1
|
Hu S, Han L, Yu C, Pan L, Tu K. A Review on Replacing Food Packaging Plastics with Nature-Inspired Bio-Based Materials. Foods 2025; 14:1661. [PMID: 40428441 PMCID: PMC12110880 DOI: 10.3390/foods14101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Food packaging is critical to delaying food spoilage, maintaining food quality, reducing food waste, and ensuring food safety. However, the environmental problems associated with petroleum-based packaging materials have led to a search for sustainable alternatives. Bio-based materials are emerging as such alternatives, but they have limitations such as low mechanical strength and poor moisture resistance. Fortunately, nature's insights guide solutions to these challenges, propelling the evolution of high-performance bio-based packaging. These new food packaging materials are characterized by impact resistance, superhydrophobicity, self-healing capabilities, dynamic controlled release, high mechanical strength, and real-time freshness monitoring. Nature-inspired strategies not only focus on enhancing material performance but also introduce innovative design concepts that effectively avoid the homogenization of food packaging and inspire researchers to develop diverse, cutting-edge solutions. Overcoming the existing problems of bio-based materials and endowing them with breakthrough properties are key drivers for their replacement of food packaging plastics. This review provides insights into the application of biomimetics in enhancing the functionality of bio-based materials and clearly articulates the key drivers for the replacement of plastic food packaging by bio-based materials. By systematically integrating existing research findings, this paper identifies the challenges facing nature-inspired food packaging innovations and points the way to their future development.
Collapse
Affiliation(s)
| | | | | | | | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (L.H.); (C.Y.); (L.P.)
| |
Collapse
|
2
|
Rajpal VR, Nongthongbam B, Bhatia M, Singh A, Raina SN, Minkina T, Rajput VD, Zahra N, Husen A. The nano-paradox: addressing nanotoxicity for sustainable agriculture, circular economy and SDGs. J Nanobiotechnology 2025; 23:314. [PMID: 40275357 PMCID: PMC12023416 DOI: 10.1186/s12951-025-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Engineered nanomaterials (ENMs) have aroused extensive interest in agricultural, industrial, and medical applications. The integration of ENMs into the agricultural systems aligns with the principles of United Nations' sustainable development goals (SDGs), circular economy (CE) and bio-economy (BE) principles. This approach offers excellent opportunities to enhance productivity and address global climate change challenges. The revelation of the adverse effects of nanomaterials (NMs) on various organisms and ecosystems, however, has fueled the debate on 'Nano-paradox' leading to emergence of a new research domain 'Nanotoxicology'. ENMs have shown different interactions with biological and environmental systems as compared to their bulk counterparts. They bioaccumulate in organisms, soils, and other environmental matrices, move through food chains and reach higher trophic levels including humans ultimately resulting in oxidative stress and cellular damage. Understanding nano-bio interactions, the mechanism of gene- and cytotoxicity, and associated potential hazards, is therefore, essential to mitigate their toxicological outputs. This review comprehensively examines the cyto- and genotoxicity mechanisms of ENMs in biological systems, covering aspects such as their entry, uptake, cellular responses, dynamic interactions in biological environments their long-term effects and environmental risk assessment (ERA). It also discusses toxicological assessment methods, regulatory policies, strategies for toxicity management/mitigation and future research directions in nanotechnology, all within the context of SDGs, CE, promoting resource efficiency and sustainability. Navigating the nano-paradox involves balancing the benefits of nanomaterials with concerns about nanotoxicity. Prioritizing thorough research on above facets can ensure sustainability and safety, enabling responsible harnessing of nanotechnology's transformative potential in various applications including mitigating global climate change and enhancing agricultural productivity.
