1
|
Deng F, Yang D, Qing L, Chen Y, Zou J, Jia M, Wang Q, Jiang R, Huang L. Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway: a potential therapeutic approach for neurodegenerative diseases. Neural Regen Res 2025; 20:3095-3112. [PMID: 39589173 PMCID: PMC11881707 DOI: 10.4103/nrr.nrr-d-24-00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut microbiota and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut-brain axis. The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites, which activates the vagus nerve and modulates the immune and neuroendocrine systems. Conversely, alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota, creating a dynamic network of microbial-host interactions. This reciprocal regulation affects neurodevelopment, neurotransmitter control, and behavioral traits, thus playing a role in the modulation of neurological diseases. The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation, mitochondrial dysfunction, abnormal energy metabolism, microglial activation, oxidative stress, and neurotransmitter release, which collectively influence the onset and progression of neurological diseases. This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway, along with its implications for potential therapeutic interventions in neurological diseases. Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders. This can be achieved through various methods such as dietary modifications, probiotic supplements, Chinese herbal extracts, combinations of Chinese herbs, and innovative dosage forms. These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fengcheng Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lingxi Qing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yifei Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jilian Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Meiling Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Runda Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lihua Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Gao Y, Tang X, Yao J, Sun T, Chen Y, Cheng C, Yang J, Wang B, Liu A, Yang L, Zhao M. Targeting the bile acid receptor TGR5 with Gentiopicroside to activate Nrf2 antioxidant signaling and mitigate Parkinson's disease in an MPTP mouse model. J Adv Res 2025:S2090-1232(25)00356-X. [PMID: 40414345 DOI: 10.1016/j.jare.2025.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/28/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is a common neurodegenerative disorder characterized by classical symptoms including bradykinesia, rest tremor and rigidity. Oxidative stress and mitochondrial dysfunction are recognized as pivotal factors in PD progression. Gentiopicroside (GPS), a secoiridoid derived from Gentiana manshurica Kitagawa, exhibits antioxidant and mitophagy induction properties. Nonetheless, the effects and mechanisms by which GPS mitigates neurodegeneration in PD remain to be thoroughly elucidated. OBJECTIVES The goal of this study was to investigate the neuroprotective effects and mechanisms of GPS in PD models. METHODS We established the MPTP/MPP+-induced PD models to measure the neuroprotection of GPS. Transcriptomic analysis, oxidative biochemical kits, western blot and cell immunofluorescence were conducted to elucidate the fundamental mechanisms at play. Subsequently, the targeting and activation of the transmembrane G protein-coupled receptor-5 (TGR5) by GPS were measured by molecular docking, cellular thermal shift assay, microscale thermophoresis (MST) and cyclic adenosine monophosphate (cAMP) quantitation. Finally, we verified whether the neuroprotective and antioxidant effects of GPS were dependent on TGR5 by using specific small interfering RNA (siRNA), pharmacological antagonist and knockout mice. RESULTS GPS significantly attenuated dopaminergic (DAergic) neuron loss and restored motor function in the MPTP-induced PD mouse model. Whole-genome RNA sequencing and subsequent mechanistic investigations revealed that GPS enhanced the expression and facilitated nuclear entry of factor erythroid-related 2-factor 2 (Nrf2), and reduced oxidative stress and mitochondrial dysfunction stimulated by neurotoxin. Additionally, GPS could target TGR5 and prevent its downregulation in PD model. TGR5's silencing or inhibition weakened the neuroprotective effect of GPS and blocked GPS-mediated activation of Nrf2 antioxidant signaling in PD model. Moreover, the therapeutic effect of GPS in mitigating motor deficits and neurodegeneration was also abolished in Tgr5 knockout mice. CONCLUSION These findings collectively indicated that GPS targeted TGR5 to activate Nrf2 antioxidant signaling and ultimately ameliorated the pathological progression of PD.
