1
|
Torres-Bonilla KA, Bayona-Serrano JD, Sáenz-Suarez PA, Andrade-Silva D, Bernal-Bautista MH, Serrano SMT, Hyslop S. Venom proteomics and Duvernoy's venom gland histology of Pseudoboa neuwiedii (Neuwied's false boa; Dipsadidae, Pseudoboini). Toxicon 2025; 254:108218. [PMID: 39706372 DOI: 10.1016/j.toxicon.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The venom of Colombian specimens of the rear-fanged snake Pseudoboa neuwiedii contains proteolytic and phospholipase A2 (PLA2) activities, but is devoid of esterases. Mass spectrometric analysis of electrophoretic bands indicated that this venom contains C-type lectins (CTL), cysteine-rich secretory proteins (CRiSP), PLA2, snake venom metalloproteinases (SVMP), and snake venom matrix metalloproteinases (svMMP). In this investigation, we extended our characterization of P. neuwiedii by undertaking a shotgun proteomic analysis of the venom and comparing the results with a transcriptomic database for Brazilian P. neuwiedii; proteomic data previously obtained by in-gel digestion of electrophoretic bands coupled with mass spectrometry were also reanalyzed by comparing them with the transcriptomic results. The histology of the Duvernoy's venom gland was also examined. Histological analysis revealed a structural organization similar to that of other colubrids that consisted of a serous venom gland and a mucous supralabial gland. When the shotgun proteomic data were run against a general UniProt database for serpents, only metalloproteinases were identified (99% SVMPs, 1% snake endogenous matrix metalloproteinases-9 or seMMP-9). In contrast, when run against a transcriptomic database derived from the venom gland of Brazilian P. neuwiedii that contains predominantly SVMP, CRiSP, type IIE PLA2 (PLA2-IIE), CTL and seMMP-9, the main components identified were seMMP-9 (49%), SVMP (47%), CRiSP (3%) and minor components that included CTL and PLA2-IIE. These findings confirmed the previously reported general composition of P. neuwiedii venom, with metalloproteinases (SVMP and seMMP-9) being the major components, and refined the identification of certain components, e.g., type IIA PLA2 now identified as PLA2-IIE and the detection of seMMP-9 rather than svMMP. The data also indicate compositional similarity between Brazilian and Colombian P. neuwiedii venoms, and stress the need for specific databases for non-front-fanged colubroid snakes to allow accurate and more comprehensive identification of the venom components of these snakes.
Collapse
Affiliation(s)
- Kristian A Torres-Bonilla
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Juan D Bayona-Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Paula A Sáenz-Suarez
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Manuel H Bernal-Bautista
- Departamento de Biologia, Universidad del Tolima, Barrio Santa Helena Parte Alta, 731020, Ibagué, Tolima, Colombia
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Costa MT, da Silva Goulart A, Salgueiro ACF, da Rosa HS, Perazzo GX, Folmer V. Cytotoxicity and inflammation induced by Philodryas patagoniensis venom. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109356. [PMID: 35490925 DOI: 10.1016/j.cbpc.2022.109356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
Abstract
The Green racer Philodryas patagoniensis is a snake species from South America and accidents with this genus are often neglected. Therefore, this study aimed to evaluate the toxicological, cytotoxic, and inflammatory potential of P. patagoniensis venom (PpV). The experimental model Artemia salina was used to determine toxicity through the median lethal dose (LD50). Cell viability and genotoxicity were evaluated in human mononuclear cells using the Trypan blue test and the Comet assay, respectively. To assess inflammation, mice had the ventral surface of the right hind paw injected with saline, formalin, and three different concentrations of venom (1, 1.5, and 2 μg. 50 μL-1). LD50 in A. salina was 461 μg. mL-1. PpV caused a significant increase in cell death and genotoxicity in human mononuclear cells at two concentrations (575 and 1150 μg. mL-1). PpV shown also to be a strong agent causing nociception in mice. Paw edema totaled four days at 1.5 μg. 50 μL-1. The hyperalgesia caused by the venom had a long duration in mice, lasting eight days at all concentrations evaluated. Thus, we evaluated for the first time the toxicological potential of PpV in A. salina model and in leukocytes. We concluded that systemic oxidative stress, which we infer to be in the genesis of cytotoxicity and genotoxicity observed in vitro, and the inflammatory process are part of the pathways that trigger the venom damage cascades. Relevant data for both scientific research and clinical medicine. Nonetheless, studies are needed to elucidate these mechanisms.