Collapse
Affiliation(s)
| | | | - Manika Bhatia
- TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, Delhi, 110070, India
| | - Apekshita Singh
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Soom Nath Raina
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
- Postgraduate Office, Amin Campus, The University of Faisalabad, Faisalabad, 38000, Pakistan
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
3
|
Watz CG, Moacă EA, Cioca A, Șuta LM, Krauss Maldea L, Magyari-Pavel IZ, Nicolov M, Sîrbu IO, Loghin F, Dehelean CA. Cutaneous Evaluation of Fe 3O 4 Nanoparticles: An Assessment Based on 2D and 3D Human Epidermis Models Under Standard and UV Conditions. Int J Nanomedicine 2025; 20:3653-3670. [PMID: 40130196 PMCID: PMC11932040 DOI: 10.2147/ijn.s513423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose The high-speed development of nanotechnology industry has fueled a plethora of engineered nanoparticles (NPs) and NP-based consumer products, further leading to massive and uncontrolled human exposure. In this regard, the researches addressing the safety assessment of NPs should be re-approached from the perspective of test parameters variety, closely simulating daily life scenarios. Therefore, the present study adopts complex in vitro models to establish the safety profile of Fe3O4 NPs, by using 2D and 3D human epidermis models under both standard and UV exposure conditions. Methods Advanced 3D human reconstructed epidermal tissues and two different monolayers of immortalized human cells (keratinocytes and fibroblasts), using series of in vitro assays were employed in the current study to evaluate multiple biological responses, as follows: i) divers protocols (skin irritation, phototoxicity assay); ii) different conditions (± UV exposure) and iii) a wide variety of quantification methods, such as: MTT, NR and LDH colorimetric tests - performed to evaluate the viability of the cells/microtissues, respectively, the cytotoxicity of the test compounds. In addition, IL-1α ELISA assay was used to quantify the inflammatory activity induced by the test samples, while immunocytochemistry analysis through fluorescent microscopy was employed to provide insightful information regarding the possible mechanism of action of test samples. Results The two test samples (S1 and S2) induced a higher cell viability decrease on immortalized human keratinocytes (HaCaT) compared to human fibroblasts (1BR3), while 3D-epidermis microtissues showed similar viabilities when treated with both samples under standard conditions (-UV rays) - for both type of evaluation protocols: skin irritation and phototoxicity. However, UV irradiation of 3D-microtissues pre-exposed to test samples led to different results between the two test samples, revealing that S2 sample induced a significant impairment of human epidermis viability, whereas S1 sample elicited an activity similar to the one recorded under standard conditions (-UV). Conclusion The present results indicate significant differences in toxicity between the two in vitro models under UV conditions, highlighting the importance of model selection and exposure parameters in assessing NP safety. Thus, our findings suggest that Fe3O4 NPs may pose some risks under specific environmental conditions, within the limitations of the experimental setup, and further research is needed to refine safety guidelines.
Collapse
Affiliation(s)
- Claudia Geanina Watz
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Center for Drug Data Analysis, Cheminformatics and the Internet of Medical Things, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Elena-Alina Moacă
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Andreea Cioca
- Department of Pathology “Regina Maria” Health Network, Timisoara, 300645, Romania
| | - Lenuța Maria Șuta
- Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Lavinia Krauss Maldea
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy-Phytotherapy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Mirela Nicolov
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Center for Drug Data Analysis, Cheminformatics and the Internet of Medical Things, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Ioan-Ovidiu Sîrbu
- Department of Biochemistry, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
- Complex Network Science Center, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, 400012, Romania
| | - Cristina A Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| |
Collapse
|
4
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
5
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
6
|
Wang X, Zou K, Xiong Y, Zheng Y, Zheng J, Liu Y, Zhong T, Zhao X. Dietary titanium dioxide nanoparticles impair intestinal epithelial regeneration by perturbating the function of intestinal stem cells. Food Chem Toxicol 2024; 193:115057. [PMID: 39406333 DOI: 10.1016/j.fct.2024.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/01/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Intestinal health is closely linked to intestinal stem cells (ISCs), which are highly sensitive to the harmful substances in the lumen. However, there is limited knowledge regarding the effects of food additives on ISCs. This study aims to investigate the impact of dietary titanium dioxide nanoparticles (TiO2 NPs) compared with titanium dioxide microparticles (TiO2 MPs) on intestinal health associated with ISCs in response to dextran sodium sulfate (DSS)-induced enteritis in mice, as well as the related mechanism. We found that exposure to 1% (w/w) TiO2 NPs aggravated DSS-induced enteritis in mice, while this effect could not be observed under exposure to TiO2 MPs. Additionally, 1% (w/w) TiO2 NPs exposure under DSS-induced enteritis worsened the ISC-mediated regeneration of intestinal epithelium by decreasing the epithelial cell proliferation and epithelial turnover rate while increasing epithelial cell death. Meanwhile, using a 3D intestinal organoid model, we discovered that 20 μg/mL TiO2 NPs impaired ISC function and disrupted ISC fate specification both ex vivo and in vitro. Furthermore, TiO2 NPs hindered the nuclear translocation of β-catenin, reducing the overall output of Wnt signaling. Together, TiO2 NPs deteriorated the intestinal epithelial regeneration of mice with DSS-induced enteritis by perturbating ISC function and fate specification through a mechanism involving Wnt signaling. These findings highlight the adverse effect of dietary TiO2 NPs on ISCs and shed light on the particle size optimization of TiO2 food additive.
