1
|
Xu ZY, Yu Y, Fu SX, Ma JY, Li BB. Effects of high-level ghrelin on intestinal epithelial cell proliferation, nutrient transport and intestinal mucosal immune barrier in chickens. Br Poult Sci 2025:1-16. [PMID: 40116599 DOI: 10.1080/00071668.2025.2456582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/10/2025] [Indexed: 03/23/2025]
Abstract
1. Chicken ghrelin (GH) plays an important role in regulating growth hormone secretion, immunity and gastrointestinal motility. This study utilised haematoxylin-eosin staining, quantitative reverse transcription PCR and western blotting to examine the effects of high-level ghrelin on the proliferation of small intestinal epithelial cells, intestinal nutrient transport and the mucosal immune barrier in chicks.2. Eighty, 17-d-old layer type chicks were randomly divided into two groups: control (C treated with sterile phosphate buffer) and the ghrelin-treated group (GH; intraperitoneally injected with 0.5 nM GH per 100 g body weight). At 1, 3 and 5 d post-injection, six chicks from each group were randomly selected for sampling of the duodenum and ileum.3. Administering GH reduced the expression of proliferating cell nuclear antigen protein in the duodenum and leucine-rich repeat-containing G protein-coupled receptor 5 mRNA in both the duodenum and ileum. In addition, GH affected villus height and ratio of villus height to crypt (H/C) depth in these sections and fatty acid binding protein 6 expression in the ileum. The relative mRNA levels of oligopeptide transporter 1, solute carrier family 3 member 1, solute carrier family 1 member 1 and solute carrier family 5 member 1 were decreased by GH.4. Birds treated with GH had a decrease in duodenal intraepithelial lymphocytes, Paneth cells and ileal goblet cells. There was a reduction in mucin 2 mRNA in goblet cells and lysozyme C and phospholipaseA2 mRNA in Paneth cells. Additionally, the relative mRNA levels of avian β-defensin 1 (AvBD1), AvBD6 and AvBD7 in the duodenum and ileum decreased with GH administration.5. The GH inhibited proliferation of chicken duodenal epithelial cells and decreased surface area available for intestinal villus absorption. This affected the transport of intestinal amino acids, glucose and bile acids and impaired the function of the mucosal immune barrier in both the duodenum and ileum.
Collapse
Affiliation(s)
- Z-Y Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Y Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - S-X Fu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - J-Y Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - B-B Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
2
|
Zhou YQ, Peng JJ, Shan LP, Liu W. Proteomic characterization of molecular mechanisms of paraquat-induced lung injury in a mouse model. Respir Res 2025; 26:1. [PMID: 39748354 PMCID: PMC11697879 DOI: 10.1186/s12931-024-03072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ). METHODS Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed. Lung pathological changes were observed with conventional staining techniques. Lung tissue components were assessed with tandem mass spectrometry tag technology, and differentially expressed proteins (DEPs) were bioinformatically analyzed and investigated with parallel reaction monitoring. RESULTS The expression of 91, 160, and 78 proteins was significantly altered at days 2, 7, and 14, respectively. Gene Ontology analyses revealed that the DEPs in the PQ-2d and PQ-7d groups were involved primarily in humoral immunity and coagulation-related reactions, whereas those in the PQ-14d group were implicated primarily in chemotactic and regulatory responses. Kyoto Encyclopedia of Genes and Genomes analyses indicated that complement and coagulation cascades were key pathways in the PQ-2d and PQ-7d groups, whereas xenobiotic metabolism by cytochrome P450 was a key pathway in the PQ-14d group. Nine proteins at PQ-2d and eight proteins at PQ-7d were validated through parallel reaction monitoring (PRM). CONCLUSIONS PQ-induced ALI depends on over-activation of immune responses by damaged alveolar/endothelial cells, and the complement/coagulation cascade pathway plays a key role during this process. The proteins identified herein might provide new therapeutic targets or biomarkers for PQ poisoning.
Collapse
Affiliation(s)
- Yu Qing Zhou
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Jin Jin Peng
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Li Ping Shan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
- Urology Surgery, ShengJing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
3
|
Silva R, Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. The Link Between Paraquat and Demyelination: A Review of Current Evidence. Antioxidants (Basel) 2024; 13:1354. [PMID: 39594496 PMCID: PMC11590890 DOI: 10.3390/antiox13111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons. They affect the CNS and peripheral nervous system (PNS), resulting in diverse clinical manifestations. In recent years, growing concerns have emerged about the impact of chronic, low-level exposure to herbicides on human health, particularly due to agricultural runoff contaminating drinking water sources and their presence in food. Studies indicate that paraquat may significantly impact myelinating cells, myelin-related gene expression, myelin structure, and cause neuroinflammation, potentially contributing to demyelination. Therefore, demyelination may represent another mechanism of neurotoxicity associated with paraquat, which requires further investigation. This manuscript reviews the potential association between paraquat and demyelination. Understanding this link is crucial for enhancing strategies to minimize exposure and preserve public health.
Collapse
Affiliation(s)
- Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136 Lisbon, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.F.S.); (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
4
|
Roh J, Jang JP, Oh T, Kim J, Lee B, Hong YS, Jang JH, Ko SK. Protective effect of hygrolansamycin C against corticosterone-induced toxicity and oxidative stress-mediated via autophagy and the MAPK signaling pathway. Pharmacol Rep 2024; 76:368-378. [PMID: 38498259 DOI: 10.1007/s43440-024-00572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Excessive stress, a major problem in modern societies, affects people of all ages worldwide. Corticosterone is one of the most abundant hormones secreted during stressful conditions and is associated with various dysfunctions in the body. In particular, we aimed to investigate the protective effects of hygrolansamycin C (HYGC) against corticosterone-induced cellular stress, a manifestation of excessive stress prevalent in contemporary societies. METHODS We isolated HYGC from Streptomyces sp. KCB17JA11 and subjected PC12 cells to corticosterone-induced stress. The effects of HYGC were assessed by measuring autophagy and the expression of mitogen-activated protein kinase (MAPK) phosphorylation-related genes. We used established cellular and molecular techniques to analyze protein levels and pathways. RESULTS HYGC effectively protected cells against corticosterone-induced injury. Specifically, it significantly reduced corticosterone-induced oxidative stress and inhibited the expression of autophagy-related proteins induced by corticosterone, which provided mechanistic insight into the protective effects of HYGC. At the signaling level, HYGC suppressed c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation and p38 activation. CONCLUSIONS HYGC is a promising candidate to counteract corticosterone-induced apoptosis and oxidative stress. Autophagy and MAPK pathway inhibition contribute to the protective effects of HYGC. Our findings highlight the potential of HYGC as a therapeutic agent for stress-related disorders and serve as a stepping stone for further exploration and development of stress management strategies.
