1
|
Zhang J, Liu H, Liu Y, Luo E, Liu S. Unlocking the potential of histone modification in regulating bone metabolism. Biochimie 2024; 227:286-298. [PMID: 39154977 DOI: 10.1016/j.biochi.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Bone metabolism plays a crucial role in maintaining normal bone tissue homeostasis and function. Imbalances between bone formation and resorption can lead to osteoporosis, osteoarthritis, and other bone diseases. The dynamic and complex process of bone remodeling is driven by various factors, including epigenetics. Histone modification, one of the most important and well-studied components of epigenetic regulation, has emerged as a promising area of research in bone metabolism. Different histone proteins and modification sites exert diverse effects on osteogenesis and osteoclastogenesis. In this review, we summarize recent progress in understanding histone modifications in bone metabolism, including specific modification sites and potential regulatory enzymes. Comprehensive knowledge of histone modifications in bone metabolism could reveal new therapeutic targets and treatment strategies for bone diseases.
Collapse
Affiliation(s)
- Jiayuan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Varma S, Molangiri A, Mudavath S, Ananthan R, Rajanna A, Duttaroy AK, Basak S. Exposure to BPA and BPS during pregnancy disrupts the bone mineralization in the offspring. Food Chem Toxicol 2024; 189:114772. [PMID: 38821392 DOI: 10.1016/j.fct.2024.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Exposure to plastic-derived estrogen-mimicking endocrine-disrupting bisphenols can have a long-lasting effect on bone health. However, gestational exposure to bisphenol A (BPA) and its analogue, bisphenol S (BPS), on offspring's bone mineralization is unclear. The effects of in-utero bisphenol exposure were examined on the offspring's bone parameters. BPA and BPS (0.0, 0.4 μg/kg bw) were administered to pregnant Wistar rats via oral gavage from gestational day 4-21. Maternal exposure to BPA and BPS increased bone mineral content and density in the offspring aged 30 and 90 days (P < 0.05). Plasma analysis revealed that alkaline phosphatase, and Gla-type osteocalcin were significantly elevated in the BPS-exposed offspring (P < 0.05). The expression of BMP1, BMP4, and their signaling mediators SMAD1 mRNAs were decreased in BPS-exposed osteoblast SaOS-2 cells (P < 0.05). The expression of extracellular matrix proteins such as ALPL, COL1A1, DMP1, and FN1 were downregulated (P < 0.05). Bisphenol co-incubation with noggin decreased TGF-β1 expression, indicating its involvement in bone mineralization. Altered mineralization could be due to dysregulated expression of bone morphogenetic proteins and signalling mediators in the osteoblast cells. Thus, bisphenol exposure during gestation altered growth and bone mineralization in the offspring, possibly by modulating the expression of Smad-dependent BMP/TGF-β1 signalling mediators.
Collapse
Affiliation(s)
- Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Archana Molangiri
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Sreedhar Mudavath
- Food Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Rajendran Ananthan
- Food Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ajumeera Rajanna
- Cell Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
3
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
4
|
Liang J, Pang L, Yang C, Long J, Liao Q, Tang P, Huang H, Wei H, Chen Q, Yang K, Liu T, Lv F, Liu S, Huang D, Qiu X. Effects of prenatal single and mixed bisphenol exposure on bone mineral density in preschool children: A population-based prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115665. [PMID: 37951091 DOI: 10.1016/j.ecoenv.2023.115665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Exposure to bisphenols can affect bone mineral density (BMD) in animals and humans. However, the effects of maternal exposure to bisphenols during pregnancy on bone health in preschool children remain unknown. We aimed to assess the effects of prenatal exposure to single and multiple bisphenols on bone health in preschool children. A total of 230 mother-child pairs were included in this study. Generalized linear regression, restricted cubic spline (RCS), principal component analysis (PCA), and Bayesian kernel machine regression (BKMR) were utilized to assess the relationship between bisphenol levels and bone health in preschool children. Each natural log (Ln) unit increase in tetrabromobisphenol A was related to a 0.007 m/s (95 % CI: -0.015, 0.000) decrease in Ln-transformed speed of sound (SOS) among girls. Decreased BMD Z scores in preschool children were found only in the high bisphenol S exposure group (β = -0.568; 95 % CI: -1.087, -0.050) in boys. The risk of low BMD (BMDL) was significantly higher in the middle-exposure group (OR = 4.695; 95 % CI: 1.143, 24.381) and high-exposure group of BPS (OR = 6.165, 95 % CI: 1.445, 33.789) compared with the low-exposure group in boys. In girls, the risk of BMDL decreased with increasing bisphenol A concentration (OR = 0.413, 95 % CI: 0.215, 0.721). RCS analysis revealed a U-shaped nonlinear correlation between BPB concentration and BMDL in girls (P-overall = 0.011, P-nonlinear = 0.009). In PCA, a U-shaped dose-response relationship was found between PC2 and the risk of BMDL (P-overall = 0.048, P-nonlinear = 0.032), and a significant association was only noted in girls when stratified by sex. The BKMR model revealed a horizontal S-shaped curve relationship between bisphenol mixtures and BMDL in girls. The results indicated that prenatal exposure to single and mixed bisphenols can affect BMD in preschool children, exerting nonmonotonic and child sex-specific effects.