Collapse
Affiliation(s)
- Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Jingyue Yao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Yue Chen
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Caiyan Cheng
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Jingcheng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Guo Z, Chen D, Yao L, Sun Y, Li D, Le J, Dian Y, Zeng F, Chen X, Deng G. The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer. Signal Transduct Target Ther 2025; 10:149. [PMID: 40341098 PMCID: PMC12062509 DOI: 10.1038/s41392-025-02192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 05/10/2025] Open
Abstract
Copper, an essential micronutrient, plays significant roles in numerous biological functions. Recent studies have identified imbalances in copper homeostasis across various cancers, along with the emergence of cuproptosis, a novel copper-dependent form of cell death that is crucial for tumor suppression and therapeutic resistance. As a result, manipulating copper levels has garnered increasing interest as an innovative approach to cancer therapy. In this review, we first delineate copper homeostasis at both cellular and systemic levels, clarifying copper's protumorigenic and antitumorigenic functions in cancer. We then outline the key milestones and molecular mechanisms of cuproptosis, including both mitochondria-dependent and independent pathways. Next, we explore the roles of cuproptosis in cancer biology, as well as the interactions mediated by cuproptosis between cancer cells and the immune system. We also summarize emerging therapeutic opportunities targeting copper and discuss the clinical associations of cuproptosis-related genes. Finally, we examine potential biomarkers for cuproptosis and put forward the existing challenges and future prospects for leveraging cuproptosis in cancer therapy. Overall, this review enhances our understanding of the molecular mechanisms and therapeutic landscape of copper and cuproptosis in cancer, highlighting the potential of copper- or cuproptosis-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
4
|
Leuci R, Brunetti L, Tufarelli V, Cerini M, Paparella M, Puvača N, Piemontese L. Role of copper chelating agents: between old applications and new perspectives in neuroscience. Neural Regen Res 2025; 20:751-762. [PMID: 38886940 PMCID: PMC11433910 DOI: 10.4103/nrr.nrr-d-24-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 06/20/2024] Open
Abstract
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper (II) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases (such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
Collapse
Affiliation(s)
- Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Marco Cerini
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Paparella
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| | - Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Novi Sad, Serbia
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Lu Y, Shi M, Huang W, Li F, Liang H, Liu W, Huang T, Xu Z. Diosmin alleviates NLRP3 inflammasome-dependent cellular pyroptosis after stroke through RSK2/CREB pathway. Brain Res 2025; 1848:149336. [PMID: 39547499 DOI: 10.1016/j.brainres.2024.149336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
In the context of our previous analyses on the main active ingredients of Jieyudan, a classic formula targeting aphasia in stroke, we further delve into the function and mechanisms of its active ingredient, Diosmin (DM), which may exert neuroprotective effects, in ischemic stroke. Herein, bioinformatics analysis revealed targets of DM and their intersection with differentially expressed genes in ischemic stroke. Middle cerebral artery occlusion (MCAO) rats and oxygen-glucose deprivation (OGD) cells were used to construct in vivo and in vitro models of ischemic stroke. The effects of DM on MCAO rats were assessed by Zea-Longa score, Morris water maze, TTC staining, Nissl staining, immunohistochemistry, and Western blot. At the cellular level, cell counting kit-8 assay and Western blot were carried out to verify the mechanism of DM in ischemic stroke. In vivo, DM decreased neurological deficit score, cerebral infarct volume and neuronal damage, and improved cognitive function in MCAO rats. In vitro, DM increased the viability of OGD-treated cells. In addition, DM down-regulated the expressions of NLR family pyrin domain containing 3 (NLRP3) and pyroptosis-associated proteins, while up-regulating ribosomal protein S6 kinase A3 (RSK2) level and activating cyclic-AMP response element-binding protein (CREB) signaling. Conversely, RSK2 inhibitor LJH685 reduced the viability and promoted pyroptosis-associated protein levels, which also partially reversed the effects of DM in vitro. Collectively, DM plays a therapeutic role in ischemic stroke by inhibiting NLRP3 inflammasome-mediated cellular pyroptosis via the RSK2/CREB pathway.
