1
|
Poole DA, Albulescu LO, Kool J, Casewell NR, Geerke DP. Computational Strategies for Broad Spectrum Venom Phospholipase A 2 Inhibitors. J Chem Inf Model 2025. [PMID: 40261809 DOI: 10.1021/acs.jcim.5c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Snakebite envenoming is a persistent cause of mortality and morbidity worldwide due to the logistical challenges and costs of current antibody-based treatments. Their persistence motivates a broad interest in the discovery of inhibitors against multispecies venom phospholipase A2 (PLA2), which are underway as an alternative or supplemental treatment to improve health outcomes. Here, we present new computational strategies for improved inhibitor classification for challenging metalloenzyme targets across many species, including both a new method to utilize existing molecular docking, and subsequent data normalization. These methods were improved to support experimental screening efforts estimating the broader efficacy of candidate PLA2 inhibitors against diverse viper and elapid venoms.
Collapse
Affiliation(s)
- David A Poole
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, the Netherlands
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, the Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Daan P Geerke
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
2
|
Aga AM, Mulugeta D, Motuma A, Wakitole B, Mohammed K, Woldemariyam FT, Ferede H, Teferi Z, Tadesse S, Mohammed J, Alemu A, Getachew D, Muleta D, Nigussie D. Snakebite cases and treatment outcomes in the Afar region, Ethiopia: a retrospective and prospective study approach. Trans R Soc Trop Med Hyg 2025:traf043. [PMID: 40248850 DOI: 10.1093/trstmh/traf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/19/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Snakebite envenomation remains a public health issue, particularly in rural areas. Quick and accurate case identification, coupled with timely treatment, is essential to prevent fatalities and complications. METHODS Retrospective and prospective data consisted of 245 snakebite cases admitted to hospitals in the Afar region, Ethiopia, from September 2023 to July 2024 (retrospective), while prospective data were collected from July to October 2024. The analysis focused on case prevalence, time to treatment, service availability, treatment received, length of hospital stays, recovery times and patient outcomes. RESULTS Of 245 cases, 66.1% (n=162) were retrospective and 33.9% (n=83) prospective. Most patients were male (71.6%); the largest age group was 15-29 y (59.6%); most patients required hospital stays of 2-3 d (56.7%). In the majority of cases, recovery took 4-7 d (36.23%). The fatality rate was 3.3%; >46.54% of patients received treatment >7 d after snakebite, mainly because of the long distance traveled to reach healthcare facilities with access to antivenom. CONCLUSIONS It is essential to strengthen community health units by equipping them with trained personnel and sufficient antivenom supplies to ensure prompt care. Implementing public awareness and promoting local antivenom production could reduce treatment costs and improve patient outcomes.
Collapse
Affiliation(s)
- Abebe M Aga
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Demise Mulugeta
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Abera Motuma
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Bilise Wakitole
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Kedir Mohammed
- Afar Region Health Bureau, P.O. Box 26, Semera, Ethiopia
| | - Fanos Tadesse Woldemariyam
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Henok Ferede
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Zinash Teferi
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Shambel Tadesse
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Jemal Mohammed
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Anberber Alemu
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Dejene Getachew
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Dassalegn Muleta
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Dereje Nigussie
- Vaccine, Diagnostics and Medical Device R&D, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Bala AA, Bedraoui A, El Mejjad S, Willard NK, Hatcher JD, Iliuk A, Curran JE, Sanchez EE, Suntravat M, Salazar E, El Fatimy R, Daouda T, Galan JA. Bioinformatics-Guided Identification and Quantification of Biomarkers of Crotalus atrox Envenoming and its Neutralization by Antivenom. Mol Cell Proteomics 2025:100956. [PMID: 40147718 DOI: 10.1016/j.mcpro.2025.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Quantitative mass spectrometry-based proteomics of extracellular vesicles (EVs) provides systems-level exploration for the analysis of snakebite envenoming (SBE) as the venom progresses, causing injuries such as hemorrhage, trauma, and death. Predicting EV biomarkers has become an essential aspect of this process, offering an avenue to explore the specific pathophysiological changes that occur after envenoming. As new omics approaches emerge to advance our understanding of SBE, further bioinformatics analyses are warranted to incorporate the use of antivenom or other therapeutics to observe their global impact on various biological processes. Herein, we used an in vivo BALB/c mouse model and proteomics approach to analyze the physiological impacts of SBE and antivenom neutralization in intact animals; this was followed by bioinformatics methods to predict potential EV biomarkers. Groups of mice (n=5) were intramuscularly injected with Saline or Crotalus atrox venom. After 30 minutes, the mice received saline or antivenom (ANTIVIPMYN®) by intravenous injection. After 24 hours, blood was collected to extract the plasma to analyze the EV content and determine the exposome of C. atrox venom as well as the neutralizing capabilities of the antivenom. The predicted biomarkers consistently and significantly sensitive to antivenom treatment are Slc25a4, Rps8, Akr1c6, Naa10, Sult1d1, Hadha, Mbl2, Zc3hav, Tgfb1, Prxl2a, Coro1c, Tnni1, Ryr3, C8b, Mycbp, and Cfhr4. These biomarkers pointed towards specific physiological alterations, causing significant metabolic changes in mitochondrial homeostasis, lipid metabolism, immunity, and cytolysis, indicating hallmarks of traumatic injury. Here, we present a more comprehensive view of murine plasma EV proteome and further identify significant changes in abundance for potential biomarkers associated with antivenom treatment. The predicted biomarkers have the potential to enhance current diagnostic tools for snakebite management, thereby contributing significantly to the evolution of treatment strategies in the diagnosis and prognosis of SBE.
Collapse
Affiliation(s)
- Auwal A Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Anas Bedraoui
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Salim El Mejjad
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Nicholas K Willard
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Joseph D Hatcher
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN, USA
| | - Joanne E Curran
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Elda E Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Rachid El Fatimy
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Tariq Daouda
- Faculty of Medical Sciences, UM6P Hospitals, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Jacob A Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
4
|
Alvitigala BY, Dissanayake HA, Weeratunga PN, Padmaperuma PACD, Gooneratne LV, Gnanathasan CA. Haemotoxicity of snakes: a review of pathogenesis, clinical manifestations, novel diagnostics and challenges in management. Trans R Soc Trop Med Hyg 2025; 119:283-303. [PMID: 39749491 DOI: 10.1093/trstmh/trae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/29/2024] [Accepted: 08/29/2024] [Indexed: 01/04/2025] Open
Abstract
Haemotoxicity is the most common complication of systemic envenoming following snakebite, leading to diverse clinical syndromes ranging from haemorrhagic to prothrombotic manifestations. Key haematological abnormalities include platelet dysfunction, venom-induced consumption coagulopathy, anticoagulant coagulopathy and organ-threatening thrombotic microangiopathy. Diagnostic methods include the bedside whole blood clotting test, laboratory coagulation screening and other advanced methods such as thromboelastogram and clot strength analysis. The primary management strategies are venom neutralisation with antivenom and correction of coagulopathy with blood component transfusions, while options such as plasma exchange are utilised in certain cases. Recent advancements in understanding the pathogenesis of haemotoxicity have facilitated the development of new diagnostic and treatment modalities. This review summarises current knowledge on the pathogenesis, diagnosis, clinical and laboratory manifestations and treatment of the haematological effects of snake envenoming. Furthermore, it highlights important challenges concerning diagnosis and management. Addressing these challenges is crucial for achieving the WHO's goal of reducing deaths and disabilities caused by snakebites by 2030.