Collapse
Affiliation(s)
- Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lixiang Pang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chunxiu Yang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Jinghua Long
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huanni Wei
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, China
| | - Qian Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Kaiqi Yang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua, Hunan 418000, China
| | - Fangfang Lv
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
5
|
Bariani MV, Cui YH, Ali M, Bai T, Grimm SL, Coarfa C, Walker CL, He YY, Yang Q, Al-Hendy A. TGFβ signaling links early life endocrine-disrupting chemicals exposure to suppression of nucleotide excision repair in rat myometrial stem cells. Cell Mol Life Sci 2023; 80:288. [PMID: 37689587 PMCID: PMC10492698 DOI: 10.1007/s00018-023-04928-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Environmental exposure to endocrine-disrupting chemicals (EDCs) is linked to the development of uterine fibroids (UFs) in women. UFs, non-cancerous tumors, are thought to originate from abnormal myometrial stem cells (MMSCs). Defective DNA repair capacity may contribute to the emergence of mutations that promote tumor growth. The multifunctional cytokine TGFβ1 is associated with UF progression and DNA damage repair pathways. To investigate the impact of EDC exposure on TGFβ1 and nucleotide excision repair (NER) pathways, we isolated MMSCs from 5-month-old Eker rats exposed neonatally to diethylstilbestrol (DES), an EDC, or to vehicle (VEH). EDC-MMSCs exhibited overactivated TGFβ1 signaling and reduced mRNA and protein levels of NER pathway components compared to VEH-MMSCs. EDC-MMSCs also demonstrated impaired NER capacity. Exposing VEH-MMSCs to TGFβ1 decreased NER capacity while inhibiting TGFβ signaling in EDC-MMSCs restored it. RNA-seq analysis and further validation revealed decreased expression of Uvrag, a tumor suppressor gene involved in DNA damage recognition, in VEH-MMSCs treated with TGFβ1, but increased expression in EDC-MMSCs after TGFβ signaling inhibition. Overall, we demonstrated that the overactivation of the TGFβ pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased genetic instability, arise of mutations, and fibroid tumorigenesis. We demonstrated that the overactivation of the TGFβ pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased fibroid incidence.
Collapse
Affiliation(s)
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Tao Bai
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sandra L Grimm
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Cheryl L Walker
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
García-Recio E, Costela-Ruiz VJ, Melguizo-Rodríguez L, Ramos-Torrecillas J, Illescas-Montes R, De Luna-Bertos E, Ruiz C. Effects of bisphenol F, bisphenol S, and bisphenol AF on cultured human osteoblasts. Arch Toxicol 2023; 97:1899-1905. [PMID: 37198449 PMCID: PMC10256648 DOI: 10.1007/s00204-023-03523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Bisphenol A (BPA) analogs, like BPA, could have adverse effects on human health including bone health. The aim was to determine the effect of BPF, BPS and BPAF on the growth and differentiation of cultured human osteoblasts. Osteoblasts primary culture from bone chips harvested during routine dental work and treated with BPF, BPS, or BPAF for 24 h at doses of 10-5, 10-6, and 10-7 M. Next, cell proliferation was studied, apoptosis induction, and alkaline phosphatase (ALP) activity. In addition, mineralization was evaluated at 7, 14, and 21 days of cell culture in an osteogenic medium supplemented with BP analog at the studied doses. BPS treatment inhibited proliferation in a dose-dependent manner at all three doses by inducing apoptosis; BPF exerted a significant inhibitory effect on cell proliferation at the highest dose alone by an increase of apoptosis; while BPAF had no effect on proliferation or cell viability. Cell differentiation was adversely affected by treatment with BPA analogs in a dose-dependent, observing a reduction in calcium nodule formation at 21 days. According to the results obtained, these BPA analogs could potentially pose a threat to bone health, depending on their concentration in the organism.
