1
|
Alcántara-Mejía V, Rodríguez-Mercado J, Mateos-Nava R, Álvarez-Barrera L, Santiago-Osorio E, Bonilla-González E, Altamirano-Lozano M. Oxidative damage and cell cycle delay induced by vanadium(III) in human peripheral blood cells. Toxicol Rep 2024; 13:101695. [PMID: 39165925 PMCID: PMC11334674 DOI: 10.1016/j.toxrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Vanadium (V) is a metal that can enter the environment through natural routes or anthropogenic activity. In the atmosphere, V is present as V oxides, among which vanadium(III) oxide (V2O3) stands out. Cytogenetic studies have shown that V2O3 is genotoxic and cytostatic and induces DNA damage; however, the molecular mechanisms leading to these effects have not been fully explored. Therefore, we treated human peripheral blood lymphocytes in vitro, evaluated the effects of V2O3 on the phases of the cell cycle and the expression of molecules that control the cell cycle and examined DNA damage and the induction of oxidative stress. The results revealed that V2O3 did not affect cell viability at the different concentrations (2, 4, 8 or 16 μg/mL) or exposure times (24 h) used. However, V2O3 affected the percentage of G1- and S-phase cells in the cell cycle, decreased the expression of mRNAs encoding related proteins (cyclin D, cyclin E, CDK2 and CDK4) and increased the expression of γH2AX and the levels of reactive oxygen species. The ability of V2O3 to cause a cell cycle delay in G1-S phase may be associated with a decrease in the mRNA and protein expression of the cyclins/CDKs and with intracellular oxidative stress, which may cause DNA double-strand damage and H2AX phosphorylation.
Collapse
Affiliation(s)
- V.A. Alcántara-Mejía
- Unidad de Investigación en Genética y Toxicología Ambiental, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México 09230, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Edificio E, Primer Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - J.J. Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México 09230, Mexico
| | - R.A. Mateos-Nava
- Unidad de Investigación en Genética y Toxicología Ambiental, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México 09230, Mexico
| | - L. Álvarez-Barrera
- Unidad de Investigación en Genética y Toxicología Ambiental, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México 09230, Mexico
| | - E. Santiago-Osorio
- Unidad de Investigación en Diferenciación Celular y Cáncer, UMIE-Z, Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México 09230, Mexico
| | - E. Bonilla-González
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Campus Iztapalapa, Ciudad de México 09340, Mexico
| | - M.A. Altamirano-Lozano
- Unidad de Investigación en Genética y Toxicología Ambiental, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México 09230, Mexico
| |
Collapse
|
2
|
Macar TK, Macar O. A study on the effect of Hypericum perforatum L. extract on vanadium toxicity in Allium cepa L. Sci Rep 2024; 14:28486. [PMID: 39557924 PMCID: PMC11574246 DOI: 10.1038/s41598-024-79535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
The growth of industrialization growth the risk of vanadium (V) contamination. The objective of this study was to examine the impact of 200 µg L- 1 VCI3 -induced toxicity as well as the potential protective effect of 187.5 mg L- 1 and 375 mg L- 1Hypericum perforatum (H. perforatum) extracts against this toxicity on the Allium cepa (A. cepa) model organism. For this purpose, a series of investigations were conducted on the growth physiology alterations (germination percentage, root elongation, weight gain), cytogenetic alterations (mitotic index, micronucleus, chromosomal aberrations), biochemical alterations (malondialdehyde, superoxide dismutase, catalase) and defects in meristematic tissue in A. cepa. In addition, the phenolic compound content of H. perforatum extract was determined by the LC/MS-MS method. V application negatively affected all the investigated parameters and caused a serious phytotoxic and genotoxic effect as well as oxidative stress in A. cepa. Conversely, no statistical difference was observed between the parameters of the groups treated with H. perforatum extract and those of the control group. The administration of H. perforatum extract combined with V resulted in a notable enhancement in germination percentage, root elongation, weight gain, mitotic index value, chlorophyll a level and chlorophyll b level. Additionally, it led to a reduction in micronucleus and chromosomal aberrations frequencies, as well as meristematic tissue defects. Furthermore, LC/MS-MS analysis demonstrated that H. perforatum extract contains phenolic compounds, including catechin, epicatechin, quercetin, oleuropein and rutin, which confer antioxidant properties to the extract. The study provided clear evidence that H. perforatum extract attenuates the toxic effects of V in A. cepa, which can be attributed to its high content of bioactive phenols. The findings of the study indicate that H. perforatum extract may serve as a protective natural agent for daily use against heavy metal toxicity.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, 28400, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, 28400, Turkey.