Collapse
Affiliation(s)
- Jongtae Roh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
| | - Taehoon Oh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Jihong Kim
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Sung-Kyun Ko
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
5
|
Du J, Yu L, Yang X, Shao F, Xia J, Jin W, Zhang Y, Lei G, Wang Y, Li Y, Zhang J. Regulation of NCOA4-mediated iron recycling ameliorates paraquat-induced lung injury by inhibiting ferroptosis. Cell Commun Signal 2024; 22:146. [PMID: 38388414 PMCID: PMC10885609 DOI: 10.1186/s12964-024-01520-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Paraquat (PQ) is an irreplaceable insecticide in many countries for the advantage of fast-acting and broad-spectrum. However, PQ was classified as the most prevailing poisoning substance for suicide with no specific antidote. Therefore, it is imperative to develop more effective therapeutic agents for the treatment of PQ poisoning. In the present study, both the RNA-Seq and the application of various cell death inhibitors reflected that ferroptosis exerts a crucial regulatory role in PQ poisoning. Moreover, we found PQ strengthens lipid peroxidation as evidenced by different experimental approaches. Of note, pretreatment of iron chelation agent DFO could ameliorate the ferroptotic cell death and alleviate the ferroptosis-related events. Mechanistically, PQ treatment intensively impaired mitochondrial homeostasis, enhanced phosphorylation of AMPK, accelerated the autophagy flux and triggered the activation of Nuclear receptor coactivator 4-ferritin heavy chain (NCOA4-FTH) axis. Importantly, the activation of autophagy was observed prior to the degradation of ferritin, and inhibition of autophagy could inhibit the accumulation of iron caused by the ferritinophagy process. Genetic and pharmacological inhibition of ferritinophagy could alleviate the lethal oxidative events, and rescue the ferroptotic cell death. Excitingly, in the mouse models of PQ poisoning, both the administration of DFO and adeno-associated virus-mediated FTH overexpression significantly reduced PQ-induced ferroptosis and improved the pathological characteristics of pulmonary fibrosis. In summary, the current work provides an in-depth study on the mechanism of PQ intoxication, describes a framework for the further understanding of ferroptosis in PQ-associated biological processes, and demonstrates modulation of iron metabolism may act as a promising therapeutic agent for the management of PQ toxicity.
Collapse
Affiliation(s)
- Jing Du
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinyi Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fangchun Shao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, Taizhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Li J, Deng B, Zhang J, Zhang X, Cheng L, Li G, Su P, Miao X, Yang W, Xie J, Wang R. The Peptide DH α-(4-pentenyl)-ANPQIR-NH 2 Exhibits Antifibrotic Activity in Multiple Pulmonary Fibrosis Models Induced by Particulate and Soluble Chemical Fibrogenic Agents. J Pharmacol Exp Ther 2024; 388:701-714. [PMID: 38129127 DOI: 10.1124/jpet.123.001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Interstitial lung diseases (ILDs) are a group of restrictive lung diseases characterized by interstitial inflammation and pulmonary fibrosis. The incidence of ILDs associated with exposure to multiple hazards such as inhaled particles, fibers, and ingested soluble chemicals is increasing yearly, and there are no ideal drugs currently available. Our previous research showed that the novel and low-toxicity peptide DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) had a strong antifibrotic effect on a bleomycin-induced murine model. Based on the druggability of DR3penA, we sought to investigate its effects on respirable particulate silicon dioxide (SiO2)- and soluble chemical paraquat (PQ)-induced pulmonary fibrosis in this study by using western blot, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), immunofluorescence, H&E and Masson staining, immunohistochemistry, and serum biochemical assays. The results showed that DR3penA alleviated the extent of fibrosis by inhibiting the expression of fibronectin and collagen I and suppressed oxidative stress and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Further study revealed that DR3penA may mitigate pulmonary fibrosis by negatively regulating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway and mitogen-activated protein kinase (MAPK) pathway. Unexpectedly, through the conversion of drug bioavailability under different routes of administration, DR3penA exerted antifibrotic effects equivalent to those of the positive control drug pirfenidone (PFD) at lower doses. In summary, DR3penA may be a promising lead compound for various fibrotic ILDs. SIGNIFICANCE STATEMENT: Our study verified that DHα-(4-pentenyl)-ANPQIR-NH2 (DR3penA) exhibited positive antifibrotic activity in pulmonary fibrosis induced by silicon dioxide (SiO2) particles and soluble chemical paraquat (PQ) and demonstrated a low-dose advantage compared to the small-molecule drug pirfenidone (PFD). The peptide DR3penA can be further developed for the treatment of multiple fibrotic lung diseases.
Collapse
Affiliation(s)
- Jieru Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Bochuan Deng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jiao Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiang Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Lu Cheng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Guofeng Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Ping Su
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiaokang Miao
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Wenle Yang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Junqiu Xie
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (J.L., R.W.); Department of General Surgery, The Second Hospital and Clinical Medical School (J.L.) and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066 (B.D., J.Z., X.Z., P.S., X.M., W.Y., J.X., R.W.), Lanzhou University, Lanzhou, China; and School of Biomedical Engineering (L.C.) and School of Pharmaceutical Sciences (G.L.), Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Neo JRE, Teo CWL, Ung YW, Yap WN. Tocotrienol-Rich Fraction Attenuates Blue Light-Induced Oxidative Stress and Melanogenesis in B16-F1 Melanocytes via Anti-Oxidative and Anti-Tyrosinase Properties. Int J Mol Sci 2023; 24:15373. [PMID: 37895053 PMCID: PMC10607579 DOI: 10.3390/ijms242015373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Our skin is constantly exposed to blue light (BL), which is abundant in sunlight and emitted by digital devices. Prolonged exposure to BL can lead to oxidative stress-induced damages and skin hyperpigmentation. For this study, we used a cell line-based model to examine the protective effects of tocotrienol-rich fraction (TRF) on BL-induced oxidative stress and hyperpigmentation in B16-F1 melanocytes. Alpha-tocopherol (αTP) was used as a comparator. Molecular assays such as cell viability assay, flow cytometry, western blotting, fluorescence imaging, melanin and tyrosinase analysis were performed. Our results showed that TRF effectively suppressed the formation of reactive oxygen species and preserved the mitochondrial membrane potential. Additionally, TRF exhibited anti-apoptotic properties by reducing the activation of the p38 mitogen-activated protein kinase molecule and downregulating the expression of cleaved caspase-3. Moreover, TRF modulated tyrosinase activity, resulting in a lowered rate of melanogenesis and reduced melanin production. In contrast, αTP did not exhibit significant protective effects against skin damages and pigmentation in BL-induced B16-F1 cells. Therefore, this study indicates that TRF may offer superior protective effects over αTP against the effects of BL on melanocytes. These findings demonstrate the potential of TRF as a protective natural ingredient that acts against BL-induced skin damages and hyperpigmentation via its anti-oxidative and anti-melanogenic properties.