Collapse
Affiliation(s)
- E García-Recio
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2ª Planta, 18012, Granada, Spain
| | - V J Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2ª Planta, 18012, Granada, Spain
| | - L Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2ª Planta, 18012, Granada, Spain
| | - J Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2ª Planta, 18012, Granada, Spain
| | - R Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2ª Planta, 18012, Granada, Spain
| | - E De Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain.
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2ª Planta, 18012, Granada, Spain.
| | - C Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid, 15 Pabellón de Consultas Externas, 2ª Planta, 18012, Granada, Spain
- Institute of Neuroscience, University of Granada, 18016, Granada, Spain
| |
Collapse
|
7
|
Bariani MV, Cui YH, Ali M, Bai T, Grimm SL, Coarfa C, Walker CL, He YY, Yang Q, Al-Hendy A. TGFβ signaling links early-life endocrine-disrupting chemicals exposure to suppression of nucleotide excision repair in rat myometrial stem cells. RESEARCH SQUARE 2023:rs.3.rs-3001855. [PMID: 37333266 PMCID: PMC10274956 DOI: 10.21203/rs.3.rs-3001855/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Environmental exposure to endocrine-disrupting chemicals (EDCs) is linked to the development of uterine fibroids (UFs) in women. UFs, non-cancerous tumors, are thought to originate from abnormal myometrial stem cells (MMSCs). Defective DNA repair capacity may contribute to the emergence of mutations that promote tumor growth. The multifunctional cytokine TGFβ1 is associated with UF progression and DNA damage repair pathways. To investigate the impact of EDC exposure on TGFβ1 and nucleotide excision repair (NER) pathways, we isolated MMSCs from 5-months old Eker rats exposed neonatally to Diethylstilbestrol (DES), an EDC, or to vehicle (VEH). EDC-MMSCs exhibited overactivated TGFβ1 signaling and reduced mRNA and protein levels of NER pathway components compared to VEH-MMSCs. EDC-MMSCs also demonstrated impaired NER capacity. Exposing VEH-MMSCs to TGFβ1 decreased NER capacity while inhibiting TGFβ signaling in EDC-MMSCs restored it. RNA-seq analysis and further validation revealed decreased expression of Uvrag, a tumor suppressor gene involved in DNA damage recognition, in VEH-MMSCs treated with TGFβ1, but increased expression in EDC-MMSCs after TGFβ signaling inhibition. Overall, we demonstrated that the overactivation of the TGFβ pathway links early-life exposure to EDCs with impaired NER capacity, which would lead to increased genetic instability, arise of mutations, and fibroid tumorigenesis. We demonstrated that the overactivation of the TGFβ pathway links early-life exposure to EDCs with impaired NER capacity, which would lead to increased fibroid incidence.