Collapse
Affiliation(s)
- Márcio Tavares Costa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brazil.
| | - Aline da Silva Goulart
- Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Hemerson Silva da Rosa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Giselle Xavier Perazzo
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vanderlei Folmer
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| |
Collapse
|
3
|
Toxinological characterization of venom from Leptodeira annulata (Banded cat-eyed snake; Dipsadidae, Imantodini). Biochimie 2020; 174:171-188. [DOI: 10.1016/j.biochi.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
4
|
Urra FA, Miranda-Calle AB, Araya-Maturana R. Philodryas (Serpentes: Dipsadidae) Envenomation, a Neglected Issue in Chile. Toxins (Basel) 2019; 11:E697. [PMID: 31795440 PMCID: PMC6950111 DOI: 10.3390/toxins11120697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 11/17/2022] Open
Abstract
Snakebite envenomation is considered a neglected tropical disease, although it also occurs outside the tropics. In this work, we analyzed the literature on Philodryas species in Chile (Philodryaschamissonis, P.simonsii, and P.tachymenoides) from 1834 to 2019, searching for epidemiological, clinical, and molecular aspects of envenomation. Ninety-one percent of the studies found regarded taxonomy, ecology, and natural history, suggesting that snakebites and venom toxins are a neglected issue in Chile. All snakebite cases reported and toxicological studies concerned the species Philodryaschamissonis. Using 185 distributional records from the literature and museum collections for this species, we show for the first time that the reported snakebite cases correlate with human population density, occurring in the Valparaiso and Metropolitan regions in Central Chile. The reduced number of snakebite cases, which were previously considered as having a low incidence in Chile, may be a consequence of under-reported cases, probably due to the inadequate publication or scarce research on this issue. Absence of information about official pharmacological treatment, post-envenoming sequels, clinical management of particular patient groups (e.g., with non-communicable diseases, pregnant women, and the elderly) was also detected. In conclusion, despite having over 185 years of literature on Chilean snakes, knowledge on the envenomation of Philodryas genus remains scarce, seriously affecting adequate medical handling during an ophidic accident. This review highlights the need to develop deep research in this area and urgent improvements to the management of this disease in Chile.
Collapse
Affiliation(s)
- Félix A. Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7800003, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile;
| | | | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile;
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile
- Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Casilla 747, Talca 3460000, Chile
| |
Collapse
|
5
|
Torres-Bonilla KA, Andrade-Silva D, Serrano SMT, Hyslop S. Biochemical characterization of venom from Pseudoboa neuwiedii (Neuwied's false boa; Xenodontinae; Pseudoboini). Comp Biochem Physiol C Toxicol Pharmacol 2018; 213:27-38. [PMID: 29966733 DOI: 10.1016/j.cbpc.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/23/2022]
Abstract
In this work, we examined the proteolytic and phospholipase A2 (PLA2) activities of venom from the opisthoglyphous colubrid Pseudoboa neuwiedii. Proteolytic activity (3 and 10 μg of venom) was comparable to that of Bothrops neuwiedii venom but less than Bothrops atrox. This activity was inhibited by EDTA and 1,10-phenanthroline but only slightly affected (≤30% inhibition) by PMSF and AEBSF, indicating it was mediated by snake venom metalloproteinases (SVMPs). The pH and temperature optima for proteolytic activity were 8.0 and 37 °C, respectively. The venom had no esterase activity, whereas PLA2 activity was similar to B. atrox, greater than B. neuwiedii but less than B. jararacussu. SDS-PAGE revealed venom proteins >100 kDa, 45-70 kDa, 21-24 kDa and ~15 kDa, and mass spectrometry of protein bands revealed SVMPs, cysteine-rich secretory proteins (CRISPs) and PLA2, but no serine proteinases. In gelatin zymography, the most active bands occurred at 65-68 kDa (seen with 0.05-0.25 μg of venom). Caseinolytic activity occurred at 50-66 kDa and was generally weaker than gelatinolytic activity. RP-HPLC of venom yielded 15 peaks, five of which showed gelatinolytic activity; peak 7 was the most active and apparently contained a P-III class SVMP. The venom showed α-fibrinogenase activity, without affecting the β and γ chains; this activity was inhibited by EDTA and 1,10-phenanthroline. The venom did not clot rat citrated plasma but reduced the rate and extent of coagulation after plasma recalcification. In conclusion, P. neuwiedii venom is highly proteolytic and could potentially affect coagulation in vivo by degrading fibrinogen via SVMPs.