Collapse
Affiliation(s)
| | - Harsha A Dissanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, P.O. 00800, Sri Lanka
| | - Praveen N Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, P.O. 00800, Sri Lanka
| | | | | | | |
Collapse
|
5
|
Ayesiga I, Gmanyami JM, Akaka A, Kubwimana O, Ternor JN, Hashim UM, Gyabaah GA, Turzin JK, Kahwa I. Health economics of snakebite envenomation: A sub-Saharan African perspective. Trans R Soc Trop Med Hyg 2025; 119:304-309. [PMID: 39749545 DOI: 10.1093/trstmh/trae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/12/2024] [Accepted: 08/29/2024] [Indexed: 01/04/2025] Open
Abstract
Sub-Saharan Africa (SSA) is affected by the high direct and indirect costs of snakebite envenomation. With >30% of global mortality, different economic barriers still exist, and effective strategies must be employed to avert the burden and promote quality of life. With the WHO target of reducing the number of snakebites by one-half by 2030, different aspects concerning snakebite envenomation economics must be evaluated, and potential strategies must be developed. Strategies such as exploring the different snakebite prevention interventions, and the costs associated with these interventions, must be prioritized through extensive research and targeted surveys. Information obtained from these surveys can be used to draft effective policies to minimize snakebite envenomation incidence, reduce the economic burden associated with envenomation and improve the quality of life of people at risk. In this narrative review, we evaluate the different aspects concerning the health economics of snakebite envenomation and explore the financial capacity of SSA countries to mitigate envenomation. Additionally, we propose multiple steps that could be undertaken to mitigate the financial burden of envenomation in SSA. Furthermore, we propose critical research strategies to minimize direct and indirect costs arising from snakebite envenomation in the region.
Collapse
Affiliation(s)
- Innocent Ayesiga
- Departm ent of Research, Ubora Foundation Africa, Kampala 759125, Uganda
| | - Jonathan Mawutor Gmanyami
- Global Health and Infectious Diseases Research Group, Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi GA107, Ghana
| | - Alex Akaka
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University, Kampala 7072, Uganda
| | - Olivier Kubwimana
- Department of Human Anatomy, Schoool of Medicine and Pharmacy, University of Rwanda, Kigali 00000, Rwanda
| | - Joshua Naatey Ternor
- School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi GA107 Ghana
| | - Ukasha Musa Hashim
- College of Medical Sciences, Gombe State University, Arawa, Gombe State 760101 Nigeria
| | | | - Justice Kwadwo Turzin
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast GA107, Ghana
| | - Ivan Kahwa
- Pharm-Biotechnology and Traditional Medicine Centre (PHARMBIOTRAC), Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 40006, Uganda
| |
Collapse
|
6
|
Vázquez Torres S, Benard Valle M, Mackessy SP, Menzies SK, Casewell NR, Ahmadi S, Burlet NJ, Muratspahić E, Sappington I, Overath MD, Rivera-de-Torre E, Ledergerber J, Laustsen AH, Boddum K, Bera AK, Kang A, Brackenbrough E, Cardoso IA, Crittenden EP, Edge RJ, Decarreau J, Ragotte RJ, Pillai AS, Abedi M, Han HL, Gerben SR, Murray A, Skotheim R, Stuart L, Stewart L, Fryer TJA, Jenkins TP, Baker D. De novo designed proteins neutralize lethal snake venom toxins. Nature 2025; 639:225-231. [PMID: 39814879 PMCID: PMC11882462 DOI: 10.1038/s41586-024-08393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more1,2. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage3 and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity4. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs5-7. Here we used deep learning methods to de novo design proteins to bind short-chain and long-chain α-neurotoxins and cytotoxins from the 3FTx family. With limited experimental screening, we obtained protein designs with remarkable thermal stability, high binding affinity and near-atomic-level agreement with the computational models. The designed proteins effectively neutralized all three 3FTx subfamilies in vitro and protected mice from a lethal neurotoxin challenge. Such potent, stable and readily manufacturable toxin-neutralizing proteins could provide the basis for safer, cost-effective and widely accessible next-generation antivenom therapeutics. Beyond snakebite, our results highlight how computational design could help democratize therapeutic discovery, particularly in resource-limited settings, by substantially reducing costs and resource requirements for the development of therapies for neglected tropical diseases.
Collapse
Affiliation(s)
- Susana Vázquez Torres
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Melisa Benard Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Stefanie K Menzies
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Biomedical & Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Edin Muratspahić
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Max D Overath
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jann Ledergerber
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Evans Brackenbrough
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Iara A Cardoso
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Edouard P Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Rebecca J Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Robert J Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Arvind S Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah L Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey R Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lynda Stuart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Thomas J A Fryer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Hussain SS, Kingsley JD. Metabolomics and proteomics: synergistic tools for understanding snake venom inhibition. Arch Toxicol 2025; 99:915-934. [PMID: 39760869 DOI: 10.1007/s00204-024-03947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Snake envenomation presents a significant global health challenge, especially in rural areas of tropical and subtropical regions. Traditional antivenom therapies face limitations related to efficacy, availability, and specificity, prompting a need for novel approaches. Recent advancements in omics technologies, particularly metabolomics and proteomics, have enhanced our understanding of snake venom composition, toxicity, and potential therapeutic strategies. Metabolomics allows for the study of metabolic changes induced by venom, providing insights into disrupted pathways and possible inhibitors. Proteomics facilitates the identification and characterization of venom proteins, unveiling their interactions with therapeutic agents. Integrative databases such as the Snake Venom Database (SVDB) and STAB Profiles enhance this research by cataloging venom components and aiding in the analysis of venom-antivenom interactions. The combined application of metabolomics and proteomics has led to the identification of crucial metabolic pathways and protein targets essential for effective venom inhibition. This review explores current advances in these fields, emphasizing the role of omics in identifying novel inhibitors and developing next-generation antivenoms. The integrated approach of metabolomics and proteomics offers a comprehensive understanding of snake venom biology, paving the way for more effective and tailored therapeutic solutions for envenomation.
Collapse
Affiliation(s)
- Sana S Hussain
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - J Danie Kingsley
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Vasconez-Gonzalez J, Delgado-Moreira K, Izquierdo-Condoy JS, de Lourdes Noboa-Lasso M, Gamez-Rivera E, Lopez-Molina MB, López-Cortés A, Tello-De-la-Torre A, Cerda AT, Martinod DS, Ortiz-Prado E. Cerebrovascular events induced by venomous snake bites: A systematic review. Heliyon 2025; 11:e42779. [PMID: 40084034 PMCID: PMC11904508 DOI: 10.1016/j.heliyon.2025.e42779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
Snake bites represent a critical public health issue, affecting approximately 2.7 million people globally each year. Around 20 % of snake species are venomous, and their venom contains a complex array of toxins that can cause multi-organ damage, particularly affecting the nervous system, leading to both ischemic and hemorrhagic cerebrovascular events. This systematic review aims to compile and analyze data on cerebrovascular events associated with venomous snakebites. A comprehensive literature search was conducted using Scopus, PubMed, SciELO, and LILACS databases, with search terms including ("snake bite" OR "viper bite") AND ("stroke" OR "hemorrhagic stroke" OR "ischemic stroke"). Studies in English, Spanish, French and Portuguese were reviewed, yielding 52 eligible articles reporting 73 cases of stroke following snakebites. Most cases were attributed to snakes from the Viperidae family, with 67.12 % of cases occurring in males. Ischemic strokes were the most frequent, comprising 73.97 % of reported cases. The most affected systems were the nervous, cardiovascular, and respiratory systems. Snakes from the Bothrops genera and Daboia russelii specie caused the widest range of symptoms, including altered consciousness, ptosis, hypertension, drowsiness, aphasia, and tachycardia. Stroke is a severe complication of snakebite envenomation. Regarding treatment, the articles included emphasize the use of antivenom serum; however, they do not go into detail about the specific management of cutaneous stroke due to a snakebite, whether ischemic or hemorrhagic It is crucial to develop standardized protocols for the management of snakebite-induced strokes and to conduct further research to identify the snake species whose venom poses the highest risk for cerebrovascular complications.