Collapse
Affiliation(s)
| | | | - Mohamed Ali
- University of Chicago Department of Obstetrics and Gynecology
| | - Tao Bai
- University of Chicago Department of Obstetrics and Gynecology
| | | | | | | | - Yu-Ying He
- University of Chicago Department of Medicine
| | - Qiwei Yang
- University of Chicago Department of Obstetrics and Gynecology
| | - Ayman Al-Hendy
- University of Chicago Department of Obstetrics and Gynecology
| |
Collapse
|
8
|
Iwobi N, Sparks NR. Endocrine Disruptor-Induced Bone Damage Due to Hormone Dysregulation: A Review. Int J Mol Sci 2023; 24:ijms24098263. [PMID: 37175969 PMCID: PMC10179611 DOI: 10.3390/ijms24098263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hormones are indispensable for bone development, growth, and maintenance. While many of the genes associated with osteogenesis are well established, it is the recent findings in endocrinology that are advancing the fields of bone biology and toxicology. Endocrine-disrupting chemicals (EDCs) are defined as chemicals that interfere with the function of the endocrine system. Here, we report recent discoveries describing key hormone pathways involved in osteogenesis and the EDCs that alter these pathways. EDCs can lead to bone morphological changes via altering hormone receptors, signaling pathways, and gene expression. The objective of this review is to highlight the recent discoveries of the harmful effects of environmental toxicants on bone formation and the pathways impacted. Understanding the mechanisms of how EDCs interfere with bone formation contributes to providing a comprehensive toxicological profile of a chemical.
Collapse
Affiliation(s)
- Nneamaka Iwobi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California, Irvine, CA 92697, USA
| | - Nicole R Sparks
- Department of Occupational and Environmental Health, University of California, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Maduranga Karunarathne WAH, Choi YH, Park SR, Lee CM, Kim GY. Bisphenol A inhibits osteogenic activity and causes bone resorption via the activation of retinoic acid-related orphan receptor α. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129458. [PMID: 35780740 DOI: 10.1016/j.jhazmat.2022.129458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) has deleterious effects on bone metabolism; however, its underlying mechanism has not yet been comprehensively understood. Here, we investigated whether RORα plays an important role in BPA-induced bone resorption both in vitro and in vivo. We found that BPA (0.1-1 μM) inhibited osteogenic activity (including ALP activity and mineralization), decreased the expression levels of osteoblast markers (such as RUNX2, OSX, and ALP) in human MG-63 osteoblast-like osteosarcoma cells, and inhibited spontaneous vertebral formation in zebrafish larvae. Additionally, BPA diminished β-glycerophosphate-induced osteoblast differentiation and vertebral formation, while simultaneously downregulating the expression levels of RUNX2a, OSX, and ALP. Furthermore, molecular docking data showed that a hydroxyl group of BPA dominantly binds to the H3 (ALA70) and/or H5 (ARG107) of RORα-ligand binding domain with hydrogen bonding (ALA330 and/or ARG367 in the full length of RORα, respectively), which another hydroxyl group of BPA fits into H3, H6, and H7 elements with non-covalent interactions, resulting in the activation of RORα. However, an RORα inverse agonist potently inhibited BPA-induced anti-osteogenic activity and vertebral formation in zebrafish larvae, concomitant with inhibition of osteogenic gene expression. Overall, our findings reveal that BPA inhibits osteoblast differentiation and bone formation by activating RORα. These results suggest that BPA exposure (0.1-1 μM) can cause various bone-resorptive diseases, such as osteoporosis.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
10
|
Brankovič J, Leskovec J, Šturm S, Cerkvenik-Flajs V, Šterpin S, Osredkar J, Pogorevc E, Antolinc D, Vrecl M. Experimental Exposure to Bisphenol A Has Minimal Effects on Bone Tissue in Growing Rams-A Preliminary Study. Animals (Basel) 2022; 12:2179. [PMID: 36077899 PMCID: PMC9454980 DOI: 10.3390/ani12172179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA) is a well-known synthetic compound that belongs to the group of endocrine-disrupting chemicals. Although bone tissue is a target for these compounds, studies on BPA-related effects on bone morphology in farm animals are limited. In this preliminary study, we investigated the effects of short-term dietary BPA exposure on femoral morphology, metabolism, mineral content, and biomechanical behavior in rams aged 9-12 months. Fourteen rams of the Istrian Pramenka breed were randomly divided into a BPA group and a control group (seven rams/group) and exposed to 25 µg BPA/kg bw for 64 days in feed. Blood was collected for determination of bone turnover markers (procollagen N-terminal propeptide, C-terminal telopeptide), and femurs were assessed via computed tomography, histomorphometry, three-point bending test, and mineral analysis. BPA had no significant effects on most of the parameters studied. Only mineral analysis showed decreased manganese (50%; p ≤ 0.05) and increased copper content (25%; p ≤ 0.05) in the femurs of BPA-exposed rams. These results suggest that a 2-month, low-dose exposure to BPA in growing rams did not affect the histomorphology, metabolism, and biomechanical behavior of femurs; however, it affected the composition of microelements, which could affect the histometric and biophysical properties of bone in the long term.
