen
- grid.49470.3e0000 0001 2331 6153Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 China
| | - Hui Wang
- grid.49470.3e0000 0001 2331 6153Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 China ,grid.49470.3e0000 0001 2331 6153Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 China
| |
Collapse
|
21
|
Shimazaki M, Wittayarat M, Sambuu R, Sugita A, Kawaguchi M, Hirata M, Tanihara F, Takagi M, Taniguchi M, Otoi T, Sato Y. Disruption of cell proliferation and apoptosis balance in the testes of crossbred cattle-yaks affects spermatogenic cell fate and sterility. Reprod Domest Anim 2022; 57:999-1006. [PMID: 35614560 DOI: 10.1111/rda.14166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
The balance between proliferation, differentiation, and apoptosis is well-coordinated in spermatogenesis for the timely production of appropriate numbers of sperm in animals. Disruption or decrease in sperm production is due to many conditions, including changes in testicular cell fate balance. Interspecies hybridisation of domestic yaks and cattle results in sterility in males because of spermatogenic arrest; however, the underlying mechanisms involved in sterility are still unclear. In the present study, we investigated the proliferation and apoptosis status during the development of yaks and crossbred cattle-yaks using immunohistochemistry of proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays. Testicular tissues from yaks (immature: 1 year old, mature: 2-3 years old) and backcrossed hybrids (2 year old) were collected and used to investigate the expression of each parameter in testicular cells. During the maturation of yak testes, proliferation and apoptosis became active only in spermatogenic cells, and not in other somatic cells, such as Sertoli cells, myoid cells, and Leydig cells. Furthermore, hybrid cattle-yak testes maintained proliferation ability but less apoptotic ability in spermatogenic cells when compared to yaks of the same age, suggesting that normal spermatogenic cell fate control is disrupted by changes in the balance between proliferation and apoptosis. In addition, Leydig cell proliferation rate was higher than apoptosis rate in the cattle-yak testes, indicating an increased number of Leydig cells, which may affect spermatogenesis through changes in steroidogenesis. Although epigenetic changes may be involved in cattle-yak testes, further studies are needed to clarify the modulation of proliferation and apoptosis to elucidate the mechanisms of infertility in hybrid cattle-yak males.
Collapse
Affiliation(s)
- Megumi Shimazaki
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Rentsenkhand Sambuu
- Institute for Extension of Agricultural Advanced Technology, Ulaanbaatar, Mongolia
| | - Asami Sugita
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| | - Masaki Kawaguchi
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Mitsuhiro Takagi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yoko Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| |
Collapse
|
22
|
Han H, Xiao H, Wu Z, Liu L, Chen M, Gu H, Wang H, Chen L. The miR-98-3p/JAG1/Notch1 axis mediates the multigenerational inheritance of osteopenia caused by maternal dexamethasone exposure in female rat offspring. Exp Mol Med 2022; 54:298-308. [PMID: 35332257 PMCID: PMC8979986 DOI: 10.1038/s12276-022-00743-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
As a synthetic glucocorticoid, dexamethasone is widely used to treat potential premature delivery and related diseases. Our previous studies have shown that prenatal dexamethasone exposure (PDE) can cause bone dysplasia and susceptibility to osteoporosis in female rat offspring. However, whether the effect of PDE on bone development can be extended to the third generation (F3 generation) and its multigenerational mechanism of inheritance have not been reported. In this study, we found that PDE delayed fetal bone development and reduced adult bone mass in female rat offspring of the F1 generation, and this effect of low bone mass caused by PDE even continued to the F2 and F3 generations. Furthermore, we found that PDE increases the expression of miR-98-3p but decreases JAG1/Notch1 signaling in the bone tissue of female fetal rats. Moreover, the expression changes of miR-98-3p/JAG1/Notch1 caused by PDE continued from the F1 to F3 adult offspring. Furthermore, the expression levels of miR-98-3p in oocytes of the F1 and F2 generations were increased. We also confirmed that dexamethasone upregulates the expression of miR-98-3p in vitro and shows targeted inhibition of JAG1/Notch1 signaling, leading to poor osteogenic differentiation of bone marrow mesenchymal stem cells. In conclusion, maternal dexamethasone exposure caused low bone mass in female rat offspring with a multigenerational inheritance effect, the mechanism of which is related to the inhibition of JAG1/Notch1 signaling caused by the continuous upregulation of miR-98-3p expression in bone tissues transmitted by F2 and F3 oocytes.
Collapse
Affiliation(s)
- Hui Han
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanwen Gu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.,Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
23
|
Wang J, Chen F, Zhu S, Li X, Shi W, Dai Z, Hao L, Wang X. Adverse effects of prenatal dexamethasone exposure on fetal development. J Reprod Immunol 2022; 151:103619. [DOI: 10.1016/j.jri.2022.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
|
24
|
MiR-466b-3p/HDAC7 meditates transgenerational inheritance of testicular testosterone synthesis inhibition induced by prenatal dexamethasone exposure. Biochem Pharmacol 2022; 199:115018. [DOI: 10.1016/j.bcp.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
|
25
|
Rossetti MF, Varayoud J, Ramos JG. Steroidogenic enzymes in the hippocampus: Transcriptional regulation aspects. VITAMINS AND HORMONES 2022; 118:171-198. [PMID: 35180926 DOI: 10.1016/bs.vh.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurosteroids are steroids synthesized de novo from cholesterol in brain regions, and regulate processes associated with the development and functioning of the nervous system. Enzymes and proteins involved in the synthesis of these steroids have been detected in several brain regions, including hippocampus, hypothalamus, and cerebral cortex. Hippocampus has long been associated with learning and memory functions, while the loss of its functionality has been linked to neurodegenerative pathologies. In this sense, neurosteroids are critical for the maintenance of hippocampal functions and neuroprotective effects. Moreover, several factors have been shown to deregulate expression of steroidogenic enzymes in the rodent brain, including aging, enrichment experiences, diet habits, drug/alcohol consumption, hormone fluctuations, neurodegenerative processes and other diseases. These transcriptional deregulations are mediated mainly by transcription factors and epigenetic mechanisms. An epigenetic modification of chromatin involves changes in bases and associated proteins in the absence of changes in the DNA sequence. One of the most well-studied mechanisms related to gene silencing is DNA methylation, which involves a reversible addition of methyl groups in a cytosine base. Importantly, these epigenetic marks could be maintained over time and could be transmitted transgenerationally. The aim of this chapter is to present the most relevant steroidogenic enzymes described in rodent hippocampus; to discuss about their transcriptional regulation under different conditions; to show the main gene control regions and to propose DNA methylation as an epigenetic mechanism through which the expression of these enzymes could be controlled.