Collapse
Affiliation(s)
- Kristian A Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil
| | - Débora Andrade-Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Brazil 1500, São Paulo, SP, Brazil
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Brazil 1500, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil.
| |
Collapse
|
6
|
Xiong S, Luo Y, Zhong L, Xiao H, Pan H, Liao K, Yang M, Huang C. Investigation of the inhibitory potential of phospholipase A 2 inhibitor gamma from Sinonatrix annularis to snake envenomation. Toxicon 2017; 137:83-91. [PMID: 28746861 DOI: 10.1016/j.toxicon.2017.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/28/2022]
Abstract
SaPLIγ is a novel gamma phospholipase A2 inhibitor (PLI) recently isolated from Sinonatrix annularis, a Chinese endemic non-venomous snake. To explore the neutralization effects of saPLIγ in snakebite envenomation, a dose equivalent to LD50 of Deinagkistrodon acutus, Agkistrodon halys and Naja atra venom with/without saPLIγ was inoculated into the gastrocnemius muscle of female Kunming mice. The ability of saPLIγ to inhibit myonecrosis and systemic toxicity were evaluated through investigations of muscle histopathology, and determination of the serum levels of creatine kinase (CK), lactate dehydrogenase isoenzyme1 (LDH1) and aspartate transferase (AST). Edema of the gastrocnemius muscle was evaluated by calculating the width difference between the inoculated limb and the contralateral leg. Desmin loss in the gastrocnemius muscle was determined by Western blot analysis. Co-immunoprecipitation and shotgun LC-MS/MS analyses were performed to identify venom proteins that interact with saPLIγ. All the envenomed mice had significantly elevated serum CK, LDH1 and AST levels, whereas the levels were decreased significantly in the presence of saPLIγ. Histopathological evaluation of gastrocnemius muscle sections showed severe snake venom-induced damage, characterized by leukocyte infiltration and erythrocyte leakage, leading to local edema. Myonecrosis, hemorrhage and desmin loss were significantly attenuated by saPLIγ. SaPLIγ interacted with a wide range of venom proteins, including PLA2s, metalloproteinases and C type lectins, which may contribute to broad anti-venom effects.