Collapse
Affiliation(s)
- Xiu Wang
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314000, China; Jiaxing Key Laboratory for Research and Application of Green and Low-carbon Advanced Materials, Jiaxing, 314000, China.
| | - Kai Zou
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314000, China; Jiaxing Key Laboratory for Research and Application of Green and Low-carbon Advanced Materials, Jiaxing, 314000, China
| | - Yu Xiong
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314000, China
| | - Yongwang Zheng
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314000, China
| | - Jiale Zheng
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314000, China
| | - Yong Liu
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314000, China
| | - Ting Zhong
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314000, China
| | - Xincheng Zhao
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314000, China
| |
Collapse
|
7
|
Carrillo-Romero J, Mentxaka G, García-Salvador A, Katsumiti A, Carregal-Romero S, Goñi-de-Cerio F. Assessing the Toxicity of Metal- and Carbon-Based Nanomaterials In Vitro: Impact on Respiratory, Intestinal, Skin, and Immune Cell Lines. Int J Mol Sci 2024; 25:10910. [PMID: 39456693 PMCID: PMC11507852 DOI: 10.3390/ijms252010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The field of nanotechnology has experienced exponential growth, with the unique properties of nanomaterials (NMs) being employed to enhance a wide range of products across diverse industrial sectors. This study examines the toxicity of metal- and carbon-based NMs, with a particular focus on titanium dioxide (TiO2), zinc oxide (ZnO), silica (SiO2), cerium oxide (CeO2), silver (Ag), and multi-walled carbon nanotubes (MWCNTs). The potential health risks associated with increased human exposure to these NMs and their effect on the respiratory, gastrointestinal, dermal, and immune systems were evaluated using in vitro assays. Physicochemical characterisation of the NMs was carried out, and in vitro assays were performed to assess the cytotoxicity, genotoxicity, reactive oxygen species (ROS) production, apoptosis/necrosis, and inflammation in cell lines representative of the systems evaluated (3T3, Caco-2, HepG2, A549, and THP-1 cell lines). The results obtained show that 3T3 and A549 cells exhibit high cytotoxicity and ROS production after exposure to ZnO NMs. Caco-2 and HepG2 cell lines show cytotoxicity when exposed to ZnO and Ag NMs and oxidative stress induced by SiO2 and MWCNTs. THP-1 cell line shows increased cytotoxicity and a pro-inflammatory response upon exposure to SiO2. This study emphasises the importance of conducting comprehensive toxicological assessments of NMs given their physicochemical interactions with biological systems. Therefore, it is of key importance to develop robust and specific methodologies for the assessment of their potential health risks.
Collapse
Affiliation(s)
- Juliana Carrillo-Romero
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
| | - Gartze Mentxaka
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Adrián García-Salvador
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| |
Collapse
|
8
|
Julaiti M, Guo H, Cui T, Nijiati N, Huang P, Hu B. Application of stem cells in the study of developmental and functional toxicity of endodermal-derived organs caused by nanoparticles. Toxicol In Vitro 2024; 98:105836. [PMID: 38702034 DOI: 10.1016/j.tiv.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoparticles have unique properties that make them useful in biomedicine. However, their extensive use raises concerns about potential hazards to the body. Therefore, it is crucial to establish effective and robust toxicology models to evaluate the developmental and functional toxicity of nanoparticles on the body. This article discusses the use of stem cells to study the developmental and functional toxicity of organs of endodermal origin due to nanoparticles. The study discovered that various types of nanoparticles have varying effects on stem cells. The application of stem cell models can provide a possibility for studying the effects of nanoparticles on organ development and function, as they can more accurately reflect the toxic mechanisms of different types of nanoparticles. However, stem cell toxicology systems currently cannot fully reflect the effects of nanoparticles on entire organs. Therefore, the establishment of organoid models and other advanced assessment models is expected to address this issue.
Collapse
Affiliation(s)
- Mulati Julaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Haoqiang Guo
- Human anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Tingting Cui
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Nadire Nijiati
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Pengfei Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Bowen Hu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
9
|
Yamada K, Ristroph KD, Kaneko Y, Lu HD, Prud'homme RK, Sato H, Onoue S. Pharmacokinetic control of orally dosed cyclosporine A with mucosal drug delivery system. Biopharm Drug Dispos 2024; 45:117-126. [PMID: 38646776 DOI: 10.1002/bdd.2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to control the oral absorption of cyclosporine A (CsA) with the use of a mucosal drug delivery system (mDDS). Mucopenetrating nanocarriers (MP/NCs) and mucoadhesive nanocarriers (MA/NCs) were prepared by flash nanoprecipitation employing polystyrene-block-poly(ethylene glycol) and polystyrene-block-poly(N,N-dimethyl aminoethyl methacrylate), respectively. Their particle distribution in the rat gastrointestinal tract were visualized by fluorescent imaging. Plasma concentrations were monitored after oral administration of CsA-loaded MP/NCs (MP/CsA) and MA/NCs (MA/CsA) to rats. MP/NCs and MA/NCs had a particle size below 200 nm and ζ-potentials of 4 and 40 mV, respectively. The results from in vitro experiments demonstrated mucopenetration of MP/NCs and mucoadhesion of MA/NCs. Confocal laser scanning microscopic images showed diffusion of MP/NCs in the gastrointestinal mucus towards epithelial cells and localization of MA/NCs on the surface of the gastrointestinal mucus layer. In a pH 6.8 solution, rapid and sustained release of CsA were observed for MP/CsA and MA/CsA, respectively. After oral dosing (10 mg-CsA/kg) to rats, amorphous CsA powder exhibited a time to maximum plasma concentration (Tmax) of 3.4 h, maximum plasma concentration (Cmax) of 0.12 μg/mL, and bioavailability of 0.7%. Compared with amorphous CsA powder, MP/CsA shortened Tmax by 1.1 to 2.3 h and increased the bioavailability by 43-fold to 30.1%, while MA/CsA prolonged Tmax by 3.4 to 6.8 h with Cmax and bioavailability of 0.65 μg/mL and 11.7%, respectively. These pharmacokinetic behaviors would be explained by their diffusion and release properties modulated by polymeric surface modification. The mDDS approach is a promising strategy for the pharmacokinetic control of orally administered CsA.