Collapse
Affiliation(s)
- Juvenia Rui En Neo
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19 Synapse, Singapore 138623, Singapore; (J.R.E.N.)
| | - Cheryl Wei Ling Teo
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19 Synapse, Singapore 138623, Singapore; (J.R.E.N.)
| | - Yee Wei Ung
- Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, Petaling Jaya 47810, Malaysia;
| | - Wei Ney Yap
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19 Synapse, Singapore 138623, Singapore; (J.R.E.N.)
| |
Collapse
|
8
|
Aghaei-Zarch SM, Nia AHS, Nouri M, Mousavinasab F, Najafi S, Bagheri-Mohammadi S, Aghaei-Zarch F, Toolabi A, Rasoulzadeh H, Ghanavi J, Moghadam MN, Talebi M. The impact of particulate matters on apoptosis in various organs: Mechanistic and therapeutic perspectives. Biomed Pharmacother 2023; 165:115054. [PMID: 37379642 DOI: 10.1016/j.biopha.2023.115054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ecological air contamination is the non-homogenous suspension of insoluble particles into gas or/and liquid fluids known as particulate matter (PM). It has been discovered that exposure to PM can cause serious cellular defects, followed by tissue damage known as cellular stress. Apoptosis is a homeostatic and regulated phenomenon associated with distinguished physiological actions inclusive of organ and tissue generation, aging, and development. Moreover, it has been proposed that the deregulation of apoptotic performs an active role in the occurrence of many disorders, such as autoimmune disease, neurodegenerative, and malignant, in the human population. Recent studies have shown that PMs mainly modulate multiple signaling pathways involved in apoptosis, including MAPK, PI3K/Akt, JAK/STAT, NFκB, Endoplasmic Stress, and ATM/P53, leading to apoptosis dysregulation and apoptosis-related pathological conditions. Here, the recently published data concerning the effect of PM on the apoptosis of various organs, with a particular focus on the importance of apoptosis as a component in PM-induced toxicity and human disease development, is carefully discussed. Moreover, the review also highlighted the various therapeutic approaches, including small molecules, miRNA replacement therapy, vitamins, and PDRN, for treating diseases caused by PM toxicity. Notably, researchers have considered medicinal herbs a potential treatment for PM-induced toxicity due to their fewer side effects. So, in the final section, we analyzed the performance of some natural products for inhibition and intervention of apoptosis arising from PM-induced toxicity.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Sanjari Nia
- Division of Animal Sciences, Department of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Morteza Nouri
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Mousavinasab
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
9
|
Signaling pathways involved in paraquat-induced pulmonary toxicity: Molecular mechanisms and potential therapeutic drugs. Int Immunopharmacol 2022; 113:109301. [DOI: 10.1016/j.intimp.2022.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
10
|
Ye Y, Ji J, Huang Y, Zhang Y, Sun X. Metabolic Regulation Effect and Potential Metabolic Biomarkers of Pre-Treated Delphinidin on Oxidative Damage Induced by Paraquat in A549 Cells. Foods 2022; 11:foods11223575. [PMID: 36429167 PMCID: PMC9689328 DOI: 10.3390/foods11223575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Delphinidin (Del) is an anthocyanin component with high in vitro antioxidant capacity. In this study, based on the screening of a cell model, gas chromatography-time of flight mass spectrometry (GC-TOF/MS) was used to evaluate the effect of Del pre-protection on the metabolite levels of intracellular oxidative stress induced by paraquat (PQ). According to the cytotoxicity and reactive oxygen species (ROS) responses of four lung cell lines to PQ induction, A549 cell was selected and treated with 100 μM PQ for 12 h to develop a cellular oxidative stress model. Compared with the PQ-induced group, the principal components of the Del pretreatment group had significant differences, but not significant with the control group, indicating that the antioxidant activity of Del can be correlated to the maintenance of metabolite levels. Del preconditioning protects lipid-related metabolic pathways from the disturbance induced by PQ. In addition, the levels of amino acid- and energy-related metabolites were significantly recovered. Del may also exert an antioxidant effect by regulating glucose metabolism. The optimal combinations of biomarkers in the PQ-treatment group and Del-pretreatment group were alanine-valine-urea and alanine-galactose-glucose. Cell metabolome data provided characteristic fingerprints associated with the antioxidant activity of Del.
Collapse
|
11
|
Li W, Li M, Chen K, Tang Y, Yin R, Lan L, Hong G. Oxaloacetate acid ameliorates paraquat-induced acute lung injury by alleviating oxidative stress and mitochondrial dysfunction. Front Pharmacol 2022; 13:1029775. [PMID: 36313362 PMCID: PMC9606601 DOI: 10.3389/fphar.2022.1029775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Acute lung injury (ALI) is the primary cause of death among patients with acute paraquat (PQ) poisoning, whereby peroxidative damage is an important mechanism underlying PQ-induced lung injury. There is a lack of effective interventional drugs for patients with PQ poisoning. Oxaloacetic acid (OAA) participates in multiple in vivo metabolic processes, whereby it facilitates the clearance of reactive oxygen species (ROS) and improves mitochondrial function. The study aimed to assess the protective effects of OAA on PQ-induced ALI and elucidate the underlying molecular mechanism. Our data demonstrated that OAA treatment significantly alleviated PQ-induced ALI and improved the survival rate of PQ-poisoned mice, and also alleviated PQ-induced cellular oxidative stress and mitochondrial dysfunction. OAA-mediated alleviation of PQ-induced mitochondrial dysfunction depends on the following mechanisms which may explain the above findings: 1) OAA effectively cleared intracellular ROS, inhibited ROS accumulation, and mitochondrial depolarization; 2) OAA inhibited the downregulation of L-OPA1 and MFN2 caused by PQ and promoted a dynamic balance of mitochondrial fusion and fission, and 3) the expression of PGC-1α, TFAM, COX2, and COX4I1, increased significantly following OAA intervention which improved mitochondrial respiratory functions and promoted its biogenesis and energy metabolism in damaged cells. In conclusion, OAA effectively cleared ROS and improved mitochondrial dysfunction, thereby significantly improving ALI caused by PQ poisoning and the animal survival rate. Therefore, OAA may be a potential drug for the treatment of PQ poisoning.