| |
Collapse
|
3
|
Zhang Q, Yuan Y, Hu Y, Lu RL, Wang X, Zhong Q, Wu X, Wang H, Yang ST. Toxicity and decomposition activity inhibition of VO 2 micro/nanoparticles to white rot fungus Phanerochaete chrysosporium. NANOIMPACT 2024; 36:100528. [PMID: 39226949 DOI: 10.1016/j.impact.2024.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Vanadium dioxide (VO2) is an excellent phase transition material widely used in various applications, and thus inevitably enters the environment via different routes and encounters various organisms. Nonetheless, limited information is available on the environmental hazards of VO2. In this study, we investigated the impact of two commercial VO2 particles, nanosized S-VO2 and micro-sized M-VO2 on the white rot fungus Phanerochaete chrysosporium. The growth of P. chrysosporium is significantly affected by VO2 particles, with S-VO2 displaying a higher inhibitory effect on weight gain. In addition, VO2 at high concentrations inhibits the formation of fungal fibrous hyphae and disrupts the integrity of fungus cells as evidenced by the cell membrane damage and the loss of cytoplasm. Notably, at 200 μg/mL, S-VO2 completely alters the morphology of P. chrysosporium, while the M-VO2 treatment does not affect the mycelium formation of P. chrysosporium. Additionally, VO2 particles inhibit the laccase activity secreted by P. chrysosporium, and thus prevent the dye decoloration and sawdust decomposition by P. chrysosporium. The mechanism underlying this toxicity is related to the dissolution of VO2 and the oxidative stress induced by VO2. Overall, our findings suggest that VO2 nanoparticles pose significant environmental hazards and risks to white rot fungi.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Yunxuan Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Richard L Lu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xiting Wang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qinmei Zhong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xian Wu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
4
|
Feng Y, Li M, Yin J, Shi J, Jiang Q, Zhang J. Tris(1,3-dichloro-2-propyl) phosphate-induced cytotoxicity and its associated mechanisms in human A549 cells. Toxicol Ind Health 2024; 40:387-397. [PMID: 38729922 DOI: 10.1177/07482337241255711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphorus flame retardant and has been detected in various environmental matrices including indoor dust. Inhalation of indoor dust is one of the most important pathways for human exposure to TDCIPP. However, its adverse effects on human lung cells and potential impacts on respiratory toxicity are largely unknown. In the current study, human non-small cell carcinoma (A549) cells were selected as a cell model, and the effects of TDCIPP on cell viability, cell cycle, cell apoptosis, and underlying molecular mechanisms were investigated. Our data indicated a concentration-dependent decrease in the cell viability of A549 cells after exposure to TDCIPP for 48 h, with half lethal concentration (LC50) being 82.6 µM. In addition, TDCIPP caused cell cycle arrest mainly in the G0/G1 phase by down-regulating the mRNA expression of cyclin D1, CDK4, and CDK6, while up-regulating the mRNA expression of p21 and p27. In addition, cell apoptosis was induced via altering the expression levels of Bcl-2, BAX, and BAK. Our study implies that TDCIPP may pose potential health risks to the human respiratory system and its toxicity should not be neglected.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jiachen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Qian Jiang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Zhao T, Ren M, Shi J, Wang H, Bai J, Du W, Xiang B. Engineering the protein corona: Strategies, effects, and future directions in nanoparticle therapeutics. Biomed Pharmacother 2024; 175:116627. [PMID: 38653112 DOI: 10.1016/j.biopha.2024.116627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Nanoparticles (NPs) serve as versatile delivery systems for anticancer, antibacterial, and antioxidant agents. The manipulation of protein-NP interactions within biological systems is crucial to the application of NPs in drug delivery and cancer nanotherapeutics. The protein corona (PC) that forms on the surface of NPs is the interface between biomacromolecules and NPs and significantly influences their pharmacokinetics and pharmacodynamics. Upon encountering proteins, NPs undergo surface alterations that facilitate their clearance from circulation by the mononuclear phagocytic system (MPS). PC behavior depends largely on the biological microenvironment and the physicochemical properties of the NPs. This review describes various strategies employed to engineer PC compositions on NP surfaces. The effects of NP characteristics such as size, shape, surface modification and protein precoating on PC performance were explored. In addition, this study addresses these challenges and guides the future directions of this evolving field.