Collapse
Affiliation(s)
- Yanfei Lu
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Min Shi
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Wei Huang
- Department of Pharmacy, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincal Hospital of Traditional Chinese Medicine), China
| | - Fenfen Li
- College of Pharmacy, Zhejiang Chinese Medical University, China
| | - Haowei Liang
- Graduate School of Zhejiang Chinese Medical University, China
| | - Wenbing Liu
- Department of Cardiopulmonary Rehabilitation, the Third Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Tianyi Huang
- Department of Pharmacy, Zhejiang Rehabilitation Medical Center (Rehabilitation Hospital Affiliated to Zhejiang Chinese Medical University), China
| | - Zhen Xu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China.
| |
Collapse
|
6
|
Zhou Q, Zhang Y, Shi W, Lu L, Wei J, Wang J, Zhang H, Pu Y, Yin L. Angiotensin II Induces Vascular Endothelial Dysfunction by Promoting Lipid Peroxidation-Mediated Ferroptosis via CD36. Biomolecules 2024; 14:1456. [PMID: 39595632 PMCID: PMC11591770 DOI: 10.3390/biom14111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Angiotensin II (Ang II) is an effective vasoconstriction peptide, a major effector molecule of the renin-angiotensin-aldosterone system (RAAS) and one of the important causes of endothelial dysfunction. Ferroptosis is considered to be involved in the occurrence and development of cardiovascular diseases. This study is dedicated to exploring the role and mechanism of Ang II-induced ferroptosis in HUVECs and to finding molecular targets for vascular endothelial injury and dysfunction during the progression of hypertension. In this study, we found that with the increase in exposure concentration, the intracellular ROS content and apoptosis rate increased significantly, the NO release decreased significantly in the medium- and high-concentration groups and the ET-1 content in the high-concentration group increased significantly. The expression of ZO-1 protein was significantly decreased in the high-concentration group. The expression of p-eNOS, VE-cadherin and Occludin protein showed a dose-dependent downward trend, while the ICAM-1 protein showed an upward trend. Ang II caused lipid metabolism disorders in HUVECs, and the PL-PUFAs associated with ferroptosis were significantly increased. In addition, Ang II promoted a significant increase in intracellular free Fe2+ content and MDA and a significant decrease in GSH content. Furthermore, the expression of GPX4, SLC7A11 and SLC3A2 was down-regulated, the expression of ACSL4, LPCAT3 and ALOX15 was up-regulated, and the ratio of p-cPLA2/cPLA2 was increased. After the intervention of ferroptosis inhibitor Fer-1, the injury and dysfunction of HUVECs induced by Ang II were significantly rescued. Immunofluorescence results showed that the expression of CD36 showed a significant increasing trend and was localized in the cytoplasm. Over-expression of CD36 promoted Ang II-induced ferroptosis and endothelial dysfunction. In conclusion, Ang II induces the injury of HUVECs, decreases vascular diastole and endothelial barrier-related molecules, and increases vascular constriction and adhesion-related molecules, which may be related to CD36 and its mediated lipid peroxidation and ferroptosis signals.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (Q.Z.); (Y.Z.); (W.S.); (L.L.); (J.W.); (J.W.); (Y.P.)
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (Q.Z.); (Y.Z.); (W.S.); (L.L.); (J.W.); (J.W.); (Y.P.)
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (Q.Z.); (Y.Z.); (W.S.); (L.L.); (J.W.); (J.W.); (Y.P.)
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (Q.Z.); (Y.Z.); (W.S.); (L.L.); (J.W.); (J.W.); (Y.P.)
| | - Jianglan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (Q.Z.); (Y.Z.); (W.S.); (L.L.); (J.W.); (J.W.); (Y.P.)
| | - Jinhan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (Q.Z.); (Y.Z.); (W.S.); (L.L.); (J.W.); (J.W.); (Y.P.)
| | - Hu Zhang
- School of Public Health, Yangzhou University, Yangzhou 225009, China;
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (Q.Z.); (Y.Z.); (W.S.); (L.L.); (J.W.); (J.W.); (Y.P.)