Collapse
Affiliation(s)
- Jorge Vasconez-Gonzalez
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Karen Delgado-Moreira
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Juan S. Izquierdo-Condoy
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | | | - Esteban Gamez-Rivera
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - María Belén Lopez-Molina
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrea Tello-De-la-Torre
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Alejandra Torres Cerda
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Daniela Silva Martinod
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| |
Collapse
|
9
|
Alvitigala BY, Gooneratne LV, Gnanathasan CA, Wijewickrama ES. Snakebite-associated acute kidney injury in South Asia: narrative review on epidemiology, pathogenesis and management. Trans R Soc Trop Med Hyg 2025:trae077. [PMID: 39749470 DOI: 10.1093/trstmh/trae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 01/04/2025] Open
Abstract
Snakebite-associated acute kidney injury (AKI) poses a significant health burden in the South Asia region, resulting in considerable morbidity and mortality. Multiple factors contribute to the pathogenesis of AKI following snakebites, including hypotension, intravascular haemolysis, disseminated intravascular coagulation, rhabdomyolysis, thrombotic microangiopathy (TMA) and direct nephrotoxicity. Clinical features manifest as anuria, oliguria, haematuria, abdominal pain and hypertension. Diagnosis is supported by elevated serum creatinine levels and urine output monitoring. Renal histology studies revealed a spectrum of lesions, including acute tubular necrosis, renal cortical necrosis, glomerulonephritis and TMA. Management strategies centre around timely administration of antivenom, fluid and electrolyte balance and dialysis to improve renal outcomes. While dialysis has demonstrated efficacy in reducing AKI-related mortality rates, the use of fresh frozen plasma and therapeutic plasma exchange may be the subject of some controversy. Understanding the pathophysiological link between coagulopathy, TMA and AKI is important for tailoring effective treatment approaches. Species-specific randomized controlled trials are imperative to evaluate targeted interventions. In tackling the complexities of snakebite-associated AKI and chronic kidney disease, a multidisciplinary approach integrating clinical management with rigorous research efforts is essential. This collaborative endeavour aims to confront the challenges posed by these conditions and improve patient outcomes in the affected regions.
Collapse
|
10
|
Nanyonga SM, Matafwali SK, Kibira D, Kitutu FE. Treatment and treatment outcomes of snakebite envenoming in Uganda: a retrospective analysis. Trans R Soc Trop Med Hyg 2025:trae112. [PMID: 39749485 DOI: 10.1093/trstmh/trae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Snakebite envenoming is a neglected tropical disease that causes significant morbidity and mortality in rural sub-Saharan Africa. However, there is a notable lack of data concerning the management and treatment outcomes for those affected. This study addresses this gap by examining the management and treatment outcomes of snakebite victims in Uganda. METHODS We reviewed retrospective data of 532 snakebite cases attending 16 Ugandan health facilities from January 2017 to December 2021. Demographic characteristics and clinical data were extracted from patient records and summarized using descriptive statistics. RESULTS The snakebite victims had a median age of 26 y, most were male (55.3%) and had bites of unidentified snake species (92.3%). Among the 465 treated patients, 71.6% received antibiotics, 66.0% hydrocortisone, 36.3% analgesics and only 6.9% antivenom. No adverse antivenom reactions were documented. The majority (89.5%) were discharged; 1.3% died and 5.5% had unknown outcomes. CONCLUSIONS These results suggest that snakebite envenoming affects vulnerable Ugandans, particularly young males and children. Treatment is primarily supportive, with antibiotic overuse and infrequent antivenom administration. Health provider training on appropriate snakebite management is needed to optimize outcomes.
Collapse
Affiliation(s)
- Stella Maris Nanyonga
- The Pharmaceutical Society of Uganda, Plot 1847 Kyambogo House, P. O. Box 3774 Kampala, Uganda
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7LG, UK
| | - Scott Kaba Matafwali
- London School of Hygiene and Tropical Medicine, Clinical Research Department, Keppel Street, London WC1E 7HT, UK
| | - Denis Kibira
- Dumaic Global Health, Plot 470 Kiwanuka Road, Ntinda, Kampala, Uganda
| | - Freddy Eric Kitutu
- Department of Pharmacy, Makerere University School of Health Sciences, P. O. Box 7072 Kampala, Uganda
- Department of Women's and Children's Health, International Child Health and Migration, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
11
|
Gutiérrez JM, R Casewell N, Laustsen AH. Progress and Challenges in the Field of Snakebite Envenoming Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:465-485. [PMID: 39088847 DOI: 10.1146/annurev-pharmtox-022024-033544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Snakebite envenoming kills and maims hundreds of thousands of people every year, especially in the rural settings of tropical regions. Envenomings are still treated with animal-derived antivenoms, which have prevented many lives from being lost but which are also medicines in need of innovation. Strides are being made to improve envenoming therapies, with promising efforts made toward optimizing manufacturing and quality aspects of existing antivenoms, accelerating research and development of recombinant antivenoms based on monoclonal antibodies, and repurposing of small-molecule inhibitors that block key toxins. Here, we review the most recent advances in these fields and discuss therapeutic opportunities and limitations for different snakebite treatment modalities. Finally, we discuss challenges related to preclinical and clinical evaluation, regulatory pathways, large-scale manufacture, and distribution and access that need to be addressed to fulfill the goals of the World Health Organization's global strategy to prevent and control snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica;
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom;
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
12
|
Timmis K, Karahan ZC, Ramos JL, Koren O, Pérez‐Cobas AE, Steward K, de Lorenzo V, Caselli E, Douglas M, Schwab C, Rivero V, Giraldo R, Garmendia J, Turner RJ, Perlmutter J, Borrero de Acuña JM, Nikel PI, Bonnet J, Sessitsch A, Timmis JK, Pruzzo C, Prieto MA, Isazadeh S, Huang WE, Clarke G, Ercolini D, Häggblom M. Microbes Saving Lives and Reducing Suffering. Microb Biotechnol 2025; 18:e70068. [PMID: 39844583 PMCID: PMC11754571 DOI: 10.1111/1751-7915.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University BraunschweigBraunschweigGermany
| | - Zeynep Ceren Karahan
- Department of Medical Microbiology and Ibn‐i Sina Hospital Central Microbiology LaboratoryAnkara University School of MedicineAnkaraTurkey
| | - Juan Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del ZaidínGranadaSpain
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Ana Elena Pérez‐Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS)Ramón y Cajal University HospitalMadridSpain
- CIBER in Infectious Diseases (CIBERINFEC)MadridSpain
| | | | - Victor de Lorenzo
- Department of Systems BiologyNational Centre of Biotechnology CSICMadridSpain
| | - Elisabetta Caselli
- Section of Microbiology, Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Margaret Douglas
- Usher InstituteUniversity of Edinburgh Medical School, and Public Health ScotlandEdinburghUK
| | - Clarissa Schwab
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Virginia Rivero
- Polymer Biotechnology Lab, Biological Research Center Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
| | - Rafael Giraldo
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de Navarra, MutilvaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | | | | | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM/CNRSUniversity of MontpellierMontpellierFrance
| | - Angela Sessitsch
- Bioresources UnitAIT Austrian Institute of TechnologyViennaAustria
| | - James K. Timmis
- Department of Political ScienceUniversity of FreiburgFreiburgGermany
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije UniversiteitAmsterdamThe Netherlands
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenovaItaly
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Center Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
| | - Siavash Isazadeh
- Corporate Technical & PerformanceVeolia North AmericaParamusNew JerseyUSA
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry & Neurobehavioral SciencesUniversity College CorkCorkIreland
| | - Danilo Ercolini
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Max Häggblom
- Department of Biochemistry and Microbiology, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
13
|
Majeed R, Bester J, Kgarosi K, Strydom M. Mapping evidence on the regulations affecting accessibility, availability and management of snake antivenom globally: a scoping review protocol. BMJ Open 2024; 14:e086964. [PMID: 39806579 PMCID: PMC11667422 DOI: 10.1136/bmjopen-2024-086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Snakebite envenomation has been declared a neglected tropical disease by the WHO since 2017. The disease is endemic in affected areas due to the lack of availability and access to antivenom, despite it being the standard treatment for snakebites. This challenge is perpetuated by the shortcomings of the regulatory systems and policies governing the management of antivenoms. This study aims to map the evidence about regulations of snake antivenom globally and identify gaps in the literature. This protocol provides an overview of the methodology and analysis which will be used to conduct the scoping review. METHOD AND ANALYSIS The scoping review follows the guidelines from the Arksey and O'Malley framework for scoping reviews and will be reported using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews. A search strategy was developed with assistance from a health sciences librarian, and the search was done using six relevant databases. The databases used are PubMed, SCOPUS, ProQuest Central, Africa Wide Web, Academic Search Output and Web of Science. Articles in the English language and between 2009 and 2023 were included. The search results were collated, duplicates were removed and results were exported to Rayyan (https://www.rayyan.ai/) for screening. The initial screening for titles and abstracts is currently in progress, and thereafter the second round of screening will be done for full texts. Data extraction will be done using Google Forms. The results of the review will be synthesised using quantitative and qualitative tools. ETHICS AND DISSEMINATION This review will provide guidance for studies investigating regulatory gaps globally and inform future policies governing antivenom management. Ethics approval for the complete postgraduate project was obtained from the University of Pretoria Research Ethics Committee. The review will be published in a scientific journal, and findings will also be disseminated using conference presentations. TRIAL REGISTRATION This review has been registered on Open Science Framework (OSF): https://osf.io/54zja.