Collapse
Affiliation(s)
- Wenwen Li
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Mengxuan Li
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Kaiyuan Chen
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Ran Yin
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Linhua Lan
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou, China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
- *Correspondence: Guangliang Hong,
| |
Collapse
|
12
|
Miao C, Fan D. Identification of differentially expressed genes and pathways in diquat and paraquat poisoning using bioinformatics analysis. Toxicol Mech Methods 2022; 32:678-685. [PMID: 35392760 DOI: 10.1080/15376516.2022.2063095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
[Objective] In this study, differentially expressed genes (DEGs) and signaling pathways involved in diquat (DQ) and paraquat (PQ) poisoning were identified via bioinformatics analysis, in order to inform the development of novel clinical treatments. [Methods] Raw data from GSE153959 were downloaded from the Gene Expression Omnibus database. DEGs of the DQ vs. control (CON) and PQ vs. CON comparison groups were identified using R, and DEGs shared by the two groups were identified using TBtools. Subsequently, the shared DEGs were searched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, using the Database for Annotation, Visualization, and Integrated Discovery. A protein-protein interaction (PPI) network was constructed, and hub genes were identified using the cytoHubba plug-in in Cytoscape software. Finally, Circos and contrast plots showing the DEGs shared between mouse and human chromosomes were constructed using TBtools. [Results] Thirty- one DEGs shared by the DQ and PQ groups were identified. Enriched biological process terms included positive regulation of cell proliferation and translation. Enriched cellular component terms included extracellular region, intracellular membrane- bounded organelle and mitochondrion. Enriched molecular function terms included transcription factor activity and sequence-specific double-stranded DNA binding. Enriched KEGG pathways included the interleukin- 17 signaling pathway, tumor necrosis factor signaling pathway, and human T- cell leukemia virus 1 infection. The top ten hub genes in the PPI network were Ptgs2, Cxcl2, Csf2, Mmp13, Areg, Plaur, Fosl1, Ereg, Atf3, and Tfrc. Cxcl2, Csf2, and Atf3 played important roles in the mitogen- activated protein kinase signaling pathway. [Conclusions] These pathways and DEGs may serve as targets for gene therapy.
Collapse
Affiliation(s)
- Changqing Miao
- Department of Emergency, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Dandan Fan
- Department of Emergency, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Ye Y, Sun X, Zhang Y, Han X, Sun X. A novel cell-based electrochemical biosensor based on MnO2 catalysis for antioxidant activity evaluation of anthocyanins. Biosens Bioelectron 2022; 202:113990. [DOI: 10.1016/j.bios.2022.113990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 01/22/2023]
|
14
|
Ferrer B, Suresh H, Tinkov AA, Santamaria A, Rocha JB, Skalny AV, Bowman AB, Aschner M. Ghrelin attenuates methylmercury-induced oxidative stress in neuronal cells. Mol Neurobiol 2022; 59:2098-2115. [PMID: 35040042 DOI: 10.1007/s12035-022-02726-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a global pollutant, which can cause damage to the central nervous system at both high-acute and chronic-low exposures, especially in vulnerable populations, such as children and pregnant women. Nowadays, acute-high poisoning is rare. However, chronic exposure to low MeHg concentrations via fish consumption remains a health concern. Current therapeutic strategies for MeHg poisoning are based on the use of chelators. However, these therapies have limited efficacy. Ghrelin is a gut hormone with an important role in regulating physiologic processes. It has been reported that ghrelin plays a protective role against the toxicity of several xenobiotics. Here, we explored the role of ghrelin as a putative protector against MeHg-induced oxidative stress. Our data show that ghrelin was able to ameliorate MeHg-induced reactive oxygen species (ROS) production in primary neuronal hypothalamic and hippocampal cultures. An analogous effect was observed in mouse hypothalamic neuronal GT 1-7 cells. Using this model, our novel findings show that antioxidant protection of ghrelin against MeHg is mediated by glutathione upregulation and induction of the NRF2/NQO1 pathway.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Harshini Suresh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía, 14269, Mexico City, Mexico
| | - João Batista Rocha
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Anatoly V Skalny
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
15
|
Qi M, Wang N, Xiao Y, Deng Y, Zha A, Tan B, Wang J, Yin Y, Liao P. Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118572. [PMID: 34838710 DOI: 10.1016/j.envpol.2021.118572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
Collapse
Affiliation(s)
- Ming Qi
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuxin Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Andong Zha
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Peng Liao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| |
Collapse
|
16
|
Guan R, Yao H, Li Z, Qian J, Yuan L, Cai Z, Ding M, Liu W, Xu J, Li Y, Sun D, Wang J, Lu W. Sodium Tanshinone IIA Sulfonate Attenuates Cigarette Smoke Extract-Induced Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis in Alveolar Epithelial Cells by Enhancing SIRT1 Pathway. Toxicol Sci 2021; 183:352-362. [PMID: 34515779 DOI: 10.1093/toxsci/kfab087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Emphysema is one of the most important phenotypes for chronic obstructive pulmonary disease (COPD). Apoptosis in alveolar epithelial cells (AECs) causes the emphysematous alterations in the smokers and patients with COPD. Sirtuin 1 (SIRT1) is able to attenuate mitochondrial dysfunction, oxidative stress, and to modulate apoptosis. It has been shown that sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, protects against cigarette smoke (CS)-induced emphysema/COPD in mice. However, the mechanisms underlying these findings remain unclear. Here, we investigate whether and how STS attenuates AEC apoptosis via a SIRT1-dependent mechanism. We found that STS treatment decreased CS extract (CSE)-induced apoptosis in human alveolar epithelial A549 cells. STS reduced oxidative stress, improved mitochondrial function and mitochondrial membrane potential (ΔΨm), and restored mitochondrial dynamics-related protein expression. Moreover, STS promoted mitophagy, and increased oxidative phosphorylation protein levels (complexes I-IV) in CSE-stimulated A549 cells. The protective effects of STS were associated with SIRT1 upregulation, because SIRT1 inhibition by EX 527 significantly attenuated or abolished the ability of STS to reverse the CSE-induced mitochondrial damage, oxidative stress, and apoptosis in A549 cells. In conclusion, STS ameliorates CSE-induced AEC apoptosis by improving mitochondrial function and reducing oxidative stress via enhancing SIRT1 pathway. These findings provide novel mechanisms underlying the protection of STS against CS-induced COPD.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jing Qian