Collapse
Affiliation(s)
- María Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
26
|
Wu Z, Wen Y, Xiao H, Zhu J, Li B, Shangguan Y, He H, Wang H, Chen L. 11β-Hydroxysteroid dehydrogenase 2: A key mediator of high susceptibility to osteoporosis in offspring after prenatal dexamethasone exposure. Pharmacol Res 2022; 175:105990. [PMID: 34808367 DOI: 10.1016/j.phrs.2021.105990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023]
Abstract
Epidemiological investigations have shown that individuals treated with dexamethasone during pregnancy have an increased risk of osteoporosis after birth. Our studies reported that peak bone mass was decreased in the prenatal dexamethasone exposure (PDE) offspring before chronic stress, while further decrease was observed after chronic stress. Simultaneously, increase of bone local active corticosterone was observed in the PDE offspring, while further increase was also observed after chronic stress. Moreover, the histone H3 lysine 9 acetylation (H3K9ac) level of 11-beta hydroxysteroid dehydrogenase 2 (11β-HSD2) and its expression in bone tissue of PDE offspring rats remained lower than the control before and after birth. Injection of 11β-HSD2 overexpression lentivirus into the bone marrow cavity could partially alleviate the accumulation of bone local active corticosterone and bone loss induced by PDE. In vitro, dexamethasone inhibited the expression of 11β-HSD2 and aggravated the inhibitory effect of corticosterone on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Overexpression of 11β-HSD2 partially alleviated the inhibitory effect of corticosterone. Moreover, dexamethasone promoted the nuclear translocation of glucocorticoid receptor (GR), which resulted in the stimulation of 11β-HSD2 expression due to the binding of GR to the 11β-HSD2 promoter region directly, as well as increasing H3K9ac level in the 11β-HSD2 promoter region by recruiting histone deacetylase 11 (HDAC11). Our results indicated that low expression of 11β-HSD2 in bone tissue is an important mediator for the high susceptibility to osteoporosis in PDE adult offspring.
Collapse
Affiliation(s)
- Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China
| | - Jiayong Zhu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yangfan Shangguan
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hangyuan He
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical Science of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
27
|
Phakdeedindan P, Wittayarat M, Tharasanit T, Techakumphu M, Shimazaki M, Sambuu R, Hirata M, Tanihara F, Taniguchi M, Otoi T, Sato Y. Aberrant levels of DNA methylation and H3K9 acetylation in the testicular cells of crossbred cattle-yak showing infertility. Reprod Domest Anim 2021; 57:304-313. [PMID: 34854139 DOI: 10.1111/rda.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Although the interspecies hybridization of bovids, such as cattle-yak (Bos taurus × Bos grunniens), has heterosis benefits, the infertility of hybrid males affects the maintenance of dominant traits in subsequent generations. To achieve reproductive capacity, male germ cell development requires coordinated changes in gene expression, including DNA methylation and generalized histone modifications. Although gene expression-related mechanisms underlying hybrid male sterility have been investigated recently, information on the cell types and stage-specific controls remains limited. Here, we used immunohistochemistry and image analyses to evaluate the 5-methylcytosine (5MC) and acetyl-histone H3 Lys9 (AcK9) expression in all spermatogonia and testicular somatic cell types to determine their roles in cattle-yak spermatogenesis. Testicular tissues from yak (1-3 years old) and backcrossed hybrids (2 years old) were used. In yak, the AcK9 expression levels increased in all cell types during maturation, but the 5MC expression levels did not change until reaching 3 years when they increased in all testicular cell types, except spermatogonia. Cattle-yak hybrids showed higher 5MC expression levels and different AcK9 expression levels in all cell types compared to the same-aged yak. These results suggested that both gene modulation by AcK9 and constant levels of DNA methylation are required for spermatogenesis during maturation in yak. Therefore, inappropriate expression levels of both AcK9 and DNA methylation might be the major factors for disruption of normal germ cell development in cattle-yak. Additionally, various modulations occurred depending on the cell type. Further experiments are needed to identify the stage-specific gene expression modulations in each cell type in yak and cattle-yak to potentially solve the infertility issue in crossbreeding.
Collapse
Affiliation(s)
- Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Megumi Shimazaki
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Rentsenkhand Sambuu
- Institute for Extension of Agricultural Advanced Technology, Ulaanbaatar, Mongolia
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yoko Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| |
Collapse
|
28
|
Chen Y, Xu D, Xia X, Chen G, Xiao H, Chen L, Wang H. Sex difference in adrenal developmental toxicity induced by dexamethasone and its intrauterine programming mechanism. Pharmacol Res 2021; 174:105942. [PMID: 34656764 DOI: 10.1016/j.phrs.2021.105942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/04/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Dexamethasone is widely used to treat preterm labor and related diseases. However, prenatal dexamethasone treatment (PDT) can cause multiorgan developmental toxicities in offspring. Our previous study found that the occurrence of fetal-originated diseases was associated with adrenal developmental programming alterations in offspring. Here, we investigated the effects of PDT on adrenal function in offspring and its intrauterine programming mechanism. A rat model of PDT was established to observe the alterations of adrenal steroidogenesis in offspring. Furthermore, we confirmed the sex differences of adrenal steroidogenesis and its molecular mechanism combined with in vivo and in vitro experiments. PDT caused a decrease in adrenal steroidogenic function in fetal rats, but it was decreased in males and increased in females after birth. Meanwhile, the adrenal H3K14ac level and expression of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) in PDT offspring were decreased in males and increased in females, suggesting that 11β-HSD2 might mediate sex differences in adrenal function. We further confirmed that dexamethasone inhibited the H3K14ac level and expression of 11β-HSD2 through the GR/SP1/p300 pathway. After bilateral testectomy or ovariectomy of adult PDT offspring rats, adrenal 11β-HSD2 expression and steroidogenic function were both reduced. Using rat primary fetal adrenal cells, the differential expression of AR and ERβ was proven to be involved in regulating the sex difference in 11β-HSD2 expression. This study demonstrated the sex difference in adrenal steroidogenic function of PDT offspring after birth and elucidated a sex hormone receptor-dependent epigenetically regulating mechanism for adrenal 11β-HSD2 programming alteration.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xuan Xia