Collapse
Affiliation(s)
- Ramsha Majeed
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| | - Janette Bester
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Kabelo Kgarosi
- Department of Library Services, University of Pretoria, Pretoria, South Africa
| | - Morné Strydom
- Department of Pharmacology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Cavalcante JS, Arruda SST, Riciopo PM, Pucca M, Ferreira Junior RS. Diagnosis of human envenoming by terrestrial venomous animals: Routine, advances, and perspectives. Toxicon X 2024; 24:100211. [PMID: 39507426 PMCID: PMC11539352 DOI: 10.1016/j.toxcx.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Despite the development of new and advanced diagnostic approaches, monitoring the clinical evolution of accidents caused by venomous animals is still a challenge for science. In this review, we present the state of the art of laboratory tests that are routinely used for the diagnosis and monitoring of envenomings by venomous animals, as well as the use of new tools for more accurate and specific diagnoses. While a comprehensive range of tools is outlined, comprising hematological, biochemical, immunoassays, and diagnostic imaging tools, it is important to acknowledge their limitations in predicting the onset of clinical complications, since they provide an overview of organic damage after its development. Thus, the need for discovery, validation, and use of biomarkers that have greater predictive power, sensitivity and specificity is evident. This will help in the diagnosis, monitoring, and treatment of patients envenomated by venomous animals, consequently reducing the global burden of morbidity and mortality.
Collapse
Affiliation(s)
- Joeliton S. Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Sabrina Santana Toledo Arruda
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Pedro Marques Riciopo
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Manuela Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University UNESP—Univ Estadual Paulista, Araraquara, 14800-903, Brazil
| | - Rui Seabra Ferreira Junior
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18610-307, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu, 18610-307, São Paulo, Brazil
| |
Collapse
|
15
|
Di Nicola MR, Crevani M, Avella I, Cerullo A, Dorne JLCM, Paolino G, Zattera C. A Guide to the Clinical Management of Vipera Snakebite in Italy. Toxins (Basel) 2024; 16:255. [PMID: 38922149 PMCID: PMC11209566 DOI: 10.3390/toxins16060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Vipera encompasses most species of medically significant venomous snakes of Europe, with Italy harbouring four of them. Envenomation by European vipers can result in severe consequences, but underreporting and the absence of standardised clinical protocols hinder effective snakebite management. This study provides an updated, detailed set of guidelines for the management and treatment of Vipera snakebite tailored for Italian clinicians. It includes taxonomic keys for snake identification, insights into viper venom composition, and recommendations for clinical management. Emphasis is placed on quick and reliable identification of medically relevant snake species, along with appropriate first aid measures. Criteria for antivenom administration are outlined, as well as indications on managing potential side effects. While the protocol is specific to Italy, its methodology can potentially be adapted for other European countries, depending on local resources. The promotion of comprehensive data collection and collaboration among Poison Control Centres is advocated to optimise envenomation management protocols and improve the reporting of epidemiological data concerning snakebite at the country level.
Collapse
Affiliation(s)
- Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, 9820 Merelbeke, Belgium
- Asociación Herpetológica Española, Apartado de correos 191, 28911 Leganés, Spain
| | - Marta Crevani
- Poison Control Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Ignazio Avella
- Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Anna Cerullo
- Department of Veterinary Sciences, University of Turin, L.go Braccini 2, 10095 Grugliasco, Italy
| | - Jean-Lou C. M. Dorne
- Methodological and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43100 Parma, Italy
| | - Giovanni Paolino
- Unit of Dermatology and Cosmetology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Caterina Zattera
- Unit of Emergency Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo University Hospital, University of Pavia, P.Le Golgi, 19, 27100 Pavia, Italy
| |
Collapse
|
16
|
Mb L, Parmar DS, Singh S, Britto C. An indigenously developed tele-ICU model to treat severe cases of envenomation in remote regions in India. BMJ Case Rep 2024; 17:e255786. [PMID: 38782437 DOI: 10.1136/bcr-2023-255786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
In cases of severe envenomation due to snakebites, patients require antivenom, intensive care management, including respiratory support, haemodynamic monitoring and renal replacement therapy. Early recognition and treatment of complications such as acute kidney injury, rhabdomyolysis and coagulopathy are important to improve outcomes.Tele-ICU models can play a critical role in providing access to critical care expertise and nuanced support to remote healthcare facilities that may not have the necessary resources or expertise to manage complex cases of envenomation. With the help of telemedicine technology, remote intensivists can provide timely guidance on diagnosis and ongoing management, improving the quality of care and outcomes for patients. We discuss two patients in resource-constrained regions of India with severe envenomation who were managed with tele-ICU support.
Collapse
Affiliation(s)
- Lokesh Mb
- Cloudphysician Healthcare Pvt Ltd, Bengaluru, India
| | | | | | - Carl Britto
- Division of Critical CareDepartment of Anaesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Torres SV, Valle MB, Mackessy SP, Menzies SK, Casewell NR, Ahmadi S, Burlet NJ, Muratspahić E, Sappington I, Overath MD, Rivera-de-Torre E, Ledergerber J, Laustsen AH, Boddum K, Bera AK, Kang A, Brackenbrough E, Cardoso IA, Crittenden EP, Edge RJ, Decarreau J, Ragotte RJ, Pillai AS, Abedi M, Han HL, Gerben SR, Murray A, Skotheim R, Stuart L, Stewart L, Fryer TJA, Jenkins TP, Baker D. De novo designed proteins neutralize lethal snake venom toxins. RESEARCH SQUARE 2024:rs.3.rs-4402792. [PMID: 38798548 PMCID: PMC11118692 DOI: 10.21203/rs.3.rs-4402792/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more1,2. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage3 and inhibition of nicotinic acetylcholine receptors (nAChRs) resulting in life-threatening neurotoxicity4. Currently, the only available treatments for snakebite consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs5,6,7. Here, we use deep learning methods to de novo design proteins to bind short- and long-chain α-neurotoxins and cytotoxins from the 3FTx family. With limited experimental screening, we obtain protein designs with remarkable thermal stability, high binding affinity, and near-atomic level agreement with the computational models. The designed proteins effectively neutralize all three 3FTx sub-families in vitro and protect mice from a lethal neurotoxin challenge. Such potent, stable, and readily manufacturable toxin-neutralizing proteins could provide the basis for safer, cost-effective, and widely accessible next-generation antivenom therapeutics. Beyond snakebite, our computational design methodology should help democratize therapeutic discovery, particularly in resource-limited settings, by substantially reducing costs and resource requirements for development of therapies to neglected tropical diseases.