Collapse
Affiliation(s)
- Shengwei Xiong
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Yunyun Luo
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Lipeng Zhong
- The Fourth Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Huixiang Xiao
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Hong Pan
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Keren Liao
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Mengxue Yang
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Chunhong Huang
- Department of Biochemistry, College of Basic Medical Science, Nanchang University, Nanchang, 330006, China; Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
7
|
Bennacef-Heffar N, Laraba-Djebari F. Beneficial effects of Heparin and l Arginine on dermonecrosis effect induced by Vipera lebetina venom: Involvement of NO in skin regeneration. Acta Trop 2017; 171:226-232. [PMID: 28427959 DOI: 10.1016/j.actatropica.2017.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/03/2017] [Accepted: 04/14/2017] [Indexed: 11/17/2022]
Abstract
It is well known that snake venoms such as Viperidae caused severe local effects such as hemorrhage, myonecrosis and dermonecrosis which can lead to permanent tissue loss or the disability. The aim of this study is to evaluate the skin regeneration using heparin and l-arginine as well as the dermonecrotic effects induced by Vipera lebetina venom (VLV). To better understand the toxic effects induced by VLV and to prevent or treat these effects, we evaluate the local effects and the skin regeneration with or without drugs. The evaluation of NO as a marker of angiogenesis was also undertaken to understand its involvement in tissue wound healing and skin regeneration after envenomation. Obtained results showed that this venom is able to induce severe necrosis characterized by hemorrhage, hair follicles' destruction, glandular structure and increased of the thickness (acanthosis) in the epidermo-dermic junction. Inflammatory cells were also observed in the dermis. Pretreatment with heparin or L arginine seemed to decrease the induced dermonecrotic after one and two weeks improving the skin regeneration. The high level of NO could be involved in this regeneration, since it participates in the skin homeostatic functions' regulation and the maintenance of the skin protective barrier integrity against microorgansims. Nitric oxide plays also a key role in wound healing; it acts as a potent mitogenic stimulus to keratinocytes during skin repair and enhances the hair follicles and sebaceous gland structure that appeared after two weeks of treatment. Thus, these drugs could be used in therapeutic approach for dermonecrotic skin repair.
Collapse
Affiliation(s)
- Nouara Bennacef-Heffar
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
8
|
Oliveira JS, Sant'Anna LB, Oliveira Junior MC, Souza PRM, Andrade Souza AS, Ribeiro W, Vieira RP, Hyslop S, Cogo JC. Local and hematological alterations induced by Philodryas olfersii snake venom in mice. Toxicon 2017; 132:9-17. [PMID: 28347748 DOI: 10.1016/j.toxicon.2017.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/13/2023]
Abstract
Envenomation by the South American opisthoglyphous snake Philodryas olfersii causes local pain, edema, erythema and ecchymosis; systemic envenomation is rare. In this work, we examined the inflammatory activity of P. olfersii venom (10, 30 and 60 μg) in mouse gastrocnemius muscle 6 h after venom injection. Intramuscular injection of venom did not affect hematological parameters such as red cell count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration. The venom caused thrombocytopenia (at all three doses), leukopenia and lymphopenia (both at the two highest doses), as well as neutrophilia (30 μg), monocytosis (30 μg) and basophilia (10 μg). Of the cytokines that were screened [IL-1β, IL-6, IL-10, IL-13, IL-17, TNF-α, IFN-γ, MIP-2 and KC] and IGF-1, only IGF-1 showed a significant increase in its circulating concentration, seen with 60 μg of venom; there were no significant changes in the cytokines compared to control mice. Histological analysis revealed the presence of edema, an inflammatory infiltrate and progressive myonecrosis. Edema and myonecrosis were greatest with 60 μg of venom, while the inflammatory infiltrate was greatest with 10 μg of venom. All venom doses caused the migration of polymorphonuclear and mononuclear leukocytes into muscle, but with no significant dose-dependence in the response. These findings show that, at the doses tested, P. olfersii venom does not cause hematological alterations and has limited effect on circulating cytokine concentrations. These data also confirm that the principal effects of the venom in mice are local edema, inflammatory cell infiltration and myonecrosis.