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guanghui Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
29
|
Dai Y, Kou H, Guo X, Gong Z, Liu H, Liu Y, Wang H, Guo Y. Identification and validation of reference genes for RT-qPCR analysis in fetal rat pancreas. Reprod Toxicol 2021; 105:211-220. [PMID: 34537367 DOI: 10.1016/j.reprotox.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
Abstract
The choice of reference gene is crucial for quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) assay. To screen and determine the suitable reference genes in fetal rat pancreas, we selected eight candidate reference genes (Gapdh, Actb, Rn18 s, B2m, Rpl13a, Tbp, Ywhaz and Ubc), and evaluated the constancy of gene expression from fetal rat pancreases in non-pathological situation and prenatal dexamethasone exposure (PDE) model, using four algorithms: GeNorm, NormFinder, Bestkeeper and Comparative ΔCt method. In addition, the alteration of mRNA levels of pancreatic insulin was compared between control and PDE groups to validate the reliability of selected reference genes for data normalization of RT-qPCR. The comprehensive ranking of reference genes under physiological condition was as follow: Gapdh > Actb > Ywhaz > Ubc > Rn18s > Rpl13a > B2m > Tbp (female); Actb > Ywhaz > Gapdh > Ubc > B2m > Rpl13a > Rn18 s | Tbp (male). The top ranking reference genes were also stably expressed in PDE fetal pancreas. The best reference gene combinations are: Ywhaz+Actb for female and Ywhaz+Gapdh for male fetal rat pancreas, respectively. Compared with low ranking or single reference gene, the change trend of insulin mRNA normalized by the best reference gene combination between control and PDE groups was more significant and consistent with that of serum insulin level. In conclusion, our results provided the optimal combination of stable reference genes for RT-qPCR assay in pancreatic developmental toxicity study.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Hao Kou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
30
|
Alam MN, Han X, Nan B, Liu L, Tian M, Shen H, Huang Q. Chronic low-level perfluorooctane sulfonate (PFOS) exposure promotes testicular steroidogenesis through enhanced histone acetylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117518. [PMID: 34261222 DOI: 10.1016/j.envpol.2021.117518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulfonate (PFOS), an artificial perfluorinated compound, has been associated with male reproductive disorders. Histone modifications are important epigenetic mediators; however, the impact of PFOS exposure on testicular steroidogenesis through histone modification regulations remains to be elucidated. In this study, we examined the roles of histone modifications in regulating steroid hormone production in male rats chronically exposed to low-level PFOS. The results indicate that PFOS exposure significantly up-regulated the expressions of StAR, CYP11A1 and 3β-HSD, while CYP17A1 and 17β-HSD were down-regulated, thus contributing to the elevated progesterone and testosterone levels. Furthermore, PFOS significantly increased the histones H3K9me2, H3K9ac and H3K18ac while reduced H3K9me3 in rat testis. It is known that histone modifications are closely involved in gene transcription. Therefore, to investigate the association between histone modifications and steroidogenic gene regulation, the levels of these histone marks were further measured in steroidogenic gene promoter regions by ChIP. It was found that H3K18ac was augmented in Cyp11a1 promoter, and H3K9ac was increased in Hsd3b after PFOS exposure, which is proposed to result in the activation of CYP11A1 and 3β-HSD, respectively. To sum up, chronic low-level PFOS exposure activated key steroidogenic gene expression through enhancing histone acetylation (H3K9ac and H3K18ac), ultimately stimulating steroid hormone biosynthesis in rat testis.
Collapse
Affiliation(s)
- Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
31
|
Comparison of Histone H3K4me3 between IVF and ICSI Technologies and between Boy and Girl Offspring. Int J Mol Sci 2021; 22:ijms22168574. [PMID: 34445278 PMCID: PMC8395251 DOI: 10.3390/ijms22168574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Epigenetics play a vital role in early embryo development. Offspring conceived via assisted reproductive technologies (ARTs) have a three times higher risk of epigenetic diseases than naturally conceived children. However, investigations into ART-associated placental histone modifications or sex-stratified analyses of ART-associated histone modifications remain limited. In the current study, we carried out immunohistochemistry, chip-sequence analysis, and a series of in vitro experiments. Our results demonstrated that placentas from intra-cytoplasmic sperm injection (ICSI), but not in vitro fertilization (IVF), showed global tri-methylated-histone-H3-lysine-4 (H3K4me3) alteration compared to those from natural conception. However, for acetylated-histone-H3-lysine-9 (H3K9ac) and acetylated-histone-H3-lysine-27 (H3K27ac), no significant differences between groups could be found. Further, sex -stratified analysis found that, compared with the same-gender newborn cord blood mononuclear cell (CBMC) from natural conceptions, CBMC from ICSI-boys presented more genes with differentially enriched H3K4me3 (n = 198) than those from ICSI-girls (n = 79), IVF-girls (n = 5), and IVF-boys (n = 2). We also found that varying oxygen conditions, RNA polymerase II subunit A (Polr2A), and lysine demethylase 5A (KDM5A) regulated H3K4me3. These findings revealed a difference between IVF and ICSI and a difference between boys and girls in H3K4me3 modification, providing greater insight into ART-associated epigenetic alteration.