Collapse
Affiliation(s)
- Tianyu Zhao
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingli Ren
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiajie Shi
- Department of Breast Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haijiao Wang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Wenli Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Bai Xiang
- Department of Pharmaceutics, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
6
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
7
|
Ouyang P, Yang J, Zhong Q, Yuan Y, Gao Y, Wang H, Yang ST. Toxicity of VO 2 micro/nanoparticles to nitrogen-fixing bacterium Azotobacter vinelandii. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133553. [PMID: 38266589 DOI: 10.1016/j.jhazmat.2024.133553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Vanadium dioxide (VO2) has been used in a variety of products due to its outstanding phase transition properties. However, as potential heavy metal contaminants, the environmental hazards and risks of VO2 should be systematically investigated. Biological nitrogen fixation is one of the most dominant processes in biogeochemical cycle, which is associated with nitrogen-fixing bacteria. In this study, we reported the environmental bio-effects of VO2 micro/nanoparticles on the nitrogen-fixing bacterium Azotobacter vinelandii. VO2 at 10 and 30 mg/L caused severe hazards to A. vinelandii, such as cell apoptosis, oxidative damage, physical damage, genotoxicity, and the loss of nitrogen fixation activity. The up-regulated differentially expressed genes of A. vinelandii were related to stress response, and the down-regulated genes were mainly related to energy metabolism. Surprisingly, VO2 of 10 mg/L decreased the nif gene expression but elevated the vnf gene expression, which enhanced the ability of A. vinelandii to reduce acetylene in anaerobic environment. In addition, under tested conditions, VO2 nanoparticles exhibited insignificantly higher toxicity than VO2 microparticles.
Collapse
Affiliation(s)
- Peng Ouyang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jinwei Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qinmei Zhong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
8
|
Li JB, Li D, Liu YY, Cao A, Wang H. Cytotoxicity of vanadium dioxide nanoparticles to human embryonic kidney cell line: Compared with vanadium(IV/V) ions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104378. [PMID: 38295964 DOI: 10.1016/j.etap.2024.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Vanadium dioxide (VO2) is a class of thermochromic material with potential applications in various fields. Massive production and wide application of VO2 raise the concern of its potential toxicity to human, which has not been fully understood. Herein, a commercial VO2 nanomaterial (S-VO2) was studied for its potential toxicity to human embryonic kidney cell line HEK293, and two most common vanadium ions, V(IV) and V(V), were used for comparison to reveal the related mechanism. Our results indicate that S-VO2 induces dose-dependent cellular viability loss mainly through the dissolved V ions of S-VO2 outside the cell rather than S-VO2 particles inside the cell. The dissolved V ions of S-VO2 overproduce reactive oxygen species to trigger apoptosis and proliferation inhibition via several signaling pathways of cell physiology, such as MAPK and PI3K-Akt, among others. All bioassays indicate that the differences in toxicity between S-VO2, V(IV), and V(V) in HEK293 cells are very small, supporting that the toxicity is mainly due to the dissolved V ions, in the form of V(V) and/or V(IV), but the V(V)'s behavior is more similar to S-VO2 according to the gene expression analysis. This study reveals the toxicity mechanism of nanosized VO2 at the molecular level and the role of dissolution of VO2, providing valuable information for safe applications of vanadium oxides.