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Liang Yuan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Mingjing Ding
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis & Treatment of COPD, The People's Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
17
|
Yu YY, Liu QP, Li MT, An P, Chen YY, Luan X, Lv C, Zhang H. Hu-Zhang-Qing-Mai-Yin Inhibits Proliferation of Human Retinal Capillary Endothelial Cells Exposed to High Glucose. Front Pharmacol 2021; 12:732655. [PMID: 34421625 PMCID: PMC8377758 DOI: 10.3389/fphar.2021.732655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is one of the serious complications of diabetes and an important cause of blindness. Despite much research on the pathogenesis of DR, there is still a lack of safe and effective treatment methods. Hu-zhang-qing-mai-yin (HZQMY), a Chinese medicine formula, has been clinically used in the safe and effective treatment of DR for many years. However, the systematic pharmacological research is lacking. The aim of this study was to evaluate the anti-DR effects of HZQMY and explore the possible mechanism involved. Methods: The constituents of HZQMY were analyzed by LC-MS/MS. DR model was established by high glucose simulation on human retinal capillary endothelial cells (HRCECs) in vitro. The cell viability, cell proliferation, cell apoptosis, and tube formation were assessed. Subsequently the related mechanisms were analyzed by assays for JC-1 mitochondrial membrane potential (MMP), intracellular ROS, ATP, western blot and proteomics. Results: 27 main chemical components contained in HZQMY were identified. HZQMY significantly inhibited the viability and proliferation of HRCECs exposed to high glucose, and promoted the apoptosis. In addition, HZQMY also boosted the release of ROS and suppressed tube formation of HRCECs under high glucose exposure. Meanwhile, HRCECs treated with high glucose released more ROS than normal cells, which could be markedly inhibited by HZQMY in a dose-dependent manner. Additionally, western blot assay indicated that HZQMY increased the expression of proteins related to the P38 signaling pathway and inhibited nuclear factor kappa-B (NF-κB) pathway. Proteomic analysis predicted that HSPA4, MAPK3, ENO1, EEF2 and ERPS may be the candidate targets of HZQMY in HRCECs. Conclusions: HZQMY inhibited the proliferation and promoted the Mitochondria related apoptosis of HRCECs exposed to high glucose possibly through regulating P38 and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Ferritinophagy-Mediated Ferroptosis Involved in Paraquat-Induced Neurotoxicity of Dopaminergic Neurons: Implication for Neurotoxicity in PD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9961628. [PMID: 34394837 PMCID: PMC8355964 DOI: 10.1155/2021/9961628] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a progressive nervous system disorder. Until now, the molecular mechanism of its occurrence is not fully understood. Paraquat (PQ) was identified as a neurotoxicant and is linked to increased PD risk and PD-like neuropathology. Ferroptosis is recognized as a new form of regulated cell death. Here, we revealed a new underlying mechanism by which ferritinophagy-mediated ferroptosis is involved in PD induced by PQ. The effect of PQ on movement injury in mice was investigated by the bar fatigue and pole-climbing test. SH-SY5Y human neuroblastoma cells were used to evaluate the mechanism of ferroptosis. Our results showed that PQ induced movement injury by causing the decrease in tyrosine hydroxylase in mice. In vitro, PQ significantly caused the iron accumulation in cytoplasm and mitochondria through ferritinophagy pathway induced by NCOA4. Iron overload initiated lipid peroxidation through 12Lox, further inducing ferroptosis by producing lipid ROS. PQ downregulated SLC7A11 and GPX4 expression and upregulated Cox2 expression significantly, which were important markers in ferroptosis. Fer-1, an inhibitor of ferroptosis, could significantly ameliorate the ferroptosis induced by PQ. Meanwhile, Bcl2, Bax, and p-38 were involved in apoptosis induced by PQ. In conclusion, ferritinophagy-mediated ferroptosis pathway played an important role in PD occurrence. Bcl2/Bax and P-p38/p38 pathways mediated the cross-talk between ferroptosis and apoptosis induced by PQ. These data further demonstrated the complexity of PD occurrence. The inhibition of the ferroptosis and apoptosis together may be a new strategy for the prevention of neurotoxicity or PD in the future.
Collapse
|
19
|
Chen J, Xue X, Cai J, Jia L, Sun B, Zhao W. Protective effect of taurine on sepsis‑induced lung injury via inhibiting the p38/MAPK signaling pathway. Mol Med Rep 2021; 24:653. [PMID: 34278479 PMCID: PMC8299207 DOI: 10.3892/mmr.2021.12292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis, a leading cause of acute lung injury (ALI), is characterized by an overwhelming systemic inflammatory response and widespread organ injury, particularly in the lungs. Taurine, an intracellular free amino acid, has been used for the treatment of various diseases, including lung injury; however, the underlying mechanisms are unclear. The present study aimed to investigate the protective effect of taurine on septic ALI and the underlying mechanism. A septic ALI model was established by performing cecal ligation and puncture (CLP) surgery on Sprague Dawley rats. Following successful model establishment, rats were treated with taurine. The results of hematoxylin and eosin, respiratory function detection, malondialdehyde level and superoxide dismutase activity determination and ELSIA demonstrated that taurine significantly alleviated lung injury, restored respiratory function, reduced oxidation and decreased the concentrations of inflammatory factors in CLP‑induced septic ALI model rats. In addition, compared with that in the ALI group, western blotting results indicated that taurine ameliorated lung epithelial injury by significantly increasing the expression levels of lung epithelial markers, E‑cadherin and occludin. The western blotting results demonstrated that, compared with the control group, the p38/MAPK and NF‑κB signaling pathways were significantly activated in CLP‑induced septic ALI model rats, but taurine significantly suppressed ALI‑mediated signaling pathway activation. To investigate the mechanism underlying taurine in the treatment of septic ALI, CLP‑induced septic ALI model rats were treated with an antagonist of the p38/MAPK signaling pathway (SB203580). The effects of SB203580 on CLP‑induced septic ALI model rats were similar to those of taurine. SB203580 significantly attenuated sepsis‑induced lung injury and increases in IL‑1β and TNF‑α concentrations in the lung tissue. In addition, SB203580 promoted restoration of the injured lung tissue and respiratory function in CLP‑induced septic ALI model rats. The western blotting results indicated that SB203580 significantly decreased the ratios of phosphorylated (p)‑p38/p38 and p‑p65/065, and increased the protein expression levels of E‑cadherin and occludin compared with those in the ALI group. In summary, the present study demonstrated that taurine alleviated sepsis‑induced lung injury, which was associated with suppression of the inflammatory response and oxidative stress via inhibiting the p38/MAPK signaling pathway. Therefore, the p38/MAPK signaling pathway may serve as a potential therapeutic target for the treatment of sepsis‑induced ALI.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Critical Care Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Xiang Xue