Collapse
|
32
|
Lu X, Liu Y, Zhang D, Liu K, Wang Q, Wang H. Determination of the panel of reference genes for quantitative real-time PCR in fetal and adult rat intestines. Reprod Toxicol 2021; 104:68-75. [PMID: 34242779 DOI: 10.1016/j.reprotox.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
In quantitative real-time PCR (qRT-PCR) detection, the stability of reference genes varies with different organs, tissue locations, sex and developmental stages. This study aimed to screen out and determine the optimal panel of reference genes of the intestine in pre- and post-natal rats of different sex. We used qRT-PCR to detect the mRNA expression of six commonly used reference genes (ACTB, GAPDH, HPRT1, B2M, RPLPO and SDHA) in rat intestines at gestational day 21 (GD21) and postnatal week 12 (PW12). Using GeNorm, BestKeeper and NormFinder software comprehensively analyzed the stability of candidate reference genes and screened out stable reference genes. Further, we used the pathological model of prenatal dexamethasone exposure (PDE) to verify the stability of the selected panel of reference genes. Based on the results of the software analysis, the optimal panel of reference genes in the fetal rat intestine was SDHA + ACTB, and the adult rat small intestine and colon were ACTB + HPRT1 and RPLP0 + GAPDH, respectively. There was no significant sex difference in the above results. Besides, in the PDE model, the results were consistent with those under physiological conditions. Therefore, the stability of intestinal reference genes in fetal rats and adult rats was different, and the intestinal reference genes of adult rats were intestinal segments-specific. The selected panel of reference genes was still stable under pathological conditions. This study determined the optimal panel of reference genes of pre- and post-natal rat intestines and provided reliable reference genes for the qRT-PCR analysis of rat intestines.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Yi Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Qian Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
33
|
Huang W, Zhou J, Guo J, Hu W, Chen G, Li B, Wen Y, Jiang Y, Fu K, Bi H, Zhang Y, Wang H. Dexamethasone induces an imbalanced fetal-placental-maternal bile acid circulation: involvement of placental transporters. BMC Med 2021; 19:87. [PMID: 33827559 PMCID: PMC8028715 DOI: 10.1186/s12916-021-01957-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The use of prenatal dexamethasone remains controversial. Our recent studies found that prenatal dexamethasone exposure can induce maternal intrahepatic cholestasis and have a lasting adverse influence on bile acid (BA) metabolism in the offspring. The purpose of this study was to investigate the effects of dexamethasone on fetal-placental-maternal BA circulation during the intrauterine period, as well as its placental mechanism. METHODS Clinical data and human placentas were collected and analyzed. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.2 mg/kg per day) from gestational day 9 to 20. The metabolomic spectra of BAs in maternal and fetal rat serum were determined by LC-MS. Human and rat placentas were collected for histological and gene expression analysis. BeWo human placental cell line was treated with dexamethasone (20-500 nM). RESULTS Human male neonates born after prenatal dexamethasone treatment showed an increased serum BA level while no significant change was observed in females. Moreover, the expression of organic anion transporter polypeptide-related protein 2B1 (OATP2B1) and breast cancer resistance protein (BCRP) in the male neonates' placenta was decreased, while multidrug resistance-associated protein 4 (MRP4) was upregulated. In experimental rats, dexamethasone increased male but decreased female fetal serum total bile acid (TBA) level. LC-MS revealed that primary BAs were the major component that increased in both male and female fetal serum, and all kinds of BAs were significantly increased in maternal serum. The expression of Oatp2b1 and Bcrp were reduced, while Mrp4 expression was increased in the dexamethasone-treated rat placentas. Moreover, dexamethasone increased glucocorticoid receptor (GR) expression and decreased farnesoid X receptor (FXR) expression in the rat placenta. In BeWo cells, dexamethasone induced GR translocation into the nucleus; decreased FXR, OATP2B1, and BCRP expression; and increased MRP4 expression. Furthermore, GR was verified to mediate the downregulation of OATP2B1, while FXR mediated dexamethasone-altered expression of BCRP and MRP4. CONCLUSIONS By affecting placental BA transporters, dexamethasone induces an imbalanced fetal-placental-maternal BA circulation, as showed by the increase of primary BA levels in the fetal serum. This study provides an important experimental and theoretical basis for elucidating the mechanism of dexamethasone-induced alteration of maternal and fetal BA metabolism and for exploring early prevention and treatment strategies.
Collapse
Affiliation(s)
- Wen Huang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, 430071, China
| | - Bin Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, 430071, China
| | - Yajie Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yimin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaili Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, 430071, China.
| |
Collapse
|
34
|
Panel of suitable reference genes and its gender differences of fetal rat liver under physiological conditions and exposure to dexamethasone during pregnancy. Reprod Toxicol 2021; 100:74-82. [PMID: 33453333 DOI: 10.1016/j.reprotox.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023]
Abstract
The panel of suitable reference genes in the fetal liver have not been reported. In this study, five commonly used reference genes (GAPDH, β-actin, Rn18 s, Rpl13a, and Rps29) were firstly selected as candidates. Bestkeeper, GeNorm, and NormFinder software were then used to screen out the panel of suitable reference genes of male and female fetal rat liver under physiological and prenatal dexamethasone exposure (PDE) conditions. Finally, we verified the reliability of the screened panel of reference genes by standardizing sterol regulatory element binding protein 1c (SREBP1c) expression with different reference genes. The results showed that GAPDH + Rn18 s and GAPDH + Rpl13a were respectively the panel of suitable reference genes in male and female rat fetal liver under the physiological model, while Rn18 s + Rps29 and GAPDH + Rn18 s were respectively under the PDE model. The results showed that different reference genes affected the statistical results of SREBP1c expression, and the screened panel of suitable reference genes under the PDE model had smaller intragroup differences, when compared with other reference genes under physiological and PDE models. In conclusion, we screened and determined that the panel of suitable reference genes were GAPDH + Rn18 s and Rn18 s + Rps29 in the male rat fetal liver under physiological and PDE models, while they were GAPDH + Rpl13a and GAPDH + Rn18 s in the females, and confirmed that the selection of the panel of suitable reference genes in the fetal liver had gender differences and pathological model specificity.
Collapse
|
35
|
Zhang D, Liu K, Hu W, Lu X, Li L, Zhang Q, Huang H, Wang H. Prenatal dexamethasone exposure caused fetal rats liver dysplasia by inhibiting autophagy-mediated cell proliferation. Toxicology 2021; 449:152664. [PMID: 33359579 DOI: 10.1016/j.tox.2020.152664] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
As a synthetic glucocorticoid, dexamethasone has been widely used in the clinical treatment of premature birth and related pregnant diseases, but its clinical use is still controversial due to developmental toxicity. This study aimed to confirm the proliferation inhibitory effect of pregnant dexamethasone exposure (PDE) on fetal liver development and elucidate its molecular mechanism. In vitro studies, we found that dexamethasone inhibited hepatocyte proliferation through autophagy activated by glucocorticoid receptor (GR)-forkhead protein O1 (FOXO1) pathway. Subsequently, in vivo, we confirmed in a PDE rat model that male fetal liver proliferation was inhibited, and the expression of the GR-FOXO1 pathway and autophagy were increased. Taken together, PDE induces autophagy by activating the GR-FOXO1 pathway, which leads to fetal liver proliferation inhibition and dysplasia in offspring rats. This study confirmed that dexamethasone activates cell autophagy in utero through the GR-FOXO1 pathway, thereby inhibiting hepatocyte proliferation and liver development, which provides theoretical basis for understanding the developmental toxicity of dexamethasone and guiding the rational clinical use.