Collapse
Affiliation(s)
- Juliana S Oliveira
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IP&D), Vale do Paraíba University (UNIVAP), Avenida Shishima Hifumi, 2911, Urbanova, 12244-000, São José dos Campos, SP, Brazil
| | - Luciana B Sant'Anna
- Laboratory of Histology and Regenerative Therapy, Institute of Research and Development (IP&D), Vale do Paraíba University (UNIVAP), Avenida Shishima Hifumi, 2911, Urbanova, 12244-000, São José dos Campos, SP, Brazil.
| | - Manoel C Oliveira Junior
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Nove de Julho University (UNINOVE) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), 01504-000, São Paulo, SP, Brazil
| | - Pamella R M Souza
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Nove de Julho University (UNINOVE) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), 01504-000, São Paulo, SP, Brazil
| | - Adilson S Andrade Souza
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Nove de Julho University (UNINOVE) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), 01504-000, São Paulo, SP, Brazil
| | - Wellington Ribeiro
- Laboratory of Pharmacology and Biochemistry, Institute of Research and Development (IP&D), Vale do Paraíba University (UNIVAP), Avenida Shishima Hifumi, 2911, Urbanova, 12244-000, São Jose dos Campos, SP, Brazil
| | - Rodolfo P Vieira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Nove de Julho University (UNINOVE) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), 01504-000, São Paulo, SP, Brazil; Department of Bioengineering and Biomedical Engineering, Brazil University, Rua Carolina Fonseca, 584/235 (Campus I and II), Vila Santana, 08230-030, Itaquera, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887, Campinas, SP, Brazil
| | - José C Cogo
- Department of Bioengineering and Biomedical Engineering, Brazil University, Rua Carolina Fonseca, 584/235 (Campus I and II), Vila Santana, 08230-030, Itaquera, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Lopes PH, Rocha MMT, Kuniyoshi AK, Portaro FCV, Gonçalves LRC. Edema and Nociception Induced by Philodryas patagoniensis Venom in Mice: A Pharmacological Evaluation with Implications for the Accident Treatment. J Pharmacol Exp Ther 2017; 361:349-354. [PMID: 28348058 DOI: 10.1124/jpet.116.239640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/23/2017] [Indexed: 11/22/2022] Open
Abstract
We have investigated the mechanisms involved in the genesis of edema and nociception induced by Philodryas patagoniensis venom (PpV) injected into the footpad of mice. PpV induced dose-related edema and nociceptive effects. Pretreatment of mice with cyclooxygenase inhibitor (indomethacin), but not with cyclooxygenase 2 inhibitor (celecoxib) markedly inhibited both effects. Pretreatments with H1 receptor antagonist (promethazine) or with dual histamine-serotonin inhibitor (cyproheptadine) failed in inhibiting both effects. In groups pretreated with captopril (angiotensin-converting enzyme inhibitor) the edema was unaltered, but nociception was clearly increased, suggesting the participation of kinins in the pathophysiology of the nociception but not of the edema-forming effect of PpV. When PpV was treated with EDTA, the nociception was similar to the one induced by untreated venom, but edema was markedly reduced. We concluded that PpV-induced edema and nociception have cyclooxygenase eicosanoids as the main mediators and no participation of vasoactive amines. Kinins seem to participate in nociception but not in edema induced by PpV. The results also suggest that metalloproteinases are the main compounds responsible for the edema, but not for the nociception induced by this venom.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Laboratório de Imunoquímica (P.H.L., A.K.K., F.C.V.P.), Laboratório de Herpetologia/Venenos (M.M.T.R.), and Laboratório de Fisiopatologia (L.R.C.G.) Instituto Butantan, São Paulo-SP, Brazil
| | - Marisa M T Rocha
- Laboratório de Imunoquímica (P.H.L., A.K.K., F.C.V.P.), Laboratório de Herpetologia/Venenos (M.M.T.R.), and Laboratório de Fisiopatologia (L.R.C.G.) Instituto Butantan, São Paulo-SP, Brazil
| | - Alexandre Kazuo Kuniyoshi
- Laboratório de Imunoquímica (P.H.L., A.K.K., F.C.V.P.), Laboratório de Herpetologia/Venenos (M.M.T.R.), and Laboratório de Fisiopatologia (L.R.C.G.) Instituto Butantan, São Paulo-SP, Brazil
| | - Fernanda Calheta Vieira Portaro