Collapse
Affiliation(s)
- Jana Brankovič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Jakob Leskovec
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Sabina Šturm
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Vesna Cerkvenik-Flajs
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Saša Šterpin
- University Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
| | - Joško Osredkar
- University Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Estera Pogorevc
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Cesta v Mestni log 47, 1000 Ljubljana, Slovenia
| | - David Antolinc
- Chair for Testing in Materials and Structures, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Zhang Y, Yan M, Kuang S, Lou Y, Wu S, Li Y, Wang Z, Mao H. Bisphenol A induces apoptosis and autophagy in murine osteocytes MLO-Y4: Involvement of ROS-mediated mTOR/ULK1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113119. [PMID: 34954677 DOI: 10.1016/j.ecoenv.2021.113119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a widely environmental endocrine disruptor. The accumulated BPA in humans is toxic to osteoblasts and osteoclasts, but few studies focused on the effects of BPA on osteocytes, the most abundant bone cell type, contributing to the development and metabolism of bone. Here, we reported that BPA (50, 100, 200 μmol/L) inhibited the cell viability of osteocytes MLO-Y4, promoted G0/G1 phase arrest and apoptosis in a dose-dependent manner. BPA treatment significantly increased the levels of autophagy-regulated proteins including Beclin-1 and LC3-II along with the decrease of p62, accompanied by the elevation of autophagy flux and the accumulation of acidic vacuoles, which was blocked by the autophagy inhibitor bafilomycin A1 (BafA1). Furthermore, BPA significantly inhibited the mammalian target of rapamycin (mTOR) and activated Unc-51 like autophagy activating kinase 1 (ULK1) signaling, leading to the decreased p-mTOR/mTOR ratio and the increased p-ULK1/ULK1 ratio. The mTOR activator MHY1485 (MHY) or the ULK1 inhibitor SBI-0206965 (SBI) prevented autophagy and enhanced apoptosis caused by BPA, respectively. In addition, BPA increased the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) and decreased antioxidant enzymes nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) levels, resulting in oxidative stress. The ROS scavenger N-acetylcysteine (NAC) attenuated BPA-induced the mTOR/ULK1 pathway activation, apoptosis and autophagy. Collectively, ROS-mediated mTOR/ULK1 signaling is involved in BPA-induced apoptosis and autophagy in osteocytes MLO-Y4. Our data first provide in vitro evidence that apoptosis and autophagy as cellular mechanisms for the toxic effect of BPA on osteocytes, thereby advancing our understanding of the potential role of osteocytes in the adverse effect of BPA on bone health.
Collapse
Affiliation(s)
- Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | - Ming Yan
- School of Automation, HangZhou Dianzi University, 1158 2nd Avenue, Hangzhou 310018, PR China.
| | - Shumeng Kuang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Yiqiang Lou
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Shouqian Wu
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Yurong Li
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Zihan Wang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Hongjiao Mao
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| |
Collapse
|
12
|
Zhu C, Shen S, Zhang S, Huang M, Zhang L, Chen X. Autophagy in Bone Remodeling: A Regulator of Oxidative Stress. Front Endocrinol (Lausanne) 2022; 13:898634. [PMID: 35846332 PMCID: PMC9279723 DOI: 10.3389/fendo.2022.898634] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Bone homeostasis involves bone formation and bone resorption, which are processes that maintain skeletal health. Oxidative stress is an independent risk factor, causing the dysfunction of bone homeostasis including osteoblast-induced osteogenesis and osteoclast-induced osteoclastogenesis, thereby leading to bone-related diseases, especially osteoporosis. Autophagy is the main cellular stress response system for the limination of damaged organelles and proteins, and it plays a critical role in the differentiation, apoptosis, and survival of bone cells, including bone marrow stem cells (BMSCs), osteoblasts, osteoclasts, and osteocytes. High evels of reactive oxygen species (ROS) induced by oxidative stress induce autophagy to protect against cell damage or even apoptosis. Additionally, pathways such as ROS/FOXO3, ROS/AMPK, ROS/Akt/mTOR, and ROS/JNK/c-Jun are involved in the regulation of oxidative stress-induced autophagy in bone cells, including osteoblasts, osteocytes and osteoclasts. This review discusses how autophagy regulates bone formation and bone resorption following oxidative stress and summarizes the potential protective mechanisms exerted by autophagy, thereby providing new insights regarding bone remodeling and potential therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lan Zhang