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (Q.Z.); (Y.Z.); (W.S.); (L.L.); (J.W.); (J.W.); (Y.P.)
| |
Collapse
|
7
|
Zou L, Liu Z, Jin M, Wang P, Shan Y, Xiao Y. Genome-wide DNA methylation profile and its function in regulating Vip3Aa tolerance in fall armyworm (Spodoptera frugiperda). PEST MANAGEMENT SCIENCE 2024; 80:5820-5831. [PMID: 39030881 DOI: 10.1002/ps.8313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Vegetative insecticidal proteins (Vips) are widely used in pest management, but Vip tolerance poses a significant threat. DNA methylation plays important roles in regulating the response of biological organisms to environmental stress, and it may also regulate fall armyworm (FAW, Spodoptera frugiperda) Vip3Aa tolerance. RESULTS In this study, a DNA methylation map was developed for FAW, and its function in regulating FAW Vip3Aa tolerance was explored. The FAW genome-wide DNA methylation map showed that exons were preferred regions for DNA methylation and housekeeping genes were highly methylated. FAW was screened using Vip3Aa for ten generations, and bioassays indicated that Vip3Aa tolerance increased trans-generationally. A comparison of DNA methylation maps between Vip3Aa-tolerant and -susceptible strains showed that gene body methylation was positively correlated with gene expression level. FAW exhibits significant variation in DNA methylation among individuals, and Vip3Aa screening induces epigenetic variation based on DNA methylation. Moreover, the study demonstrated that a reduction in methylation density within the gene body of a 3'5'-cyclic nucleotide phosphodiesterase gene resulted in decreased expression and increased tolerance of FAW to Vip3Aa, which was validated through RNA interference experiments. CONCLUSION The DNA methylation map and mechanism of Vip3Aa tolerance improve our understanding of DNA methylation and its function in Lepidoptera and provide a new perspective for developing pest management strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luming Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
8
|
Liu Y, Chen G, You X, Wang X. Cuproptosis Nanomedicine: Clinical challenges and opportunities for anti-tumor therapy. CHEMICAL ENGINEERING JOURNAL 2024; 495:153373. [DOI: 10.1016/j.cej.2024.153373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
9
|
Wu Z, Zhang H, Chen X, Zhang P, Fang J, Yang S, Chen H, Ji J, Chen L, Zheng Y, Yu D, Zhao Y. miR-145a-5p/SIK1/cAMP-dependent alteration of synaptic structural plasticity drives cognitive impairment induced by coke oven emissions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116401. [PMID: 38677069 DOI: 10.1016/j.ecoenv.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exposure to fine particulate matter (PM) is associated with the neurodegenerative diseases. Coke oven emissions (COEs) in occupational environment are important sources of PM. However, its neurotoxicity is still unclear. Therefore, evaluating the toxicological effects of COE on the nervous system is necessary. In the present study, we constructed mouse models of COE exposure by tracheal instillation. Mice exposed to COE showed signs of cognitive impairment. This was accompanied by a decrease in miR-145a-5p and an increase in SIK1 expression in the hippocampus, along with synaptic structural damage. Our results demonstrated that COE-induced miR-145a-5p downregulation could increase the expression of SIK1 and phosphorylated SIK1, inhibiting the cAMP/PKA/CREB pathway by activating PDE4D, which was associated with reduced synaptic structural plasticity. Furthermore, restoring of miR-145a-5p expression based on COE exposure in HT22 cells could partially reversed the negative effects of COE exposure through the SIK1/PDE4D/cAMP axis. Collectively, our findings link epigenetic regulation with COE-induced neurotoxicity and imply that miR-145a-5p could be an early diagnostic marker for neurological diseases in patients with COE occupational exposure.