- Laboratório de Imunoquímica (P.H.L., A.K.K., F.C.V.P.), Laboratório de Herpetologia/Venenos (M.M.T.R.), and Laboratório de Fisiopatologia (L.R.C.G.) Instituto Butantan, São Paulo-SP, Brazil
| | - Luís Roberto C Gonçalves
- Laboratório de Imunoquímica (P.H.L., A.K.K., F.C.V.P.), Laboratório de Herpetologia/Venenos (M.M.T.R.), and Laboratório de Fisiopatologia (L.R.C.G.) Instituto Butantan, São Paulo-SP, Brazil
| |
Collapse
|
10
|
Torres-Bonilla KA, Floriano RS, Schezaro-Ramos R, Rodrigues-Simioni L, da Cruz-Höfling MA. A survey on some biochemical and pharmacological activities of venom from two Colombian colubrid snakes, Erythrolamprus bizona (Double-banded coral snake mimic) and Pseudoboa neuwiedii (Neuwied's false boa). Toxicon 2017; 131:29-36. [PMID: 28284847 DOI: 10.1016/j.toxicon.2017.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022]
Abstract
Colombian colubrid snake venoms have been poorly studied. They represent a great resource of biological, ecological, toxinological and pharmacological research. We assessed some enzymatic properties and neuromuscular effects of Erythrolamprus bizona and Pseudoboa neuwiedii venoms from Colombia. Proteolytic, amidolytic and phospholipase A2 (PLA2) activities were analyzed using colorimetric assays and the neuromuscular activity was analyzed in chick biventer cervicis (BC) preparations. The venom of both species showed very low PLA2 and amidolytic activities; however, both exhibited high proteolytic activity, which in E. bizona venom surpassed that of P. neuwiedii venom. E. bizona and P. neuwiedii venoms provoked partial neuromuscular blockade, which was more prominent in P. neuwiedii venom. E. bizona venom (30 μg/ml) induced a significant potentiation of the contracture response to exogenous ACh (110 μM), which was not accompanied by twitch height alteration, whereas the highest venom concentration (100 μg/ml) inhibited contracture responses to both ACh and KCl (40 mM). In contrast, P. neuwiedii venom (30 and 100 μg/ml) caused significant reduction in the contracture responses to exogenous ACh and KCl. The morphological analyses showed high myotoxic effects in the muscle fibers of BC incubated with either venoms; however, they are more prominent in the P. neuwiedii venom. Our results suggest that the myotoxicity of the venom of the two Colombian species can be ascribed to their high proteolytic activity. An interesting data was the potentiation of the ACh-induced contracture, but not the twitch height, caused by E. bizona venom, at a concentration that is harmless to muscle fibers integrity. This phenomenon remains to be further elucidated, and suggest that a possible involvement of post-synaptic receptors cannot be discarded. This work is a contribution to expand the knowledge on colubrid venoms; it allows envisaging that the two venoms offer the potential to go further in the identification of their components and biological targets.
Collapse
Affiliation(s)
- Kristian A Torres-Bonilla
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil
| | - Rafael S Floriano
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil
| | - Raphael Schezaro-Ramos
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil
| | - Léa Rodrigues-Simioni
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
11
|
Urra FA, Pulgar R, Gutiérrez R, Hodar C, Cambiazo V, Labra A. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae). Toxicon 2015; 108:19-31. [PMID: 26410112 DOI: 10.1016/j.toxicon.2015.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/01/2022]
Abstract
Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and β subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and β subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and β subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis.
Collapse
Affiliation(s)
- Félix A Urra
- Laboratorio de Neuroetología, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile; Laboratorio de Cáncer y Bioenergética, Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile.
| | - Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Ricardo Gutiérrez
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Christian Hodar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Antonieta Labra
- Laboratorio de Neuroetología, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile; Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PB1066 Blinder, 0316 Oslo, Norway.