- College of Sports and Health, Shandong Sport University, Jinan, China
- *Correspondence: Xi Chen, ; Lan Zhang,
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xi Chen, ; Lan Zhang,
| |
Collapse
|
13
|
Zhang Y, Yan M, Shan W, Zhang T, Shen Y, Zhu R, Fang J, Mao H. Bisphenol A induces pyroptotic cell death via ROS/NLRP3/Caspase-1 pathway in osteocytes MLO-Y4. Food Chem Toxicol 2021; 159:112772. [PMID: 34929351 DOI: 10.1016/j.fct.2021.112772] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/27/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is commonly used as a plasticizer to manufacture various food packaging materials. Evidence has demonstrated that BPA disturbed bone health. However, few studies focused on the effect of BPA on osteocytes, making up over 95% of all the bone cells. Here, we reported that BPA inhibited the cell viability of MLO-Y4 cells, and increased apoptosis in a dose-dependent manner. Furthermore, BPA up-regulated protein expressions of speck-like protein containing CARD (ASC), NLRP3, cleaved caspase-1 (Casp-1 p20) and cleaved gasdermin D (GSDMD-N), and increased the ratios of interleukin (IL)-1β/pro-IL-1β and IL-18/pro-IL-18 in MLO-Y4 cells. BPA enhanced levels of lactate dehydrogenase (LDH), IL-1β and IL-18 in culture supernatants. This pyroptotic death and the NLPR3 inflammasome activation were reversed by the caspase-1 inhibitor VX765 or the NLRP3 inflammasome inhibitor MCC950. Furthermore, BPA stimulated the production of intracellular reactive oxygen species (ROS), mitochondrial ROS (mtROS), elevated malondialdehyde (MDA) level and decreased superoxide dismutase (SOD) activity, which led to oxidative damage in MLO-Y4 cells. The ROS scavenger N-acetylcysteine (NAC) or the mitochondrial antioxidant Mito-TEMPO inhibited the NLPR3 inflammasome activation and pyroptotic death induced by BPA. Collectively, our data suggest that BPA causes pyroptotic death of osteocytes via ROS/NLRP3/Caspase-1 pathway.
Collapse
Affiliation(s)
- Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China.
| | - Ming Yan
- School of Automation, HangZhou Dianzi University, Baiyang Street 2 Avenue 1158, Hangzhou, 310018, China.
| | - Weiyan Shan
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Tao Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Yunchen Shen
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Ruirong Zhu
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Jian Fang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| | - Hongjiao Mao
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, China
| |
Collapse
|
14
|
Junk food-induced obesity- a growing threat to youngsters during the pandemic. ACTA ACUST UNITED AC 2021; 26:100364. [PMID: 34580647 PMCID: PMC8459649 DOI: 10.1016/j.obmed.2021.100364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Introduction Obesity has been declared an epidemic that does not discriminate based on age, gender, or ethnicity and thus needs urgent containment and management. Since the third wave of COVID-19 is expected to affect children the most, these children and adolescents should be more cautious while having junk foods, during covid situations due to the compromise of Immunity in the individuals and further exacerbating the organ damage. Methodology A PAN India survey organized by the Centre for Science and Environment (CSE) among 13,274 children between the ages 9–14 years reported that 93% of the children ate packed food and 68% consumed packaged sweetened beverages more than once a week, and 53% ate these products at least once in a day. Almost 25% of the School going children take ultra-processed food with high levels of sugar, salt, fat, such as pizza and burgers, from fast food outlets more than once a week. Children and adolescents who consume more junk food or addicted to such consumption might be even more vulnerable during the third wave, which will significantly affect the younger category. Conclusion There is an urgent need to spread awareness among children and young adults about these adverse effects of junk food. There is no better time than now to build a supportive environment nurturing children and young adults in society and promising good health.
Collapse
|