Collapse
Affiliation(s)
- Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Dan Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Chivé C, Mc Cord C, Sanchez-Guzman D, Brookes O, Joseph P, Lai Kuen R, Phan G, Baeza-Squiban A, Devineau S, Boland S. 3D model of the bronchial epithelial barrier to study repeated exposure to xenobiotics: Application to silver nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104281. [PMID: 37742817 DOI: 10.1016/j.etap.2023.104281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
There is still a lack of in vitro human models to evaluate the chronic toxicity of drugs and environmental pollutants. Here, we used a 3D model of the human bronchial epithelium to assess repeated exposures to xenobiotics. The Calu-3 human bronchial cell line was exposed to silver nanoparticles (AgNP) 5 times during 12 days, at the air-liquid interface, to mimic single and repeated exposure to inhaled particles. Repeated exposures induced a stronger induction of the metal stress response and a steady oxidative stress over time. A sustained translocation of silver was observed after each exposure without any loss of the epithelial barrier integrity. The proteomic analysis of the mucus revealed changes in the secreted protein profiles associated with the epithelial immune response after repeated exposures only. These results demonstrate that advanced in vitro models are efficient to investigate the adaptive response of human cells submitted to repeated xenobiotic exposures.
Collapse
Affiliation(s)
- Chloé Chivé
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Claire Mc Cord
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Daniel Sanchez-Guzman
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Oliver Brookes
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Prinitha Joseph
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - René Lai Kuen
- Université Paris Cité, INSERM UMS 025-CNRS UMS 3612, Faculté de Pharmacie, F-75006 Paris, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRSI - plateforme Paterson, F-92260 Fontenay-aux-Roses, France
| | - Armelle Baeza-Squiban
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France.
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Sonja Boland
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| |
Collapse
|
10
|
Barbosa MDM, de Lima LMA, Alves WADS, de Lima EKB, da Silva LA, da Silva TD, Postal K, Ramadan M, Kostenkova K, Gomes DA, Nunes GG, Pereira MC, da Silva WE, Belian MF, Crans DC, Lira EC. In Vitro, Oral Acute, and Repeated 28-Day Oral Dose Toxicity of a Mixed-Valence Polyoxovanadate Cluster. Pharmaceuticals (Basel) 2023; 16:1232. [PMID: 37765040 PMCID: PMC10536805 DOI: 10.3390/ph16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 08/13/2023] [Indexed: 09/29/2023] Open
Abstract
Polyoxovanadates (POV) are a subgroup of polyoxometalates (POM), which are nanosized clusters with reported biological activities. This manuscript describes the first toxicity evaluation of a mixed-valence polyoxovanadate, pentadecavanadate, (Me4N)6[V15O36Cl], abbreviated as V15. Cytotoxicity experiments using peripheral blood mononuclear cells (PBMC), larvae of Artemia salina Leach, and in vivo oral acute and repeated 28-day doses in mice was carried out. The LC50 values in PBMC cells and A. salina were 17.5 ± 5.8 μmol L-1, and 17.9 µg L-1, respectively, which indicates high cytotoxic activity. The toxicity in mice was not observed upon acute exposure in a single dose, however, the V15 repeated 28-day oral administration demonstrated high toxicity using 25 mg/kg, 50 mg/kg and, 300 mg/kg doses. The biochemical and hematological analyses during the 28-day administration of V15 showed significant alteration of the metabolic parameters related to the kidney and liver, suggesting moderate toxicity. The V15 toxicity was attributed to the oxidative stress and lipid peroxidation, once thiobarbituric acid (TBAR) levels significantly increased in both males and females treated with high doses of the POV and also in males treated with a lower dose of the POV. This is the first study reporting a treatment-related mortality in animals acutely administrated with a mixed-valence POV, contrasting with the well-known, less toxic decavanadate. These results document the toxicity of this mixed-valence POV, which may not be suitable for biomedical applications.