Collapse
Affiliation(s)
- Susana Vázquez Torres
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
| | - Melisa Benard Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephen P. Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Stefanie K. Menzies
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biomedical & Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom LA1 4YG8
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J. Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Edin Muratspahić
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
| | - Max D. Overath
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jann Ledergerber
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kim Boddum
- Sophion Bioscience, DK-2750 Ballerup, Denmark
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Evans Brackenbrough
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Iara A. Cardoso
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Edouard P. Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Rebecca J. Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Robert J. Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Arvind S. Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah L. Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey R. Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lynda Stuart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Thomas J. A. Fryer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105,USA
| |
Collapse
|
18
|
Thumtecho S, Burlet NJ, Ljungars A, Laustsen AH. Towards better antivenoms: navigating the road to new types of snakebite envenoming therapies. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230057. [PMID: 38116472 PMCID: PMC10729942 DOI: 10.1590/1678-9199-jvatitd-2023-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J. Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
20
|
Wood D. Clinical Risk Factors Associated with Poor Outcomes in Snake Envenoming: A Narrative Review. Toxins (Basel) 2023; 15:675. [PMID: 38133179 PMCID: PMC10747621 DOI: 10.3390/toxins15120675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Snakebite-related fatalities disproportionately affect populations in impoverished socio-economic regions, marked by limited access to adequate healthcare and constrained antivenom availability. Early medical intervention is pivotal in mitigating mortality and morbidity associated with snakebite envenoming (SBE). While clinical assessment remains fundamental in treating SBE, this review aims to spotlight objective parameters that could also affect outcomes. Selected studies that identify factors associated with poor outcomes are predominantly region-specific, single-site, and observational, yet collectively reveal similar findings. They consistently report factors such as treatment delays, susceptibility in vulnerable groups such as children and pregnant women, as well as various biochemical and haematological abnormalities. Acute kidney injury (AKI), low platelets, leucocytosis, abnormal coagulation, and elevated creatine kinase (CK) all show an association with poor outcomes. Furthermore, recognising rare and unusual SBE presentations such as adrenal insufficiency, severe hypertension, intracranial haemorrhage, acute angle closure glaucoma, and bowel ischaemia also has a bearing on outcomes. Despite the integration of these parameters into clinical decision tools and guidelines, the validation of this evidence is limited. This review underscores the imperative for high-quality, multi-centre studies aligned with consensus-driven Core Outcome Sets (COS) and Patient-Reported Outcome Measures (PROMS) to validate and strengthen the current evidence.
Collapse
Affiliation(s)
- Darryl Wood
- Department of Emergency Medicine, Blizzard Institute, Queen Mary University, London E1 2AT, UK;
- Queens Hospital, Barking, Havering and Redbridge University Trust, Rom Valley Way, Romford, London RM7 0AG, UK
| |
Collapse
|
21
|
Luo P, Ji Y, Liu X, Zhang W, Cheng R, Zhang S, Qian X, Huang C. Affected inflammation-related signaling pathways in snake envenomation: A recent insight. Toxicon 2023; 234:107288. [PMID: 37703930 DOI: 10.1016/j.toxicon.2023.107288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Snake envenomation is well known to cause grievous pathological signs, including haemorrhagic discharge, necrosis, and respiratory distress. However, inflammatory reactions are also common envenoming manifestations that lead to successive damage, such as oedema, ulceration, lymphadenectasis, systemic inflammatory response syndrome (SIRS) and even multiple organ dysfunction syndrome (MODS). Interference with the inflammatory burst is hence important in the clinical treatment of snake envenomation. Here, we summarize the typical snake toxins (or venoms) that cause inflammatory reactions and the underlying signaling pathways. In brief, inflammatory reactions are usually triggered by snake venom phospholipase A2 (svPLA2), snake venom metalloprotease (SVMP), snake venom serine protease (SVSP) and C-type lectin/snaclec (CTL) as well as disintegrin (DIS) via multiple signaling pathways. They are nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3), nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), janus kinase/signal transducer and activator of transcription (JAK-STAT) and phosphoinositide 3-Kinase/protein kinase B (PI3K/PKB also called PI3K-AKT) signaling pathways. Activation of these pathways promotes the expression of pro-inflammatory molecules such as cytokines, especially interleukin-1β (IL-1β) which causes further inflammatory cascades and manifestations, such as swelling, fever, pain, and severe complications. Remarkably, almost half of introduced snake toxins (or venoms) have anti-inflammatory effects through blocking these pathways and suppressing the expression of pro-inflammatory molecules. Investigation of affected inflammation-related signaling pathways is meaningful to achieve better clinical treatment.
Collapse
Affiliation(s)
- Peiyi Luo
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Yuxin Ji
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Xiaohan Liu
- Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| | - Weiyun Zhang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Ruoxi Cheng
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Shuxian Zhang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Xiao Qian
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| |
Collapse
|
22
|
Knudsen C, Jürgensen JA, D Knudsen P, Oganesyan I, Harrison JA, Dam SH, Haack AM, Friis RUW, Vitved L, Belfakir SB, Ross GMS, Zenobi R, H Laustsen A. Prototyping of a lateral flow assay based on monoclonal antibodies for detection of Bothrops venoms. Anal Chim Acta 2023; 1272:341306. [PMID: 37355315 DOI: 10.1016/j.aca.2023.341306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/30/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Brazil is home to a multitude of venomous snakes; perhaps the most medically relevant of which belong to the Bothrops genus. Bothrops spp. are responsible for roughly 70% of all snakebites in Brazil, and envenomings caused by their bites can be treated with three types of antivenom: bothropic antivenom, bothro-lachetic antivenom, and bothro-crotalic antivenom. The choice to administer antivenom depends on the severity of the envenoming, while the choice of antivenom depends on availability and on how certain the treating physician is that the patient was bitten by a bothropic snake. The diagnosis of a bothropic envenoming can be made based on expert identification of the dead snake or a photo thereof or based on a syndromic approach wherein the clinician examines the patient for characteristic manifestations of envenoming. This approach can be very effective but requires staff that has been trained in clinical snakebite management, which, unfortunately, far from all relevant staff has. RESULTS In this article, we describe a prototype of the first lateral flow assay (LFA) capable of detecting venoms from Brazilian Bothrops spp. The monoclonal antibodies for the assay were generated using hybridoma technology and screened in sandwich enzyme-linked immunosorbent assays (ELISAs) to identify Bothrops spp.-specific antibody sandwich pairs. The prototype LFA is able to detect venom from several Bothrops spp. The LFA has a limit of detection (LoD) of 9.5 ng/mL in urine, when read with a commercial reader, and a visual LoD of approximately 25 ng/mL. SIGNIFICANCE The work presented here serves as a proof of concept for a genus-specific venom detection kit that could support physicians in diagnosing Bothrops envenomings. Although further optimisation and testing is needed before the LFA can find clinical use, such a device could aid in decentralising antivenoms in the Brazilian Amazon and help ensure optimal snakebite management for even more victims of this highly neglected disease.