Collapse
Affiliation(s)
- Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hegui Huang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Wuhan No.1 Hospital, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
36
|
Liu L, Han H, Li Q, Chen M, Zhou S, Wang H, Chen L. Selection and Validation of the Optimal Panel of Reference Genes for RT-qPCR Analysis in the Developing Rat Cartilage. Front Genet 2020; 11:590124. [PMID: 33391345 PMCID: PMC7772434 DOI: 10.3389/fgene.2020.590124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Real-time fluorescence quantitative PCR (RT-qPCR) is widely used to detect gene expression levels, and selection of reference genes is crucial to the accuracy of RT-qPCR results. Minimum Information for Publication of RT-qPCR Experiments (MIQE) proposes that using the panel of reference genes for RT-qPCR is conducive to obtaining accurate experimental results. However, the selection of the panel of reference genes for RT-qPCR in rat developing cartilage has not been well documented. In this study, we selected eight reference genes commonly used in rat cartilage from literature (GAPDH, ACTB, 18S, GUSB, HPRT1, RPL4, RPL5, and SDHA) as candidates. Then, we screened out the optimal panel of reference genes in female and male rat cartilage of fetus (GD20), juvenile (PW6), and puberty (PW12) in physiology with stability analysis software of genes expression. Finally, we verified the reliability of the selected panel of reference genes with the rat model of intrauterine growth retardation (IUGR) induced by prenatal dexamethasone exposure (PDE). The results showed that the optimal panel of reference genes in cartilage at GD20, PW6, and PW12 in physiology was RPL4 + RPL5, which was consistent with the IUGR model, and there was no significant gender difference. Further, the results of standardizing the target genes showed that RPL4 + RPL5 performed smaller intragroup differences than other panels of reference genes or single reference genes. In conclusion, we found that the optimal panel of reference genes in female and male rat developing cartilage was RPL4 + RPL5, and there was no noticeable difference before and after birth.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingxian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
37
|
Liu Y, Liu M, Zhang Q, Chen G, Wang H. Selection and identification of the panel of reference genes for quantitative real-time PCR normalization in rat testis at different development periods. Toxicol Appl Pharmacol 2020; 406:115243. [PMID: 32949581 DOI: 10.1016/j.taap.2020.115243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/30/2020] [Accepted: 09/13/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND In quantitative real-time PCR (qRT-PCR), the expression levels of various adult reference genes may be unstable at different developmental periods and tissues, and will lead to inaccurate detected results. This study aimed to select and identify the optimal panel of reference genes in rat testis at different development periods. METHODS We detected mRNA expression levels of five common rat testicular reference genes (GAPDH, β-actin, 18s, RPS16 and RPL19) by qRT-PCR at different developmental periods (fetus, infancy, and adolescence), selected optimal panel of reference genes by combining with stability algorithms, and verified their tissue specificity. Lastly, we observed their mRNA expression alterations under pathological conditions to evaluate the stability and accuracy, and verify testicular dysplasia model. RESULTS Based on comprehensive analysis, the best panel of reference genes of testis were GAPDH+β-actin (at fetus) and GAPDH+RPL19 (at infancy and adolescent). Meanwhile, the best panel of reference genes of fetal testis was consistent with placenta and fetal hippocampus but different from fetal liver and kidney. Furthermore, in prenatal dexamethasone exposure (PDE) model, the results were consistent with those under physiological conditions, and the testicular steroidogenesis acute regulatory protein (StAR) was most obviously decreased when using the best panel of reference genes. CONCLUSION In this study, rat testicular GAPDH+β-actin for fetuses and GAPDH+RPL19 for infants and adolescents are recommended to be the optimal panel of reference genes. Respectively. The selected panel of reference genes was still stable under PDE condition. This study provided technical and theoretical supports for researches on testicular development toxicology.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Min Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Qi Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
38
|
Kou H, Gui S, Dai Y, Guo Y, Wang H. Epigenetic repression of AT2 receptor is involved in β cell dysfunction and glucose intolerance of adult female offspring rats exposed to dexamethasone prenatally. Toxicol Appl Pharmacol 2020; 404:115187. [PMID: 32791177 DOI: 10.1016/j.taap.2020.115187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Prenatal exposure to dexamethasone (PDE) impairs pancreatic β cell development and glucose homeostasis in offspring especially females. To explore the underlying intrauterine programming mechanism, pregnant Wistar rats were subcutaneously administered with dexamethasone (0, 0.2 and 0.8 mg/kg·d) from gestational days (GD) 9 to 20. Female offspring were collected on GD20 (fetus) and in postnatal week 28 (adult), respectively. PDE reduced the serum insulin levels, β cell mass, and pancreatic insulin expressions in fetuses and adults, causing glucose intolerance after maturity. The persistent suppression of pancreatic angiotensin II receptor type 2 (AT2R) expression before and after birth could be observed in the PDE females, which is accompanied with decreased histone 3 lysine 14 acetylation (H3K14ac) and H3K27ac levels in AT2R promoter. PDE increased the gene expressions of glucocorticoid receptor (GR) and histone deacetylase 2 (HDAC2) in fetal pancreas. Furthermore, dexamethasone inhibited insulin biosynthesis while activated GR and HDAC2 expression in the rat INS-1 cells. The AT2R expression was repressed by dexamethasone in vitro but only H3K27ac levels in AT2R promoter were lowered. Dexamethasone enhanced the interaction between GR and HDAC2 proteins as well as the binding of GR/HDAC2 complex to AT2R promoter. Moreover, overexpression of AT2R could restore the suppressed insulin biosynthesis induced by dexamethasone in vitro, and both GR antagonist and histone deacetylase abolished the decreased H3K27ac level and gene expression of AT2R. In conclusion, continuous epigenetic repression of AT2R before and after birth may be involved in β cell dysfunction and glucose intolerance of the PDE adult female offspring.
Collapse
Affiliation(s)
- Hao Kou
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 40071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Shuxia Gui
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
39
|
Wang YZ, Li QX, Zhang DM, Chen LB, Wang H. Ryanodine receptor 1 mediated dexamethasone-induced chondrodysplasia in fetal rats. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118791. [PMID: 32619649 DOI: 10.1016/j.bbamcr.2020.118791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Osteoarthritis is caused by cartilage dysplasia and has fetal origin. Prenatal dexamethasone exposure (PDE) induced chondrodysplasia in fetal rats by inhibiting transforming growth factor β (TGFβ) signaling. This study aimed to determine the effect of dexamethasone on fetal cartilage development and illustrate the underlying molecular mechanism. METHODS Dexamethasone (0.2 mg/kg.d) was injected subcutaneously every morning in pregnant rats from gestational day (GD) 9 to GD21. Harvested fetal femurs and tibias at GD21 for immunofluorescence and gene expression analysis. Fetal chondrocytes were treated with dexamethasone (100, 250 and 500 nM), endoplasmic reticulum stress (ERS) inhibitor, and ryanodine receptor 1 (RYR1) antagonist for subsequent analyses. RESULTS In vivo, prenatal dexamethasone exposure (PDE) decreased the total length of the fetal cartilage, the proportion of the proliferation area and the cell density and matrix content in fetal articular cartilage. Moreover, PDE increased RYR1 expression and intracellular calcium levels and elevated the expression of ERS-related genes, while downregulated the TGFβ signaling pathway and extracellular matrix (ECM) synthesis in fetal chondrocytes. In vitro, we verified dexamethasone significantly decreased ECM synthesis through activating RYR 1 mediated-ERS. CONCLUSIONS PDE inhibited TGFβ signaling pathway and matrix synthesis through RYR1 / intracellular calcium mediated ERS, which ultimately led to fetal dysplasia. This study confirmed the molecular mechanism of ERS involved in the developmental toxicity of dexamethasone and suggested that RYR1 may be an early intervention target for fetal-derived adult osteoarthritis.