- Department of Critical Care Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Jianqin Cai
- Department of Critical Care Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Ling Jia
- Department of Critical Care Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Baodi Sun
- Department of Emergency Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Wei Zhao
- Department of Critical Care Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
20
|
Zhuang C, Gao J, Liu G, Zhou M, Yang J, Wang D, Kastelic JP, Han B. Selenomethionine activates selenoprotein S, suppresses Fas/FasL and the mitochondrial pathway, and reduces Escherichia coli-induced apoptosis of bovine mammary epithelial cells. J Dairy Sci 2021; 104:10171-10182. [PMID: 34053755 DOI: 10.3168/jds.2020-20034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
Escherichia coli is a major environmental pathogen causing bovine mastitis, characterized by cell death and mammary tissue damage. Apoptosis, a form of cell death, has an important role in the pathogenesis of mastitis. Selenium, an essential trace element, protects against mastitis by acting through several biochemical pathways, potentially including prevention of apoptosis. Our objective was to investigate whether selenomethionine (SeMet) attenuated E. coli-induced apoptosis in bovine mammary epithelial cells (bMEC). These cells were cultured in vitro and treated with 0, 5, 10, 20, and 40 μM SeMet for 12 h, with or without E. coli (multiplicity of infection of 5) for 8 h. Treatment with SeMet/Z-IE(OMe)TD(OMe)-FMK (ZIK)/Z-LE(OMe)HD(OMe)-FMK (ZLK, specific inhibitors of caspase-8 and -9, respectively) significantly counteracted effects of E. coli on bMEC. Specifically, SeMet upregulated selenoprotein S (SeS) and increased mitochondrial membrane potential and the ratio of Bcl-2 and Bax. Furthermore, it decreased protein expressions of Fas, FasL, FADD, cleaved caspase-8, cytochrome c, cleaved caspase-9, and cleaved caspase-3, namely, decreasing protein expression of the Fas/FasL and mitochondrial pathways. Furthermore, it downregulated total apoptosis indexes in E. coli-infected bMEC. Although ZIK and ZLK (specific inhibitors of caspases 8 and 9, respectively) significantly inhibited Fas/FasL and the mitochondrial apoptotic pathway and apoptosis indexes, respectively, substantial apoptosis still occurred. In conclusion, SeMet attenuated E. coli-induced apoptosis in bMEC by activating SeS, associated with Fas/FasL and mitochondrial pathways.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Wang
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
21
|
Gao Y, Hou L, Wang Y, Zhang Y, Zhang S, Li Y, Jiang Y, Zhu C, Sun T, Duan G, Yuan D. Comparison of Pancreatic Damage in Rats for Two Methods of Paraquat Administration. Front Pharmacol 2021; 12:611433. [PMID: 33967752 PMCID: PMC8099104 DOI: 10.3389/fphar.2021.611433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023] Open
Abstract
It is noted that elevated serum amylase levels suggesting pancreatic damage has an association with prognosis in PQ patients. This study aimed to determine whether PQ can cause pancreatic damage. The two conventional models (intragastric infusion (iG) and intraperitoneal injection (iP)) may exhibit different effects on the pancreas depending on whether or not they pass through the digestive tract. In this study, the rats were divided into four groups: the intragastric infusion group (PQ-iG, n = 45), intraperitoneal injection group (PQ-iP, n = 53), normal control group 1 (NC-iG, n = 6) and normal control group 2 (NC-iP, n = 6). Pancreatic damage was compared between groups using serum amylase activity assay, hematoxylin and eosin (H&E) staining, TUNEL assay, and transmission electron microscopy (TEM). Serum amylase levels in group PQ-iG were significantly higher than in group PQ-iP (p < 0.05). Examination of the H&E sections showed damage to the pancreas. Both experimental groups were displayed inflammatory infiltration within 9 h of PQ treatment. After 9 h, patchy necrosis was observed in group PQ-iP, when inflammatory infiltration was still the dominant pathology. Necrosis appeared and gradually worsened in group PQ-iG, in which necrosis was the dominant pathology. The TUNEL assay showed significantly higher numbers of apoptotic cells in the pancreas of PQ-groups than in the control NC- groups (p < 0.05). TEM showed expansive endoplasmic reticulum lumens and mitochondria swelling in the pancreas of the PQ-groups. It is concluded that both methods of modeling could cause pancreatic damage and the type and degree of damage would change over time. Note that pancreatic damage in group PQ-iG was more severe than that in group PQ-iP. Therefore, clinical practitioners should pay close attention to pancreatic damage caused by PQ, especially when the route of PQ administration was oral.
Collapse
Affiliation(s)
- Yanxia Gao
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Hou
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yibo Wang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shoutao Zhang
- Henan Key Laboratory of Bioactive Macromolecules, School of Life Sciences, Zhengzhou, China
| | - Yi Li
- Emergency Department, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Changju Zhu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoyu Duan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Yuan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Jia XB, Zhang Q, Xu L, Yao WJ, Wei L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol Res 2021; 54:7. [PMID: 33653412 PMCID: PMC7923640 DOI: 10.1186/s40659-021-00330-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background
Leaves of the natural plant lotus are used in traditional Chinese medicine and tea production. They are rich in flavonoids. Methods In this study, lotus leaf flavonoids (LLF) were applied to human lung cancer A549 cells and human small cell lung cancer cells H446 in vitro to verify the effect of LLF on apoptosis in these cells through the ROS/p38 MAPK pathway. Results LLF had no toxic effect on normal cells at concentrations up to 500 µg/mL, but could significantly inhibit the proliferation of A549 cells and H446 cells. Flow cytometry showed that LLF could induce growth in A549 cells. We also found that LLF could increase ROS and MDA levels, and decrease SOD activity in A549 cells. Furthermore, qRT-PCR and western blot analyses showed that LLF could upregulate the expression of p38 MAPK (p-p38 MAPK), caspase-3, caspase-9, cleaved caspase-3, cleaved caspase-9 and Bax and downregulate the expression of Cu/Zn SOD, CAT, Nrf2, NQO1, HO-1, and Bcl-2 in A549 cells. Results of HPLC showed that LLF mainly contain five active substances: kaempferitrin, hyperoside, astragalin, phloridzin, and quercetin. The apoptosis-inducing effect of LLF on A549 cells came from these naturally active compounds. Conclusions We have shown in this study that LLF is a bioactive substance that can induce apoptosis in A549 cells in vitro, and merits further research and development.