Collapse
Affiliation(s)
- Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; BioPorto Diagnostics A/S, Hellerup, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark.
| | | | | | - Irina Oganesyan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Søren H Dam
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark
| | - Aleksander M Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark
| | - Rasmus U W Friis
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark
| | - Lars Vitved
- Cancer and Inflammation, Department of Molecular Medicine, University of Southern, Denmark
| | - Selma B Belfakir
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, Kongens Lyngby, Denmark.
| |
Collapse
|
23
|
Moore CM, Ljungars A, Paul MJ, Dahl CH, Ahmadi S, Adams AC, Grav LM, Schoffelen S, Voldborg BG, Laustsen AH, Ma JKC. Characterisation of two snake toxin-targeting human monoclonal immunoglobulin G antibodies expressed in tobacco plants. Toxicon 2023:107225. [PMID: 37442299 DOI: 10.1016/j.toxicon.2023.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Current snakebite antivenoms are based on polyclonal animal-derived antibodies, which can neutralize snake venom toxins in envenomed victims, but which are also associated with adverse reactions. Therefore, several efforts within antivenom research aim to explore the utility of recombinant monoclonal antibodies, such as human immunoglobulin G (IgG) antibodies, which are routinely used in the clinic for other indications. In this study, the feasibility of using tobacco plants as bioreactors for expressing full-length human monoclonal IgG antibodies against snake toxins was investigated. We show that the plant-produced antibodies perform similarly to their mammalian cell-expressed equivalents in terms of in vitro binding. Complete neutralization was achieved by both the plant and mammalian cell-produced anti-α-cobratoxin antibody. The feasibility of using plant-based expression systems may potentially make it easier for laboratories in resource-poor settings to work with human monoclonal IgG antibodies.
Collapse
Affiliation(s)
- Catherine M Moore
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, United Kingdom.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matthew J Paul
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Camilla Holst Dahl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Christina Adams
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| |
Collapse
|
24
|
Dalhat MM, Potet J, Mohammed A, Chotun N, Tesfahunei HA, Habib AG. Availability, accessibility and use of antivenom for snakebite envenomation in Africa with proposed strategies to overcome the limitations. Toxicon X 2023; 18:100152. [PMID: 36936749 PMCID: PMC10015232 DOI: 10.1016/j.toxcx.2023.100152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Africa remains one of the regions with the highest incident and burden of snakebite. The goal of the World Health Organization to halve the global burden of snakebite by 2030 can only be achieved if sub-optimal access to antivenoms in the most affected regions is addressed. We identified upstream, midstream, and downstream factors along the antivenom value chain that prevent access to antivenoms in the African region. We identified windows of opportunities that could be utilized to ensure availability, accessibility, and affordability for snakebite endemic populations in Africa. These include implementation of multicomponent strategies such as intensified advocacy, community engagement, healthcare worker trainings, and leveraging the institutional and governance structure provided by African governments to address the challenges identified.
Collapse
Affiliation(s)
| | - Julien Potet
- Neglected Tropical Diseases, Medecins Sans Frontieres, Paris, France
| | - Abdulaziz Mohammed
- Division of Disease Control and Prevention, Africa Centres for Disease Control and Prevention, Ethiopia
| | - Nafiisah Chotun
- Division of Disease Control and Prevention, Africa Centres for Disease Control and Prevention, Ethiopia
| | - Hanna Amanuel Tesfahunei
- Division of Disease Control and Prevention, Africa Centres for Disease Control and Prevention, Ethiopia
| | - Abdulrazaq Garba Habib
- Infectious and Tropical Diseases Unit, Department of Medicine, Bayero University, Kano, Nigeria
| |
Collapse
|
25
|
Isaacson JE, Ye JJ, Silva LL, Hernandes Rocha TA, de Andrade L, Scheidt JFHC, Wen FH, Sachett J, Monteiro WM, Staton CA, Vissoci JRN, Gerardo CJ. Antivenom access impacts severity of Brazilian snakebite envenoming: A geographic information system analysis. PLoS Negl Trop Dis 2023; 17:e0011305. [PMID: 37343007 PMCID: PMC10284398 DOI: 10.1371/journal.pntd.0011305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/14/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Snakebite envenoming (SBE) is a neglected tropical disease capable of causing both significant disability and death. The burden of SBE is especially high in low- and middle-income countries. The aim of this study was to perform a geospatial analysis evaluating the association of sociodemographics and access to care indicators on moderate and severe cases of SBE in Brazil. METHODS We conducted an ecological, cross-sectional study of SBE in Brazil from 2014 to 2019 using the open access National System Identification of Notifiable Diseases (SINAN) database. We then collected a set of indicators from the Brazil Census of 2010 and performed a Principal Component Analysis to create variables related to health, economics, occupation, education, infrastructure, and access to care. Next, a descriptive and exploratory spatial analysis was conducted to evaluate the geospatial association of moderate and severe events. These variables related to events were evaluated using Geographically Weighted Poisson Regression. T-values were plotted in choropleth maps and considered statistically significant when values were <-1.96 or >+1.96. RESULTS We found that the North region had the highest number of SBE cases by population (47.83/100,000), death rates (0.18/100,000), moderate and severe rates (22.96/100,000), and proportion of cases that took more than three hours to reach healthcare assistance (44.11%). The Northeast and Midwest had the next poorest indicators. Life expectancy, young population structure, inequality, electricity, occupation, and more than three hours to reach healthcare were positively associated with greater cases of moderate and severe events, while income, illiteracy, sanitation, and access to care were negatively associated. The remaining indicators showed a positive association in some areas of the country and a negative association in other areas. CONCLUSION Regional disparities in SBE incidence and rates of poor outcomes exist in Brazil, with the North region disproportionately affected. Multiple indicators were associated with rates of moderate and severe events, such as sociodemographic and health care indicators. Any approach to improving snakebite care must work to ensure the timeliness of antivenom administration.
Collapse
Affiliation(s)
| | - Jinny Jing Ye
- Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lincoln Luís Silva
- Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Post-Graduation Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | - Thiago Augusto Hernandes Rocha
- Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Luciano de Andrade
- Department of Medicine, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Fan Hui Wen
- Antivenom Production Section, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Jacqueline Sachett
- School of Health Sciences, University of Amazonas State, Manaus, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- School of Health Sciences, University of Amazonas State, Manaus, Amazonas, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Catherine Ann Staton
- Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Joao Ricardo Nickenig Vissoci
- Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Charles John Gerardo
- Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Global Health Institute, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Senthilkumaran S, Almeida JR, Williams J, Salim A, Williams HF, Thirumalaikolundusubramanian P, Patel K, Vaiyapuri S. Russell's viper envenomation induces rectus sheath haematoma. Toxicon 2023; 224:107037. [PMID: 36690089 DOI: 10.1016/j.toxicon.2023.107037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Snakebite envenomation causes systemic and local manifestations, which result from the individual or synergistic actions of multiple venom components. The pathological hallmarks of medically important venomous snakes such as the Indian Russell's viper (Daboia russelii) are well known. Envenomation by Russell's viper is typically characterised by coagulopathies, muscular damage, nephrotoxicity, and neurotoxicity. However, recent reports have revealed several unusual complications that provide a better understanding of Russell's viper envenomation effects. To further strengthen this, here, we report a case of Russell's viper bite that induced acute abdominal pain, which was intensified on day two and conservatively treated under medical supervision. Both Fothergill and Carnett signs were positive for this patient. An ultrasound imaging revealed a dissimilar dense mass, and the abdominal computed tomography scan confirmed rectus sheath haematoma. The clinical management involved the administration of polyvalent antivenom, packed red blood cells, fresh frozen plasma, and platelets. The patient recovered gradually and was discharged from the hospital eight days after the bite. Overall, this case presentation shares an uncommon experience and adds new insights into the complex series of rare pathological events associated with Russell's viper bites in India. The scientific documentation of relatively infrequent entities based on an ongoing living assessment of medical experiences, for example, this rectus sheath haematoma, constitutes valuable guidance for an adequate diagnosis and timely treatment. Essential awareness among clinicians and further research on understanding the molecular relationship between Russell's viper venom and rectus sheath haematoma will improve patient outcomes and understanding of this condition, respectively.