Collapse
Affiliation(s)
- Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kurt D Ristroph
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
| | - Yuuki Kaneko
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hoang D Lu
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
| | - Robert K Prud'homme
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
10
|
Xia X, Ma X, Liang N, Qin L, Huo W, Li Y. Damage of polyethylene microplastics on the intestine multilayer barrier, blood cell immune function and the repair effect of Leuconostoc mesenteroides DH in the large-scale loach (Paramisgurnus dabryanus). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109460. [PMID: 38382690 DOI: 10.1016/j.fsi.2024.109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Polyethylene microplastics (PE-MPs) has become a global concern due to their widespread distribution and hazardous properties in aquatic habitats. In this study, the accumulation effect of PE-MPs in the intestine of large-scale loach (Paramisgurnus dabryanus) was explored by adding different concentrations of PE-MPs to the water, the destination of PE-MPs after breaking the intestinal barrier and the effects caused. The collected data showed that PE-MPs accumulation for 21d altered the histomorphology and antioxidant enzyme activity of the intestine, induced dysbiosis of the intestinal flora. 10 mg/L of PE-MPs induced a significant increase in the transcript levels of intestinal immunity factors in loach after 21d of exposure. Moreover, the levels of diamine oxidase (DAO) and d-lactic acid (D-Lac) in the gut and serum of loach were significantly increased after exposure to PE-MPs at all concentrations (1, 5, 10 mg/L). Subsequently, the presence of PE-MPs was detected in the blood, suggesting that the disruption of the intestinal multilayer barrier allowed PE-MPs to spill into the circulation. The accumulation of PE-MPs (1,5,10 mg/L) in the blood led to massive apoptosis and necrosis of blood cells and activated phagocytosis in response to PE-MPs invasion. To alleviate the damage, this study further exposure the effect of probiotics on PE-MPs treated loach by adding Leuconostoc mesenteroides DH (109 CFU/g) to the feed. The results showed that DH significantly increased the intestinal index and reduced the levels of DAO and D-Lac. To investigate the reason, we followed the PE-MPs in the intestine and blood of the loach and found that the number of PE-MPs particles was significantly reduced in the probiotic group, while the PE-MPs content in the feces was elevated. Thus, we concluded that DH reducing the accumulation of PE-MPs in the intestinal by increases fecal PE-MPs, which in turn mitigates the damage to the intestinal barrier caused by PE-MPs, and reduces the amount of PE-MPs in the blood. This work offers a robust analysis to understand the mechanisms of damage to the intestinal barrier by MPs and the fate of MPs after escaping the intestinal barrier and provide a new perspective on the application of probiotics in mitigating PE-MPs toxicity.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Lu Qin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Yi Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
11
|
Perumalsamy H, Balusamy SR, Sukweenadhi J, Nag S, MubarakAli D, El-Agamy Farh M, Vijay H, Rahimi S. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications. J Nanobiotechnology 2024; 22:71. [PMID: 38373982 PMCID: PMC10877787 DOI: 10.1186/s12951-024-02332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea.
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, 05006, Republic of Korea.
| | - Johan Sukweenadhi
- Faculty of Biotechnology, University of Surabaya, Surabaya, 60293, Indonesia
| | - Sagnik Nag
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mohamed El-Agamy Farh
- Department of Radiation Oncology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hari Vijay
- Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
12
|
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Turroni F, Mancabelli L, Longhi G, Ventura M, Bussolati O. Amorphous silica nanoparticles and the human gut microbiota: a relationship with multiple implications. J Nanobiotechnology 2024; 22:45. [PMID: 38291460 PMCID: PMC10826219 DOI: 10.1186/s12951-024-02305-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.
Collapse
Affiliation(s)
- Massimiliano G Bianchi
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Martina Chiu
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Paediatrics, University of Turin, Turin, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| |
Collapse
|