Collapse
Affiliation(s)
- Mariana de M. Barbosa
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Lidiane M. A. de Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Widarlane A. da S. Alves
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Eucilene K. B. de Lima
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Luzia A. da Silva
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Thiago D. da Silva
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Kahoana Postal
- Centro Politécnico, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil; (K.P.); (G.G.N.)
| | - Mohammad Ramadan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
| | - Kateryna Kostenkova
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
| | - Dayane A. Gomes
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Giovana G. Nunes
- Centro Politécnico, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil; (K.P.); (G.G.N.)
| | - Michelly C. Pereira
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| | - Wagner E. da Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Mônica F. Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.d.S.); (M.F.B.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (K.K.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Eduardo C. Lira
- Centro de Biociências, Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (M.d.M.B.); (W.A.d.S.A.); (E.K.B.d.L.); (L.A.d.S.); (T.D.d.S.); (D.A.G.); (M.C.P.)
| |
Collapse
|
11
|
Tan SY, Chen XZ, Cao A, Wang H. Biodistribution of Vanadium Dioxide Particles in Mice by Consecutive Gavage Administration: Effects of Particle Size, Dosage, and Health Condition of Mice. Biol Trace Elem Res 2023; 201:2917-2926. [PMID: 35984600 DOI: 10.1007/s12011-022-03395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
The newly developed vanadium dioxide (VO2), a material with excellent reversible and multi-stimuli responsible phase transition property, has been widely used in high-performance and energy-saving smart devices. The rapid growth of the VO2-based emerging technologies and the complex biological effect of vanadium to organisms urge a better understanding of the behavior of VO2 in vivo for safety purpose. Herein, we study the absorption, distribution, and excretion of two commercial VO2 (nanoscale SVO2 and bulk MVO2) in mice after consecutive gavage administration for up to 28 days. The absorption of both types of VO2 is as low as less than 1.5% of the injected dose within 28 days, while MVO2 is several times more difficult to be absorbed than SVO2. Almost all unabsorbed VO2 is excreted through feces. For the absorbed vanadium, bone is the organ with the largest accumulation, followed by liver, kidney, and spleen. The vanadium content in organs shows a size-, dosage-, and animal health condition-dependent manner, and increases gradually to a saturation value along with the consecutive administration. Generally, smaller particle size and higher dosage lead to higher vanadium contents in organs, and more vanadium accumulates in bone and liver in diabetic mice than in normal mice. After the treatment is stopped, the accumulated vanadium in organs decreases a lot within 14 days, even reaches to the background level in some organs, but the content of vanadium in the bone remains high after 14 days post-exposure. These findings provide basic information for the safety assessment and safe applications of VO2-based materials.
Collapse
Affiliation(s)
- Shi-Ying Tan
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Xing-Zhu Chen
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
12
|
Lyu Y, Zhang Q, Liu Y, Zhang WP, Tian FJ, Zhang HF, Hu BH, Feng J, Qian Y, Jiang Y, Zhang PH, Ma N, Tang SC, Zheng JP, Qiu YL. Nano-Calcium Carbonate Affect the Respiratory and Function Through Inducing Oxidative Stress: A Cross-sectional Study Among Occupational Exposure of Workers and a Further Research for Underlying Mechanisms. J Occup Environ Med 2023; 65:184-191. [PMID: 36165499 DOI: 10.1097/jom.0000000000002713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study is to investigate whether nano-calcium carbonate (nano-CaCO 3 ) occupational exposure could induce adverse health effects in workers. METHODS A cross-sectional study was conducted in a nano-CaCO 3 manufacturing plant in China. Then, we have studied the dynamic distribution of nano-CaCO 3 in nude mice and examined the oxidative damage biomarkers of subchronic administrated nano-CaCO 3 on Sprague-Dawley rats. RESULTS The forced vital capacity (%) and the ratio of FEV1 to FVC is the rate of one second of workers were significantly decreased than unexposed individuals. Dynamic imaging in mice of fluorescence labeled nano-CaCO 3 showed relatively high uptake and slow washout in lung. Similar to population data, the decline in serum glutathione level and elevation in serum MDA were observed in nano-CaCO 3 -infected Sprague-Dawley rats. CONCLUSIONS We found that nano-CaCO 3 exposure may result in the poor pulmonary function in workers and lead to the changes of oxidative stress indexes.