Collapse
Affiliation(s)
| | - José R Almeida
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Anika Salim
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Harry F Williams
- Toxiven Biotech Private Limited, Coimbatore, 641042, Tamil Nadu, India
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | | |
Collapse
|
27
|
Challenges and Opportunities in Clinical Diagnostic Routine of Envenomation Using Blood Plasma Proteomics. Toxins (Basel) 2023; 15:toxins15030180. [PMID: 36977071 PMCID: PMC10056359 DOI: 10.3390/toxins15030180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Specific and sensitive tools for the diagnosis and monitoring of accidents by venomous animals are urgently needed. Several diagnostic and monitoring assays have been developed; however, they have not yet reached the clinic. This has resulted in late diagnoses, which represents one of the main causes of progression from mild to severe disease. Human blood is a protein-rich biological fluid that is routinely collected in hospital settings for diagnostic purposes, which can translate research progress from the laboratory to the clinic. Although it is a limited view, blood plasma proteins provide information about the clinical picture of envenomation. Proteome disturbances in response to envenomation by venomous animals have been identified, allowing mass spectrometry (MS)-based plasma proteomics to emerge as a tool in a range of clinical diagnostics and disease management that can be applied to cases of venomous animal envenomation. Here, we provide a review of the state of the art on routine laboratory diagnoses of envenomation by snakes, scorpions, bees, and spiders, as well as a review of the diagnostic methods and the challenges encountered. We present the state of the art on clinical proteomics as the standardization of procedures to be performed within and between research laboratories, favoring a more excellent peptide coverage of candidate proteins for biomarkers. Therefore, the selection of a sample type and method of preparation should be very specific and based on the discovery of biomarkers in specific approaches. However, the sample collection protocol (e.g., collection tube type) and the processing procedure of the sample (e.g., clotting temperature, time allowed for clotting, and anticoagulant used) are equally important to eliminate any bias.
Collapse
|
28
|
Discovery and optimization of a broadly-neutralizing human monoclonal antibody against long-chain α-neurotoxins from snakes. Nat Commun 2023; 14:682. [PMID: 36755049 PMCID: PMC9908967 DOI: 10.1038/s41467-023-36393-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Snakebite envenoming continues to claim many lives across the globe, necessitating the development of improved therapies. To this end, broadly-neutralizing human monoclonal antibodies may possess advantages over current plasma-derived antivenoms by offering superior safety and high neutralization capacity. Here, we report the establishment of a pipeline based on phage display technology for the discovery and optimization of high affinity broadly-neutralizing human monoclonal antibodies. This approach yielded a recombinant human antibody with superior broadly-neutralizing capacities in vitro and in vivo against different long-chain α-neurotoxins from elapid snakes. This antibody prevents lethality induced by Naja kaouthia whole venom at an unprecedented low molar ratio of one antibody per toxin and prolongs the survival of mice injected with Dendroaspis polylepis or Ophiophagus hannah whole venoms.
Collapse
|
29
|
Quiroz S, Henao Castañeda IC, Granados J, Patiño AC, Preciado LM, Pereañez JA. Inhibitory Effects of Varespladib, CP471474, and Their Potential Synergistic Activity on Bothrops asper and Crotalus durissus cumanensis Venoms. Molecules 2022; 27:8588. [PMID: 36500682 PMCID: PMC9737558 DOI: 10.3390/molecules27238588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes extensive mortality and morbidity in rural communities. Antivenim sera are the currently approved therapy for snake bites; however, they have some therapeutic limitations that have been extensively documented. Recently, small molecule toxin inhibitors have received significant attention as potential alternatives or co-adjuvant to immunoglobulin-based snakebite therapies. Thus, in this study, we evaluated the inhibitory effects of the phospholipase A2 inhibitor varespladib and the metalloproteinase inhibitor CP471474 and their synergistic effects on the lethal, edema-forming, hemorrhagic, and myotoxic activities of Bothrops asper and Crotalus durissus cumanensis venoms from Colombia. Except for the preincubation assay of the lethal activity with B. asper venom, the mixture showed the best inhibitory activity. Nevertheless, the mix did not display statistically significant differences to varespladib and CP471474 used separately in all assays. In preincubation assays, varespladib showed the best inhibitory activity against the lethal effect induced by B. asper venom. However, in independent injection assays, the mix of the compounds partially inhibited the lethal activity of both venoms (50%). In addition, in the assays to test the inhibition of edema-forming activity, the mixture exhibited the best inhibitory activity, followed by Varespladib, but without statistically significant differences (p > 0.05). The combination also decreased the myotoxic activity of evaluated venoms. In these assays, the mix showed statistical differences regarding CP471474 (p < 0.05). The mixture also abolished the hemorrhagic activity of B. asper venom in preincubation assays, with no statistical differences to CP471474. Finally, the mixture showed inhibition in studies with independent administration in a time-dependent manner. To propose a mode of action of varespladib and CP471474, molecular docking was performed. PLA2s and SVMPs from tested venoms were used as targets. In all cases, our molecular modeling results suggested that inhibitors may occupy the substrate-binding cleft of the enzymes, which was supported by specific interaction with amino acids from the active site, such as His48 for PLA2s and Glu143 for the metalloproteinase. In addition, varespladib and CP471474 also showed interaction with residues from the hydrophobic channel in PLA2s and substrate binding subsites in the SVMP. Our results suggest a synergistic action of the mixed inhibitors and show the potential of varespladib, CP471474, and their mixture to generate new treatments for snakebite envenoming with application in the field or as antivenom co-adjuvants.
Collapse
Affiliation(s)
- Sara Quiroz
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Isabel C. Henao Castañeda
- Research Group in Marine Natural Products, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 050010, Colombia
| | - Johan Granados
- Research Group in Pharmaceutical Promotion and Prevention, Universidad de Antioquia, Medellín 050010, Colombia
| | - Arley Camilo Patiño
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Lina María Preciado
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Jaime Andrés Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| |
Collapse
|
30
|
Aron MB, Kachimanga C, Kreuels B, Mailosi B, Sambani C, Matanje BL, Blessmann J, Chunga M, Momba G, Ndarama E, Kambalame DM, Connolly E, Rosenthal A, Munyaneza F. Health care workers' knowledge on identification, management and treatment of snakebite cases in rural Malawi: A descriptive study. PLoS Negl Trop Dis 2022; 16:e0010841. [PMID: 36409666 PMCID: PMC9678285 DOI: 10.1371/journal.pntd.0010841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Snakebite envenoming remains a public health threat in many African countries, including Malawi. However, there is a shortage of literature on the knowledge of Health Care Workers (HCWs) and the prevalence of snakebite cases in Malawi. We interviewed HCWs in Neno District to assess their knowledge of snake identification and management of snakebites. We further reviewed patient registers from 2018 to 2021 in all 15 health facilities in the district. We used descriptive statistics to characterize the survey population, knowledge, snake antivenom (SAV) administration, and snake identification. Using "shapefiles" from Open Street Maps, we mapped villages with snakebite cases. Of the 105 HCWs interviewed, 58% were males, and 60% had worked for less than five years. The majority (n = 93, 89%) reported that snakebite envenoming was a problem in the district. Among the clinicians, 42% said they had prescribed SAV previously, while among nurses, only 26% had ever administered SAV. There were discrepancies among clinicians regarding the dosing of snake antivenom. Significant gaps in knowledge also existed regarding snake identification. While two-thirds of HCWs could correctly name and identify venomous snake species, most (> 90%) failed for non-venomous snakes. Most (n = 100, 95%) reported that snakebite victims visit traditional healers more than the hospital. Between 2018 and 2021, the Neno District registered 185 snakebites with a yearly average of 36 cases per 100,000 population. Fifty-two percent (n = 97) were treated as an inpatient; of these cases, 72% were discharged in less than three days, and two died. More snakebite cases were recorded in the eastern part of the district. Significant knowledge gaps exist among HCWs in Neno regarding prescription and administration of SAV and snake identification, which likely challenges the quality of services offered to snakebite victims.