Collapse
Affiliation(s)
- Zhaoxu Wu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Heng Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xian Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Pimei Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiacheng Fang
- Department of Nutrition, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shuaishuai Yang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongguang Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lei Chen
- Department of Nutrition, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yanjie Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
10
|
Song A, Wang W, Wang H, Ji Y, Zhang Y, Ren J, Qu X. An Alkaline Nanocage Continuously Activates Inflammasomes by Disrupting Multiorganelle Homeostasis for Efficient Pyroptosis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38697643 DOI: 10.1021/acsami.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.
Collapse
Affiliation(s)
- Anjun Song
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yanjun Ji
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yanjie Zhang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
11
|
Gao Y, Huang X, Zheng X, Yan F. FoxO signaling pathway stimulation by Bacillus smithii XY1 contributes to alleviating copper-induced neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133345. [PMID: 38147755 DOI: 10.1016/j.jhazmat.2023.133345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Increasingly copper pollution in the environment exacerbates the risk of neurodegenerative diseases. It is necessary to look for effective targets and safe methods for protecting from copper-induced neurotoxicity. Here we firstly explored the impact of copper-exposure on expression profiles in zebrafish. Copper reduced embryo hatching, increased mortality and caused embryonic developmental abnormalities and behavioral dysfunction in juveniles. Transcriptomic analysis revealed that differential genes related to neuron were highly associated with oxidative stress especially enriched to FoxO pathway. Through further validation in Caenorhabditis elegans, copper resulted in nematode neurodegenerative movement disorders and neuronal damage, along with increased levels of reactive oxygen species (ROS) as well as decreased expressions of antioxidant-related enzymes and downstream genes which was also involved in FoxO signaling pathway. Bacillus smithii XY1, a novel strain with an excellent antioxidative activity, showed a great alleviative effect on copper-induced neurotoxicity that was related to FoxO stimulation, being a potential candidate for copper pollution management. Overall, these results suggested that FoxO pathway activation can regard as a strategy for mitigating neurotoxicity caused by copper and B. smithii XY1 with excellent tolerance and outstanding antioxidation specially targeted for FoxO has a promising application in controlling copper contamination.
Collapse
Affiliation(s)
- Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Ning Z, Zhong X, Wu Y, Wang Y, Hu D, Wang K, Deng M. β-asarone improves cognitive impairment and alleviates autophagy in mice with vascular dementia via the cAMP/PKA/CREB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155215. [PMID: 38039902 DOI: 10.1016/j.phymed.2023.155215] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Vascular dementia (VD) is the second most common type of dementia after Alzheimer's disease. β-asarone, a major component of Acorus tatarinowii Schott, is important in neurodegenerative and neurovascular diseases. Studies have confirmed that β-asarone can mitigate autophagy and reduce damage in hypoxic cells. We also reported that β-asarone improves learning and memory. This study further clarifies whether β-asarone attenuates cerebral ischaemic injury by acting through the cAMP/PKA/CREB pathway in VD model mice. METHODS Here, genes and potential pathways that may be targeted by β-asarone for the treatment of transient cerebral ischaemia (TCI) and cognitive impairment (CI) were obtained using network pharmacology. The two-vessel occlusion method was used to establish the VD model. The Morris water maze test was used to evaluate the effects on memory. Then, the protein levels of mitofusin-2 (Mfn2), brain-derived neurotrophic factor (BDNF), optic atrophy 1 (OPA1), cyclic adenosine monophosphate (cAMP), myelin basic protein (MBP), matrix metalloproteinase-9 (MMP9) and neuron specific enolase (NSE) were determined by ELISA. The levels of superoxide dismutase (SOD) and malonaldehyde (MDA) were measured using commercial kits. Then, qRT-PCR was employed to investigate the expression of