Collapse
Affiliation(s)
- Xiang-Bo Jia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Quan Zhang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Lei Xu
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Wen-Jian Yao
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory of Surgical Treatment for End-Stage Lung Diseases, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
23
|
Subbiah R, Tiwari RR. The herbicide paraquat-induced molecular mechanisms in the development of acute lung injury and lung fibrosis. Crit Rev Toxicol 2021; 51:36-64. [PMID: 33528289 DOI: 10.1080/10408444.2020.1864721] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The herbicide paraquat (PQ; 1,1'-dimethyl-4,4'-bipyridylium dichloride) is a highly toxic organic heterocyclic herbicide that has been widely used in agricultural settings. Since its commercial introduction in the early 1960s, numerous cases of fatal PQ poisonings attributed to accidental and/or intentional ingestion of PQ concentrated formulations have been reported. The clinical manifestations of the respiratory system during the acute phase of PQ poisoning mainly include acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), followed by pulmonary fibrosis in a later phase. The focus of this review is to summarize the most recent publications related to PQ-induced lung toxicity as well as the underlying molecular mechanisms for PQ-mediated pathologic processes. Growing sets of data from in vitro and in vivo models have demonstrated the involvement of the PQ in regulating lung oxidative stress, inflammatory response, epigenetics, apoptosis, autophagy, and the progression of lung fibrosis. The article also summarizes novel therapeutic avenues based on a literature review, which can be explored as potential means to combat PQ-induced lung toxicity. Finally, we also presented clinical studies on the association of PQ exposure with the incidence of lung injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Rajasekaran Subbiah
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan R Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
24
|
Wang H, Dou S, Zhu J, Shao Z, Wang C, Cheng B. Regulatory effects of ghrelin on endoplasmic reticulum stress, oxidative stress, and autophagy: Therapeutic potential. Neuropeptides 2021; 85:102112. [PMID: 33333485 DOI: 10.1016/j.npep.2020.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Ghrelin is a regulatory peptide that is the endogenous ligand of the growth hormone secretagogue 1a (GHS-R1a) which belongs to the G protein-coupled receptor family. Ghrelin and GHS-R1a are widely expressed in the central and peripheral tissues and play therapeutic potential roles in the cytoprotection of many internal organs. Endoplasmic reticulum stress (ERS), oxidative stress, and autophagy dysfunction, which are involved in various diseases. In recent years, accumulating evidence has suggested that ghrelin exerts protective effects by regulating ERS, oxidative stress, and autophagy in diverse diseases. This review article summarizes information about the roles of the ghrelin system on ERS, oxidative stress, and autophagy in multiple diseases. It is suggested that ghrelin positively affects the treatment of diseases and may be considered as a therapeutic drug in many illnesses.
Collapse
Affiliation(s)
- Huiqing Wang
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Ziqi Shao
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
25
|
Ma J, Hui L, Song N, Zhang X, Qu D, Sang C, Li H. Lappaconitine hydrochloride induces apoptosis and S phase cell cycle arrest through MAPK signaling pathway in human liver cancer HepG2 cells. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_251_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
Zhao HW, Liu H, Liu LY, Liu Z, Dong XS. Analysis of microRNA expression profiling during paraquat-induced injury of murine lung alveolar epithelial cells. J Toxicol Sci 2020; 45:423-434. [PMID: 32741895 DOI: 10.2131/jts.45.423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Paraquat (PQ) as a non-selective heterocyclic herbicide, has been applied worldwide for over a few decades. But PQ is very harmful to humans and rodents. The lung is the main target organ of PQ poisoning. It is an important event that lung epithelial cells are injured during PQ-induced acute lung injury and pulmonary fibrosis. As a regulator of mRNA expression, microRNA (miRNA) may play an important role in the progress. Our study was to investigate the mechanisms of PQ-induced injury of pulmonary epithelial cells through analyzing the profiling of miRNAs and their target genes. As a result, 11 differentially expressed miRNAs were screened, including 1 upregulated miRNA and 10 downregulated miRNAs in PQ-treated murine lung alveolar epithelial cells (MLE-12 cells). The bioinformatic analyses suggested that the target genes of these miRNAs were involved in mitochondrial apoptosis pathway and DNA methylation, and participated in the regulation of PI3K-Akt, mTOR, RAS, TNF, MAPK and other signal pathways which related to oxidative stress and apoptosis. This indicated that miRNAs were an important regulator of oxidative stress and apoptosis during PQ-induced injury of murine lung alveolar epithelial cells. The findings would deepen our understanding of the mechanisms of PQ-induced pulmonary injury and might provide new treatment targets for this disease.
Collapse
Affiliation(s)
- Hua-Wei Zhao
- Department of Emergency, The First Affiliated Hospital of China Medical University, China
| | - Hao Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, China
| | - Li-Ying Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, China
| | - Zhi Liu
- Department of Emergency, The First Affiliated Hospital of China Medical University, China
| | - Xue-Song Dong
- Department of Emergency, The First Affiliated Hospital of China Medical University, China
| |
Collapse
|
27
|
Yao Y, Cui L, Ye J, Yang G, Lu G, Fang X, Zeng Z, Zhou J. Dioscin facilitates ROS-induced apoptosis via the p38-MAPK/HSP27-mediated pathways in lung squamous cell carcinoma. Int J Biol Sci 2020; 16:2883-2894. [PMID: 33061803 PMCID: PMC7545707 DOI: 10.7150/ijbs.45710] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Lung squamous cell carcinoma (SCC) is one of the deadliest cancers both in China and worldwide. To date, the efficacy of lung SCC treatments is limited. Recent studies have elucidated the powerful anti-tumour role of dioscin in different human cancers. Here, our study aims to investigate the effect of dioscin on lung SCC and its underlying mechanism. First, we found that dioscin not only inhibited cell proliferation and cell migration and induced cell apoptosis in lung SCC cells but also suppressed tumour growth in tumour-bearing mice. Furthermore, we noted that the accumulation of intracellular reactive oxygen species (ROS) was triggered by dioscin in lung SCC cells, leading to the phosphorylation of HSP27 through p38-MAPK and consequent cell apoptosis. The activation of p38-MAPK/HSP27 induced by the p38-MAPK activator Anisomycin enhanced the apoptosis of lung SCC cells, while the ROS inhibitor N-acetyl-L-cysteine (NAC) and the p38-MAPK inhibitor SB203580 both attenuated dioscin-mediated cell apoptosis. Moreover, NAC suppressed the activation of p38-MAPK/HSP27 that induced by dioscin. In conclusion, these results confirm that dioscin facilitates ROS-induced apoptosis via the p38-MAPK/HSP27-mediated pathway in lung SCC.