Collapse
Affiliation(s)
- Moses Banda Aron
- Partners In Health / Abwenzi Pa Za Umoyo, Neno, Malawi
- Research Group Snakebite Envenoming, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Benno Kreuels
- Research Group Snakebite Envenoming, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Section for Tropical Medicine, I. Department of Medicine, University Medical Center Hamburg, Germany
| | | | - Clara Sambani
- Department of Research, Ministry of Health, Lilongwe, Malawi
| | | | - Joerg Blessmann
- Research Group Snakebite Envenoming, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Mwayi Chunga
- Partners In Health / Abwenzi Pa Za Umoyo, Neno, Malawi
| | - Grace Momba
- Neno District Health Office, Ministry of Health, Neno, Malawi
| | - Enoch Ndarama
- Neno District Health Office, Ministry of Health, Neno, Malawi
| | | | - Emilia Connolly
- Partners In Health / Abwenzi Pa Za Umoyo, Neno, Malawi
- Division of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Hospital Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Anat Rosenthal
- Department of Health Policy and Management, Ben-Gurion University of the Negev, Beersheba, Israel
| | | |
Collapse
|
31
|
Little M. Is D‐dimer the new test for venom‐induced consumption coagulopathy after snakebite? Med J Aust 2022; 217:191-192. [DOI: 10.5694/mja2.51663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Mark Little
- Cairns Hospital Cairns QLD Australia
- NSW Poisons Information Centre, Children's Hospital at Westmead Sydney NSW Australia
| |
Collapse
|
32
|
Simas Pereira Junior LC, Souza JF, Rodrigues da Silva AC, Coriolano de Oliveira E, Sanchez EF, Fuly AL. Utilization of gallic acid to inhibit some toxic activities caused by Bothrops jararaca or B. jararacussu snake venoms. Toxicon 2022; 217:5-12. [PMID: 35931224 DOI: 10.1016/j.toxicon.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Snake bite envenoming is a serious public health issue, affecting thousands of people worldwide every year, especially in rural communities of tropical and subtropical countries. Injection of venom into victims may cause hemorrhaging, blood coagulation imbalance, inflammation, pain, edema, muscle necrosis, and eventually, death. The official validated treatment recommended by governments is the administration of antivenom that efficiently prevents morbidity and mortality. However, this therapy does not effectively neutralize the local effects of Viperidae venoms which constitute one of the leading causes of disability or amputation of the affected limb. Thus, bioprospecting studies seeking for alternative therapies to complement antivenom should be encouraged, especially those investigating the blockage of local venomic toxicity. Plants produce a great diversity of metabolites with a wide range of pharmacological and biological properties. Therefore, the objective of this study was to assess the utilization of gallic acid, which is widely found in plants, against some toxic in vitro (coagulation, proteolytic, and hemolytic) or in vivo (edematogenic, hemorrhagic, and lethal) activities of Bothrops jararaca or B. jararacussu venom. Gallic acid was incubated with B. jararaca or B. jararacussu venom (incubation protocol), after which, in vitro or in vivo assays were performed. Additionally, a gel containing gallic acid was developed and topically applied over the skin of mice after injection of B. jararaca or B. jararacussu venom (treatment protocol), and then, a hemorrhagic assay was carried out. As a result, gallic acid inhibited the toxic activities, with variable efficacy, and the gallic acid gel neutralized B. jararaca or B. jararacussu venom-induced hemorrhagic activity. Gallic acid was devoid of in vitro toxicity as shown through a hemocompatibility test. Thus, these findings demonstrate the potential of gallic acid in the development of an alternative agent to treat victims of snake bites inflicted by Bothrops species.
Collapse
Affiliation(s)
- Luiz Carlos Simas Pereira Junior
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências Biomédicas (Fisiologia e Farmacologia), Instituto Biomédico, Universidade Federal Fluminense, Niterói, 24210-130, Rio de Janeiro, Brazil
| | - Jenifer Frouche Souza
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Ana Cláudia Rodrigues da Silva
- Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Eduardo Coriolano de Oliveira
- Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Eladio Flores Sanchez
- Laboratório de Bioquímica de Proteínas de Venenos de Animais, Fundação Ezequiel Dias, Belo Horizonte, 30510-010, Minas Gerais, Brazil
| | - André Lopes Fuly
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências Biomédicas (Fisiologia e Farmacologia), Instituto Biomédico, Universidade Federal Fluminense, Niterói, 24210-130, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Kung'u PN, Chweya RN, Gachohi JM. Traditional remedies and other characteristics among human snakebite survivors in Baringo county, Kenya, 2010-2020: a case series. Int Health 2022; 15:242-249. [PMID: 35724263 PMCID: PMC10153557 DOI: 10.1093/inthealth/ihac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/20/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Seeking traditional remedies following snakebites leads to avoidable deaths in rural settings in developing countries. METHODS In this case series study, we identified and recruited 169 snakebite survivors in Baringo county, a hard-to-reach region in northwestern Kenya, who experienced snakebites from 2010 to 2020 using a snowballing technique. We explored associations between traditional and hospital care in managing snakebites and other characteristics. χ2 tests assessed these categorical differences. RESULTS Fifty-four (33%) of the survivors used traditional remedies to manage snakebites. The majority (56%) were men and aged >18 y (72%); 59% had low education levels and income. They sourced water from rivers or lakes (93%) and used charcoal as an energy source (74%). These survivors (>67%) resided in households practicing free-range and stall-feeding animal husbandry systems and in houses with thatch roofing or an earthen floor structure. Also, >62% reported muscle tremors, fever and chills, while 80% visited health facilities for further treatment. CONCLUSION Community sensitization covering the risks of non-effective remedies and escalation of training to traditional healers could improve the speed of referrals in hard-to-reach snakebite hotspots. Medical anthropology studies could explore the enablers of continued use of traditional remedies in snakebite management in rural communities.
Collapse
Affiliation(s)
- Peris N Kung'u
- Global Implementation Solutions, P.O. Box 7055-40100 Kisumu, Kenya
| | - Reagan N Chweya
- International Rescue Committee, P.O Box 62727-00200, Nairobi, Kenya
| | - John M Gachohi
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya.,Washington State University, Global Health-Kenya, P.O Box 72938-00200, Nairobi, Kenya
| |
Collapse
|
34
|
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151-2169. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigen. Teaser: This review provides an overview of the different strategies that can be exploited to improve the success rate of antibody phage display discovery campaigns, addressing key parameters, such as antigen presentation, selection methodologies, and specialized libraries.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - John McCafferty
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK; Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
35
|
A comparative study of endogenous phospholipase A 2 inhibitors in the serum of Brazilian pit vipers. Toxicon 2022; 213:87-91. [PMID: 35487313 DOI: 10.1016/j.toxicon.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022]
Abstract
This work compared the presence of phospholipase A2 inhibitors (PLIs) in the serum of 19 snake species maintained at Instituto Butantan to better understand the mechanisms of venom resistance in snakes and improve the treatment of snakebite. PLI was isolated from blood of 19 snake species by one-step chromatography and identified in all samples, besides its identity was confirmed through the interaction with both phospholipase A2 and anti-γPLI. These findings highlight the diversity of snake serum PLIs and emphasize the importance of structure-function studies.
Collapse
|