Collapse
Affiliation(s)
- Yi Lyu
- From the Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China (Ms Lyu, Ms Zhang, Ms Liu, Dr Zhang, Ms Tian, Ms Zhang, Mr Hu, Ms Feng, Ms Qian, Mr Jiang, Ms Zhang, Ms Ma, Dr Zheng, Dr Qiu); Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Shanxi Medical University, Taiyuan, China (Ms Lyu); Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China (Dr Zheng); and Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China (Dr Tang)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu YY, Liu J, Wu H, Zhang Q, Tang XR, Li D, Li CS, Liu Y, Cao A, Wang H. Endocytosis, Distribution, and Exocytosis of Polystyrene Nanoparticles in Human Lung Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010084. [PMID: 36615994 PMCID: PMC9824409 DOI: 10.3390/nano13010084] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/13/2023]
Abstract
Nanoplastics, one component of plastic pollution, can enter human bodies via inhalation and thus threaten human health. However, the knowledge about the uptake and exocytosis of nanoplastics in cells of human lung organs is still very limited. Herein, we investigated the endocytosis, distribution, and exocytosis of polystyrene nanoparticles (PS NPs) of 50 nm (G50PS) and 100 nm (R100PS) in A549 cells and BEAS-2B cells. We found that both the cellular uptake of PS NPs increased positively with exposure time and dose, and A549 cells ingested more PS NPs than BEAS-2B cells did. In addition, the intracellular content of G50PS was higher than that of R100PS except at a higher dose and longer time. The ingested PS NPs were distributed mainly in lysosomes, while many G50PS appeared around the cell membrane, and R100PS also accumulated in mitochondria in BEAS-2B cells. As for the exocytosis, R100PS was more difficult to excrete than G50PS. Lysosomes in A549 cells and actin and microtubule in BEAS-2B cells were involved in the exocytosis of the PS NPs. These findings provide detailed information about the translocation of nanoplastics in lung cells, which is valuable for the safety assessment of nanoplastics in the environment.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xue-Rui Tang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Dan Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chen-Si Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Li X, Abdel-Moneim AME, Yang B. Gene Expression in Bronchial Epithelial Cell Responses to Vanadium Exposure. Biol Trace Elem Res 2022:10.1007/s12011-022-03461-7. [PMID: 36334248 DOI: 10.1007/s12011-022-03461-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
Vanadium exposure has the adverse effect on lung function in human, whereas the detailed mechanisms of vanadium exposure-induced pulmonary toxicity are limited. Hence, the present study aimed to investigate the hub genes and signaling pathways related to sodium metavanadate (SMV)-induced pulmonary toxicity. The transcript expression profile GSE36684 downloaded from Gene Expression Omnibus contained eight human bronchial epithelial cell (HBEC) samples including five SMV-treated and three control HBEC samples. Totally 455 differentially expressed genes (DEGs) were screened, especially 201 and 254 genes were up- and down-regulated in the HBECs treated with SMV. Gene ontology analysis suggested that the DEGs were mainly involved in signal transduction, the response to drug, cell proliferation, adhesion, and migration. Pathway analysis demonstrated that the DEGs were primarily participated in NF-κB, Wnt, MAPK, and PI3K-Akt signaling pathways. Moreover, the hub genes, including ITGA5, ITGB3, ITGA2, LAMC2, MMP2, and ITGA4, might contribute to SMV-induced pulmonary toxicity. Our study improves the understanding of the molecular mechanisms by which SMV induced the pulmonary toxicity.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
15
|