Collapse
Affiliation(s)
- Yi-Zhong Wang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Qing-Xian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ding-Mei Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Liao-Bin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
40
|
Intrauterine RAS programming alteration-mediated susceptibility and heritability of temporal lobe epilepsy in male offspring rats induced by prenatal dexamethasone exposure. Arch Toxicol 2020; 94:3201-3215. [PMID: 32494933 DOI: 10.1007/s00204-020-02796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Partial temporal lobe epilepsy (TLE) has an intrauterine developmental origin. This study was aimed at elucidating the heritable effects and programming mechanism of TLE in offspring rats induced by prenatal dexamethasone exposure (PDE). Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.2 mg/kg day) from gestational day 9 to 20. The F1 and F2 generations of male offspring were administered lithium pilocarpine (LiPC) for electroencephalography and video monitoring in epilepsy or behavioral tests. Results showed that the PDE + LiPC group exhibited TLE susceptibility, which continued throughout F2 generation. Expression of hippocampal glucocorticoid receptor (GR), CCAAT enhancer-binding protein α (C/EBPα), intrauterine renin-angiotensin system (RAS) classical pathway related genes, the H3K27ac level in angiotensin-converting enzyme (ACE) promoter, as well as high mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) were increased, but glutamate dehydrogenase (GLUD) 1/2 expression were decreased, accompanied by increased glutamate levels in PDE fetal and adult rats, as well as in F1 and F2 offspring of the PDE + LiPC group. These consistent changes were also observed by treating the H19-7 fetal hippocampal cell line with dexamethasone and were reversed by GR inhibitor (RU486) and ACE inhibitor (enalaprilat). Our results confirmed that PDE-induced H3K27ac enrichment in the ACE promoter and enhanced the RAS classic pathway via activating GR-C/EBPα-p300 in utero, which caused changes of the HMGB1 pathway and glutamate excitatory damage. Intrauterine programming mediated by abnormal histone modification of hippocampal ACE could continue to adulthood and even F2 generation, which induced the heritability of TLE in male offspring rats.
Collapse
|
41
|
Xiao H, Xie X, Wen Y, Tan Y, Shangguan Y, Li B, Magdalou J, Wang H, Chen L. Subchondral bone dysplasia partly participates in prenatal dexamethasone induced-osteoarthritis susceptibility in female offspring rats. Bone 2020; 133:115245. [PMID: 31962170 DOI: 10.1016/j.bone.2020.115245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
Abstract
Prenatal dexamethasone exposure (PDE) induces developmental toxicities of multi-organs and susceptibility to multi-diseases in offspring. However, the effects of PDE on osteoarthritis susceptibility in adult offspring and its mechanism have not been reported. In the present study, we treated pregnant Wistar rats with dexamethasone (0.2 mg/kg) daily on gestational days (GD) 9-20. Some pregnant rats were sacrificed on GD20, and the rest were delivered to obtain the postnatal offspring. The adult female offspring rats were performed with ovariectomy or sham operation during postnatal weeks 22-28. We found that PDE led to osteoarthritis phenotypes in articular cartilage and an increase in modified Mankin's score, but reduced the cartilage thickness in female adult offspring rats, which were more evident after ovariectomy. Moreover, PDE reduced the bone mass of subchondral bone in female adult offspring, which was aggravated by ovariectomy. The correlation analysis results indicated that the osteoarthritic phenotype and cartilage thickness were closely associated with the decreased bone mass of subchondral bone induced by PDE. Further, PDE retarded the development of primary and secondary ossification centers, then led to subchondral bone dysplasia, which could be partly mediated by the inhibited osteogenic function before and after birth. Collectively, the subchondral bone dysplasia partly participated in osteoarthritis susceptibility induced by PDE in female offspring rats.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China
| | - Xingkui Xie
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yang Tan
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yangfan Shangguan
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Bin Li
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | | | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
42
|
Li L, Hu W, Liu K, Zhang D, Liu M, Li X, Wang H. miR-148a/LDLR mediates hypercholesterolemia induced by prenatal dexamethasone exposure in male offspring rats. Toxicol Appl Pharmacol 2020; 395:114979. [PMID: 32234517 DOI: 10.1016/j.taap.2020.114979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
Epidemiology suggests that adverse environmental exposure during pregnancy may predispose children to hypercholesterolemia in adulthood. This study aimed to demonstrate hypercholesterolemia induced by prenatal dexamethasone exposure (PDE) in adult male offspring rats and explore the intrauterine programming mechanisms. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0, 0.1, 0.2, and 0.4 mg/kg∙d) from gestational days (GD) 9 to 21, and the serum and liver of the male offsprings were collected at GD21, postnatal week (PW) 12 and 28. Furthermore, the effects of dexamethasone on the expression of low-density lipoprotein receptor (LDLR) and its epigenetic mechanism was confirmed in the bone marrow mesenchymal stem cells (BMSCs) hepatoid differentiated cells and continuous hepatocyte line. PDE could reduce the birth weight of male offsprings, increase the serum total cholesterol (TCH) level in adult rats, and decrease the liver low-density lipoprotein receptor (LDLR) expression. Serum TCH level and liver LDLR expression were decreased in PDE male fetuses in utero (GD21). Moreover, PDE increased the translocation of the glucocorticoid receptor (GR) in the fetal liver, the expression of DiGeorge syndrome critical region 8 gene (DGCR8), the pre- and post-natal expression of miR-148a. The results of PDE offspring in vivo and in vitro exhibited similar changes. These changes could be reversed by overexpressing LDLR, inhibiting miR-148a or GR. PDE caused hypercholesterolemia in male adult offspring rats, which was mediated via dexamethasone activated intrauterine hepatic GR, enhanced the expression of DGCR8 and miR-148a, thereby reducing the expression of LDLR, leading to impaired liver cholesterol reverse transport function, and finally causing hypercholesterolemia in adult rats.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Min Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Xufeng Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
43
|
Ding X, Ge B, Wang M, Zhou H, Sang R, Yu Y, Xu L, Zhang X. Inonotus obliquus polysaccharide ameliorates impaired reproductive function caused by Toxoplasma gondii infection in male mice via regulating Nrf2-PI3K/AKT pathway. Int J Biol Macromol 2020; 151:449-458. [PMID: 32084465 DOI: 10.1016/j.ijbiomac.2020.02.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022]
Abstract