the candidate genes screened from the protein-protein interaction (PPI) network. Furthermore, the expression of the autophagy-related proteins Beclin-1, (microtubule-associated protein light chain 3) LC3, p62, postsynaptic density protein 95 (PSD95), protein kinase A (PKA), pPKA, cyclic-AMP response binding protein (CREB), and pCREB was determined by western blotting. The expression of autophagy-related proteins, PSD95 and translocase of outer mitochondrial membrane 20 (TOM20) was determined by immunofluorescence analyses. RESULTS The network pharmacological analysis showed 234 targets related to β-asarone, 1,118 genes related to TCI and 2,039 genes associated with CI. Our results confirm that β-asarone treatment not only alleviated brain damage in the VD model by improving mitochondrial and synaptic function, reducing neuronal injury and upregulating the expression of antioxidants but also effectively improved the cognitive behaviour of VD model mice. Moreover, β-asarone downregulated VD-induced RELA and CCND1 mRNA expression. In addition, we validated that β-asarone increased the phosphorylation of PKA and CREB and upregulated cAMP protein expression. The results showed that the cAMP/PKA/CREB signalling pathway was upregulated. Moreover, β-asarone administration decreased the protein expression levels of Beclin-1 and LC3 and increased the expression levels of p62 in VD model mice. CONCLUSIONS β-asarone inhibits Beclin-1-dependent autophagy and upregulates the cAMP/PKA/CREB signalling pathway to attenuate mitochondrial and synaptic damage from cerebral ischaemia and improve learning and cognitive abilities in VD model mice.
Collapse
Affiliation(s)
- Zhenqiu Ning
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiaoqin Zhong
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanan Wu
- Department of Anaesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Dafeng Hu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Kai Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Minzhen Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome/ Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, PR China.
| |
Collapse
|
13
|
Cao Y, Sun W, Liu C, Zhou Z, Deng Z, Zhang M, Yan M, Yin X, Zhu X. Resveratrol ameliorates diabetic encephalopathy through PDE4D/PKA/Drp1 signaling. Brain Res Bull 2023; 203:110763. [PMID: 37722608 DOI: 10.1016/j.brainresbull.2023.110763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Diabetic encephalopathy (DE) is a central nervous complication of diabetes mellitus which is characterized by cognitive impairment and neurochemical abnormalities. However, no effective approaches are available to prevent its progression and development. PDE4D serves many functions in the pathogenesis of neurodegenerative diseases involving PKA signaling. This study illustrated the role of PDE4D in DE and investigated whether resveratrol protected against DE via inhibiting PDE4D. db/db male mice and hippocampus cell line (HT22) were used to investigate the role of PDE4D and the protective effect of resveratrol on cognitive function under high glucose (HG). PDE4D overexpression or knockdown lentivirus and PKA specific inhibitor H89 were used to further identify the indispensable role of PDE4D/PKA signaling pathway in resveratrol's amelioration effect of neurotoxicity. Resveratrol attenuated cognitive impairment in db/db mice, reduced PDE4D protein, restored the impaired mitochondrial function in db/db mice. The in vitro study also confirmed the neuroprotective effect of resveratrol on neurotoxicity. PDE4D overexpression resulted in cell injury and downregulation of cAMP, PKA and pDrp1(Ser637) under normal condition. In contrast, PDE4D knockdown improved cell injury and elevated cAMP, PKA and pDrp1(Ser637) levels caused in HG-cultured HT22 cells. PDE4D over-expression blunted the improvement effects of resveratrol on PKA, pDrp1(Ser637) and mitochondrial function. Moreover, PKA inhibitor H89 blunted the inhibitory effects of resveratrol on pDrp1(Ser637) and mitochondrial function in HG-treated HT22. These data indicated that resveratrol may improve cognitive impairment in db/db mice by modulating mitochondrial function through the PDE4D dependent pathway.
Collapse
Affiliation(s)
- Yanjuan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Wen Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Chang Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zihui Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zongli Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Mingjie Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
14
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|