Green formulation, chemical characterization and anti-acute leukemia effects of vanadium nanoparticles containing Foeniculum vulgare extract. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Liu YY, Sun ZX, Liu J, Zhang Q, Liu Y, Cao A, Sun YP, Wang H. On the Cellular Uptake and Exocytosis of Carbon Dots─Significant Cell Type Dependence and Effects of Cell Division. ACS APPLIED BIO MATERIALS 2022; 5:4378-4389. [PMID: 36044400 DOI: 10.1021/acsabm.2c00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the cellular uptake and exocytosis processes of nanoparticles (NPs) is essential for developing the nanomedicines and assessing the health risk of nanomaterials. Considerable efforts have been made to reveal how physicochemical properties of NPs influence these processes. However, little attention has been paid to how cell type impacts these processes, especially exocytosis. Herein, the uptake and exocytosis of the carbon dots (CDs) obtained from the carbonization of citric acid with polyethylenimine (PEI) oligomers (CDs-PEI) in five human cell lines (HeLa, A549, BEAS-2B, A431, and MDA-MB-468) are analyzed to understand how cell type influences the fate of CDs in cells. The cell division is taken into account by the correction of cell number for accurate quantification of the uptake and exocytosis of CDs-PEI. The results indicate that the cell type significantly affects the cellular uptake, trafficking, and exocytosis of CDs-PEI. Among the cell types investigated, MDA-MB-468 cells have the greatest capacity for both uptake and exocytosis, and HeLa cells have the least capacity. The kinetics of the exocytosis largely follows a single exponential decay function, with the remaining CDs-PEI in cells reaching plateaus within 24 h. The kinetic parameters are cell-dependent but insensitive to the initial intracellular CDs-PEI content. Generally, the Golgi apparatus pathways are more important in exocytosis than the lysosomal pathway, and the locations of CDs-PEI in the beginning of exocytosis are not correlated with their exocytosis pathways. The findings on the cell type-dependent cellular uptake and exocytosis reported here may be valuable to the future design of high-performance and safe CDs and related nanomaterials in general.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zao-Xia Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qiangqiang Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Capitão A, Santos J, Barreto A, Amorim MJB, Maria VL. Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach. NANOMATERIALS 2022; 12:nano12091478. [PMID: 35564187 PMCID: PMC9100768 DOI: 10.3390/nano12091478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022]
Abstract
The increased use and production of new materials has contributed to Anthropocene biodiversity decrease. Therefore, a careful and effective toxicity evaluation of these new materials is crucial. However, environmental risk assessment is facing new challenges due to the specific characteristics of nanomaterials (NMs). Most of the available ecotoxicity studies target the aquatic ecosystems and single exposures of NMs. The present study evaluated Enchytraeus crypticus survival and reproduction (28 days) and biochemical responses (14 days) when exposed to nanoparticles of vanadium (VNPs) and boron (BNPs) (single and mixture; tested concentrations: 10 and 50 mg/kg). Although at the organism level the combined exposures (VNPs + BNPs) did not induce a different toxicity from the single exposures, the biochemical analysis revealed a more complex picture. VNPs presented a higher toxicity than BNPs. VNPs (50 mg/kg), independently of the presence of BNPs (additive or independent effects), caused a decrease in survival and reproduction. However, acetylcholinesterase, glutathione S-transferase, catalase, glutathione reductase activities, and lipid peroxidation levels revealed alterations in neurotoxicity, detoxification and antioxidant responses, depending on the time and type of exposure (single or mixture). The results from this study highlight different responses of the organisms to contaminants in single versus mixture exposures, mainly at the biochemical level.
Collapse
Affiliation(s)
| | | | | | | | - Vera L. Maria
- Correspondence: ; Tel.: +351-234-370-350; Fax: +351-234-372-587
| |
Collapse
|
18
|
Testing Strategies of the In Vitro Micronucleus Assay for the Genotoxicity Assessment of Nanomaterials in BEAS-2B Cells. NANOMATERIALS 2021; 11:nano11081929. [PMID: 34443765 PMCID: PMC8399994 DOI: 10.3390/nano11081929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.
Collapse
|