This study was carried out to investigate the effects of Inonotus obliquus polysaccharide (IOP) on impaired reproductive function and its mechanisms in Toxoplasma gondii (T. gondii)-infected male mice. Results showed that IOP significantly improved the spermatogenic capacity and ameliorated pathological damage of testis, increased serum testosterone (T), luteinizing hormone (LH) and follicular-stimulating hormone (FSH) levels in T. gondii-infected male mice. IOP effectively up-regulated testicular steroidogenic acute regulatory protein (StAR), P450scc and 17β-HSD expressions. IOP also significantly decreased the levels of malondialdehyde (MDA) and nitric oxide (NO), but increased the activities of antioxidant enzyme superoxide dismutase (SOD) and glutathione (GSH). Furthermore, IOP up-regulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NADPH quinoneoxidoreductase-1 (NQO-1), and suppressed the apoptosis of testicular cells by decreasing Bcl-2 associated x protein (Bax) and cleaved caspase-3 expressions. IOP further enhanced testicular phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) expression levels. It demonstrates the beneficial effects of IOP on impaired reproductive function in T. gondii-infected male mice due to its anti-oxidative stress and anti-apoptosis via regulating Nrf2-PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiao Ding
- College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Bingjie Ge
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Meng Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Hongyuan Zhou
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Yifan Yu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Lu Xu
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi, Shandong 276005, China
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
44
|
Zhang Q, Pei LG, Liu M, Lv F, Chen G, Wang H. Reduced testicular steroidogenesis in rat offspring by prenatal nicotine exposure: Epigenetic programming and heritability via nAChR/HDAC4. Food Chem Toxicol 2019; 135:111057. [PMID: 31846720 DOI: 10.1016/j.fct.2019.111057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Prenatal nicotine exposure (PNE) may lead to offspring's testicular dysplasia. Here, we confirmed the intergenerational effect of PNE on testosterone synthetic function and explored its epigenetic programming mechanism. Pregnant Wistar rats were injected subcutaneously with nicotine (2 mg/kg.d) from gestational day 9-20. Some dams were anesthetized to obtain fetal rats, the rest were allowed to spontaneous labor to generate F1 and F2 generation. In utero, PNE impaired testicular development and testosterone production. Meanwhile, the expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were decreased both in F1 and F2 generations. Furthermore, PNE enhanced the expression of fetal testicular nicotinic acetylcholine receptors (nAChRs) and histone deacetylase 4 (HDAC4), while obviously weakened histone 3 lysine 9 acetylation (H3K9ac) level of StAR/3β-HSD promoter from GD20 to postnatal week 12 and even in F2 generation. In vitro, nicotine increased nAChRs and HDAC4 expression, and decreased the StAR/3β-HSD H3K9ac level and expression, as well as the testosterone production in Leydig cells. Antagonism of nAChRs and inhibition of HDAC4 reversed the aforementioned changes. In conclusion, PNE programmed testicular low steroidogenesis and its heritability in male offspring rats. The underlying mechanism was associated to the low-level programming of StAR/3β-HSD H3K9ac via nAChR/HDAC4.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lin-Guo Pei
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Basic Medical College of Nanyang Medical University, Nanyang, 473041, China
| | - Min Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Feng Lv
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
45
|
Chen Y, He Z, Chen G, Liu M, Wang H. Prenatal glucocorticoids exposure and fetal adrenal developmental programming. Toxicology 2019; 428:152308. [PMID: 31614174 DOI: 10.1016/j.tox.2019.152308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Clinically, we apply synthetic glucocorticoids to treat fetal and maternal diseases, such as premature labor and autoimmune diseases. Although its clinical efficacy is positive, the fetus will be exposed to exogenous synthetic glucocorticoids. Prenatal adverse environments (such as xenobiotics exposure, malnutrition, infection, hypoxia and stress) can cause fetuses overexposure to excessive endogenous maternal glucocorticoids. The level of glucocorticoids is the key to fetal tissue maturation and postnatal fate. A large number of studies have found that prenatal glucocorticoids exposure can lead to fetal adrenal dysplasia and dysfunction, continuing after birth and even into adulthood. As the core organ of fetal-originated adult diseases, fetal adrenal dysplasia is closely related to the susceptibility and occurrence of multiple chronic diseases, and there are also obvious gender differences. However, its intrauterine programming mechanisms have not been fully elucidated. This review summarizes recent advances in prenatal glucocorticoids exposure and fetal adrenal developmental programming alterations, which is of great significance for explaining adrenal developmental toxicity and the intrauterine origin of fetal-originated adult diseases.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zheng He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Min Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
46
|
Huang W, Zhou J, Zhang G, Zhang Y, Wang H. Decreased H3K9 acetylation level of LXRα mediated dexamethasone-induced placental cholesterol transport dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158524. [PMID: 31513924 DOI: 10.1016/j.bbalip.2019.158524] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023]
Abstract
Due to the insufficient fetal cholesterol synthesis, maternal cholesterol transport through the placenta becomes an important source of fetal cholesterol pool, which is essential for fetal growth and development. This study aimed to investigate the effects of dexamethasone on fetal cholesterol levels, and explore its placental mechanism. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.8 mg/kg·d) from gestational day 9 to 20. Results showed that dexamethasone increased maternal serum total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C) levels, as well as placental cholesterol synthesis and TC concentration, while reduced fetal birth weight, and serum TC, HDL-C and LDL-C levels. Meanwhile, the expression of placental cholesterol transporters, including low-density lipoprotein receptor (LDLR), scavenger receptor class B type I (SR-B1) and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) were decreased by dexamethasone. Furthermore, the expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) were increased, while the H3K9ac and expression levels of liver X receptor α (LXRα) promoter were reduced. In human trophoblast cell line (BeWo), dexamethasone concentration-dependently decreased the expression levels of LDLR, SR-B1, ABCA1, ABCG1 as well as LXRα. Dexamethasone (2500 nM) induced GR translocation into nucleus and recruited HDAC3. Furthermore, LXRα agonist and GR inhibitor reversed respectively dexamethasone-induced the expression inhibitions of cholesterol transporter and LXRα, and HDAC3 siRNA reversed the H3K9ac level of LXRα promoter and its expression. Together, dexamethasone impaired placental cholesterol transport and eventually decreased fetal cholesterol levels, which is related to the down-regulation of LXRα mediated by GR/HDAC3/H3K9ac signaling.