Collapse
Affiliation(s)
- Yinan Yao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Luyun Cui
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiani Ye
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdie Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaomei Fang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhu Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Song IY, Snyder AM, Kim Y, Neely EB, Wade QW, Connor JR. The Nrf2-mediated defense mechanism associated with HFE genotype limits vulnerability to oxidative stress-induced toxicity. Toxicology 2020; 441:152525. [PMID: 32540480 DOI: 10.1016/j.tox.2020.152525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in gene and environment interactions in neurodegenerative diseases. The HFE (homeostatic iron regulator) gene variant (H63D) is highly prevalent in the population and has been investigated as a disease modifier in multiple neurodegenerative diseases. We have developed a mouse model to interrogate the impact of this gene variant in a model of paraquat toxicity. Using primary astrocytes, we found that the H67D-Hfe(equivalent of the human H63D variant) astrocytes are less vulnerable than the WT-Hfe astrocytes to paraquat-induced cell death, mitochondrial damage, and cellular senescence. We hypothesized that the Hfe variant-associated protection is a result of the activation of the Nrf2 antioxidant defense system and found a significant increase in Nrf2 levels after paraquat exposure in the H67D-Hfe astrocytes than the WT-Hfe astrocytes. Moreover, decreasing Nrf2 by molecular or pharmaceutical manipulation resulted in increased vulnerability to paraquat in the H67D-Hfe astrocytes. To further elucidate the role of Hfe variant genotype in neuroprotection mediated by astrocytes, we added media from the paraquat-treated astrocytes to differentiated SH-SY5Y neuroblastoma cells and found a significantly larger reduction in the viability when treated with WT-Hfe astrocyte media than the H67D-Hfe astrocyte media possibly due to higher secretion of IL-6 observed in the WT-Hfe astrocytes. To further explore the mechanism of Nrf2 protection, we measured NQO1, the Nrf2-mediated antioxidant, in primary astrocytes and found a significantly higher NQO1 level in the H67D-Hfe astrocytes. To consider the translational potential of our findings, we utilized the PPMI (Parkinson's Progression Markers Initiative) clinical database and found that, consistent with the mouse study, H63D-HFE carriers had a significantly higher NQO1 level in the CSF than the WT-HFE carriers. Consistent with our previous reports on H63D-HFE in disease, these data further suggest that HFE genotype in the human population impacts the antioxidant defense system and can therefore alter pathogenesis.
Collapse
Affiliation(s)
- Insung Y Song
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States.
| | - Amanda M Snyder
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Yunsung Kim
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Elizabeth B Neely
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Quinn W Wade
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - James R Connor
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
29
|
Klotho Alleviates Lung Injury Caused by Paraquat via Suppressing ROS/P38 MAPK-Regulated Inflammatory Responses and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1854206. [PMID: 32509139 PMCID: PMC7244968 DOI: 10.1155/2020/1854206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023]
Abstract
Acute lung injury (ALI) induced by paraquat (PQ) progresses rapidly with high mortality; however, there is no effective treatment, and the specific mechanism is not well understood. The antiaging protein klotho (KL) has multiple functions and exerts significant influences on various pathophysiological processes. This work evaluated the impact of KL on PQ-induced ALI and investigated its underlying mechanisms. As for in vivo research, C57BL/6 mice were treated with PQ (30 mg/kg) intraperitoneal (IP) injection to create a toxicity model of ALI (PQ group). The mice were divided into control group, KL group, PQ group, and PQ+KL group. For in vitro experiment, A549 cells were incubated with or without KL and then treated in the presence or absence of PQ for 24 h. In vivo result indicated that KL reduced the mortality, reduced IL-1β and IL-6 in the bronchoalveolar lavage fluid (BALF), attenuated ALI, and decreased apoptosis in situ. In vitro result revealed that KL significantly improved cell viability, reduced the levels of IL-1β and IL-6 in culture supernatants, suppressed cell apoptosis, inhibited caspase-3 activation, and enhanced mitochondrial membrane potential (ΔΨm) after PQ treatment. Besides, KL effectively abated reactive oxygen species (ROS) production, improved GSH content, and lowered lipid peroxidation in PQ-exposed A549 cells. Further experiments indicated that phosphorylated JNK and P38 MAPK was increased after PQ treatment; however, KL pretreatment could significantly lower the phosphorylation of P38 MAPK. Suppression of P38 MAPK improved cell viability, alleviated inflammatory response, and reduced apoptosis-related signals; however, it had no obvious effect on the production of ROS. Treatment with N-acetylcysteine (NAC), a classic ROS scavenger, could suppress ROS production and P38 MAPK activation. These findings suggested that KL could alleviate PQ-caused ALI via inhibiting ROS/P38 MAPK signaling-regulated inflammatory responses and mitochondria-dependent apoptosis.
Collapse
|
30
|
SreeHarsha N. Embelin impact on paraquat-induced lung injury through suppressing oxidative stress, inflammatory cascade, and MAPK/NF-κB signaling pathway. J Biochem Mol Toxicol 2020; 34:e22456. [PMID: 32020686 DOI: 10.1002/jbt.22456] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
The current examination was intended to observe the defensive impacts of embelin against paraquat-incited lung damage in relationship with its antioxidant and anti-inflammatory action. Oxidative stress marker, like malondialdehyde (MDA), antioxidative enzymes, for example, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH Px), inflammatory cytokines, such as interleukin-1β (IL-1β), tumor necrosis factor-α, and IL-6, histological examination, and nuclear factor kappa B/mitogen-activated protein kinase (NF-κB/MAPK) gene expression were evaluated in lung tissue. Embelin treatment significantly decreased MDA and increased SOD, CAT, and GSH Px. Embelin significantly reduced levels of inflammatory cytokines in paraquat-administered and paraquat-intoxicated rats. In addition, embelin suggestively decreased relative protein expression of nuclear NF-κB p65, p-NF-κBp65, p38 MAPK, and p-p38 MAPKs in paraquat-intoxicated rats. The outcomes show the impact of embelin inhibitory action on NF-κB and MAPK and inflammatory cytokines release, and the decrease of lung tissue damage caused by paraquat.
Collapse
Affiliation(s)
- Nagaraja SreeHarsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
31
|
Liu JZ, Hu YL, Feng Y, Guo YB, Liu YF, Yang JL, Mao QS, Xue WJ. Rafoxanide promotes apoptosis and autophagy of gastric cancer cells by suppressing PI3K /Akt/mTOR pathway. Exp Cell Res 2019; 385:111691. [PMID: 31678170 DOI: 10.1016/j.yexcr.2019.111691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Rafoxanide is commonly used as anti-helminthic medicine in veterinary medicine, a main compound of salicylanilide. Previous studies have reported that rafoxanide, as an inhibitor of BRAF V600E mutant protein, inhibits the growth of colorectal cancer, multiple myeloma, and skin cancer. However, its therapeutic effect on gastric cancer (GC) and the potential mechanism has not been investigated. Here, we have found that rafoxanide inhibited the proliferation of GC cells in vitro, arrested the cell cycle in the G0/G1 phase, and promoted apoptosis and autophagy in GC cells. Treatment with specific autophagy inhibitor 3-methyladenine drastically inhibited the apoptotic cell death effect by suppressing the switch from autophagy to apoptosis. Mechanistically, we found that rafoxanide inhibited the growth of GC cells in vitro by inhibiting the activity of the PI3K/Akt/mTOR signaling pathway. This process induced autophagy, which essentially resulted in the apoptosis of GC cells. Results from subcutaneous implanted tumor models in nude mice also indicated that rafoxanide inhibited the growth of GC cells in vivo. Taken together, our findings revealed that rafoxanide inhibited the growth of GC cells both in vitro and vivo, indicating a potential drug candidate for the treatment of GC.
Collapse
Affiliation(s)
- Jia-Zhou Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Bing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Jun-Ling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China.
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, China.
| |
Collapse
|