Collapse
Affiliation(s)
- Wen Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guohui Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
47
|
Huang S, Dong W, Jiao Z, Liu J, Li K, Wang H, Xu D. Prenatal Dexamethasone Exposure Induced Alterations in Neurobehavior and Hippocampal Glutamatergic System Balance in Female Rat Offspring. Toxicol Sci 2019; 171:369-384. [PMID: 31518422 DOI: 10.1093/toxsci/kfz163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epidemiological investigations have suggested that periodic use of dexamethasone during pregnancy is a risk factor for abnormal behavior in offspring, but the potential mechanism remains unclear. In this study, we investigated the changes in the glutamatergic system and neurobehavior in female offspring with prenatal dexamethasone exposure (PDE) to explore intrauterine programing mechanisms. Compared with the control group, rat offspring with PDE exhibited spatial memory deficits and anxiety-like behavior. The expression of hippocampal glucocorticoid receptors (GR) and histone deacetylase 2 (HDAC2) increased, whereas histone H3 lysine 14 acetylation (H3K14ac) of brain-derived neurotrophic factor (BDNF) exon IV (BDNF IV) and expression of BDNF decreased. The glutamatergic system also changed. We further observed that changes in the fetal hippocampus were consistent with those in adult offspring. In vitro, the administration of 0.5 μM dexamethasone to the H19-7 fetal hippocampal neuron cells directly led to a cascade of changes in the GR/HDAC2/BDNF pathway, whereas the GR antagonist RU486 and the HDAC2 inhibitor romidepsin (Rom) reversed changes caused by dexamethasone to the H3K14ac level of BDNF IV and to the expression of BDNF. The increase in HDAC2 can be reversed by RU486, and the changes in the glutamatergic system can be partially reversed after supplementation with BDNF. It is suggested that PDE increases the expression of HDAC2 by activating GR, reducing the H3K14ac level of BDNF IV, inducing alterations in neurobehavior and hippocampal glutamatergic system balance. The findings suggest that BDNF supplementation and glutamatergic system improvement are potential therapeutic targets for the fetal origins of abnormal neurobehavior.
Collapse
Affiliation(s)
- Songqiang Huang
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Wanting Dong
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Zhexiao Jiao
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Jie Liu
- *Department of Pharmacology, School of Basic Medical Sciences
| | - Ke Li
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, China
| | - Hui Wang
- *Department of Pharmacology, School of Basic Medical Sciences
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University
| | - Dan Xu
- *Department of Pharmacology, School of Basic Medical Sciences
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University
| |
Collapse
|
48
|
Zhu Y, Chen H, Zhao X, Li B, He H, Cheng H, Wang H, Ao Y. Decreased H3K9ac level of KLF4 mediates podocyte developmental toxicity induced by prenatal caffeine exposure in male offspring rats. Toxicol Lett 2019; 314:63-74. [PMID: 31306741 DOI: 10.1016/j.toxlet.2019.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023]
Abstract
This study aimed to verify the toxic effects of prenatal caffeine exposure (PCE) on the podocyte development in male offspring, and to explore the underlying intrauterine programming mechanisms. The pregnant rats were administered with caffeine (30 to 120 mg/kg⋅d) during gestational day (GD) 9 to 20. The male fetus on GD20 and the offspring at postnatal week (PW) 6 and PW28 were sacrificed. The results indicated that PCE caused ultrastructural abnormalities on podocyte, and inhibited the expression of podocyte marker genes such as Nephrin, Wilms tumor 1 (WT1), the histone 3 lysine 9 acetylation (H3K9ac) level in the Kruppel-like factor 4 (KLF4) promoter and its expression in the male offspring from GD20 to PW28. Meanwhile, the expression of glucocorticoid receptor (GR) and histone deacetylase 7 (HDAC7) in the fetus were increased by PCE. In vitro, corticosterone increased GR and HDAC7 whereas reduced the H3K9ac level of KLF4 and KLF4/Nephrin expression. KLF4 over-expression reversed the reduction of Nephrin expression, knockdown of HDAC7 and GR antagonist RU486 partially reversed the inhibitory effects of corticosterone on H3K9ac level and KLF4 expression. In conclusion, PCE caused podocyte developmental toxicity in male offspring, which was associated with corticosterone-induced low-functional programming of KLF4 through GR/HDAC7/H3K9ac pathway.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Haiyun Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Xiaoqi Zhao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Bin Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hangyuan He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Cheng
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China.
| |
Collapse
|
49
|
Decreased levels of H3K9ac and H3K27ac in the promotor region of ovarian P450 aromatase mediated low estradiol synthesis in female offspring rats induced by prenatal nicotine exposure as well as in human granulosa cells after nicotine treatment. Food Chem Toxicol 2019; 128:256-266. [DOI: 10.1016/j.fct.2019.03.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 12/27/2022]
|
50
|
Li B, Zhu Y, Chen H, Gao H, He H, Zuo N, Pei L, Xie W, Chen L, Ao Y, Wang H. Decreased H3K9ac level of AT2R mediates the developmental origin of glomerulosclerosis induced by prenatal dexamethasone exposure in male offspring rats. Toxicology 2018; 411:32-42. [PMID: 30359671 DOI: 10.1016/j.tox.2018.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/04/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
Abstract
This study aimed to demonstrate that prenatal dexamethasone exposure (PDE) can induce kidney dysplasia in utero and adult glomerulosclerosis in male offspring, and to explore the underlying intrauterine programming mechanisms. Pregnant rats were subcutaneously administered dexamethasone 0.2 mg/kg.d from gestational day (GD) 9 to GD20. The male fetus on GD20 and the adult offspring at age of postnatal week 28 were analyzed. The adult offspring kidneys in the PDE group displayed glomerulosclerosis, elevated levels of serum creatinine and urine protein, ultrastructural damage of podocytes, the reduced expression levels of podocyte marker genes, nephrin and podocin. The histone 3 lysine 9 acetylation (H3K9ac) level in the promoter of renal angiotensin II receptor type 2 (AT2R) and its expression were reduced, whereas the angiotensin II receptor type 1a (AT1aR)/AT2R expression ratio was increased. The fetal kidneys in the PDE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio, reduced the expression level of glial-cell-line derived neurotrophic factor/c-Ret tyrosine kinase receptor (GDNF/c-Ret) signal pathway and podocyte marker genes. Moreover, the H3K9ac and H3K27ac levels of AT2R as well as the gene and protein expression levels of AT2R in fetal kidneys were inhibited by PDE. In vitro, primary metanephric mesenchyme stem cells (MMSCs) were treated with dexamethasone. Overexpression of AT2R reversed the inhibited expression of GDNF/c-Ret and podocin/nephrin induced by dexamethasone, and glucocorticoids receptor antagonist abolished the decreased H3K9ac level and gene expression of AT2R. In conclusion, PDE induced the offspring's kidney dysplasia as well as adult glomerulosclerosis, which was mediated by a sustained decrease in renal AT2R expression via decreasing the H3 K9ac level.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanan Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Haiyun Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Gao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hangyuan He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Na Zuo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Linguo Pei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Liaobin Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|