| |
Collapse
|
12
|
Sánchez MN, Timoniuk A, Maruñak S, Teibler P, Acosta O, Peichoto ME. Biochemical and biological analysis of Philodryas baroni (Baron’s Green Racer; Dipsadidae) venom. Hum Exp Toxicol 2013; 33:22-31. [DOI: 10.1177/0960327113493302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Philodryas baroni—an attractively colored snake—has become readily available through the exotic pet trade. Most people consider this species harmless; however, it has already caused human envenomation. As little is known about the venom from this South American opisthoglyphous “colubrid” snake, herein, we studied its protein composition by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), as well as its effects on the hemostatic system. Both reducing and nonreducing SDS-PAGE analysis demonstrated that the venom exhibits greatest complexity in the range of 50–80 kDa. The venom displayed proteolytic activity toward azocollagen, with a specific activity of 75.5 U mg−1, and rapidly hydrolyzed the Aα-chain of fibrinogen, exhibiting lower activity toward the Bβ- and γ-chains. The venom from P. baroni showed no platelet proaggregating activity per se, but it inhibited collagen- and thrombin-induced platelet aggregation. Prominent hemorrhage developed in mouse skin after intradermal injection of the crude venom, and its minimum hemorrhagic dose was 13.9 μg. When injected intramuscularly into the gastrocnemius of mice, the venom induced local effects such as hemorrhage, myonecrosis, edema, and leucocyte infiltration. Due to its venom toxicity shown herein, P. baroni should be considered dangerous to humans and any medically significant bite should be promptly reviewed by a qualified health professional.
Collapse
Affiliation(s)
- MN Sánchez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - A Timoniuk
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - S Maruñak
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - P Teibler
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - O Acosta
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - ME Peichoto
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
- Instituto Nacional de Medicina Tropical (INMeT), Neuquén y Jujuy s/n, Puerto Iguazú, Argentina
| |
Collapse
|
13
|
Peichoto ME, Tavares FL, Santoro ML, Mackessy SP. Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: a preliminary approach to understanding their biological roles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:361-9. [PMID: 22974712 DOI: 10.1016/j.cbd.2012.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022]
Abstract
Opisthoglyphous snake venoms remain under-explored despite being promising sources for ecological, evolutionary and biomedical/biotechnological research. Herein, we compared the protein composition and enzymatic properties of the venoms of Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV) from South America, and Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV) from North America. All venoms degraded azocasein, and this metalloproteinase activity was significantly inhibited by EDTA. PooV exhibited the highest level of catalytic activity towards synthetic substrates for serine proteinases. All venoms hydrolyzed acetylthiocholine at low levels, and only TblV showed phospholipase A(2) activity. 1D and 2D SDS-PAGE profile comparisons demonstrated species-specific components as well as several shared components. Size exclusion chromatograms from the three Philodryas venoms and HttV were similar, but TblV showed a notably different pattern. MALDI-TOF MS of crude venoms revealed as many as 49 distinct protein masses, assigned to six protein families. MALDI-TOF/TOF MS analysis of tryptic peptides confirmed the presence of cysteine-rich secretory proteins in all venoms, as well as a phospholipase A(2) and a three-finger toxin in TblV. Broad patterns of protein composition appear to follow phylogenetic lines, with finer scale variation likely influenced by ecological factors such as diet and habitat.
Collapse
Affiliation(s)
- María E Peichoto
- Instituto Nacional de Medicina Tropical, Puerto Iguazú, Argentina.
| | | | | | | |
Collapse
|
14
|
Weldon CL, Mackessy SP. Alsophinase, a new P-III metalloproteinase with α-fibrinogenolytic and hemorrhagic activity from the venom of the rear-fanged Puerto Rican Racer Alsophis portoricensis (Serpentes: Dipsadidae). Biochimie 2012; 94:1189-98. [PMID: 22349739 DOI: 10.1016/j.biochi.2012.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/06/2012] [Indexed: 11/30/2022]
Abstract
Metalloproteinases from snake venoms are often multi-domain enzymes involved in degradation of a variety of structural proteins. Hemorrhage and tissue necrosis are common manifestations of viperid envenomations in humans, largely due to the actions of prominent metalloproteinases, and envenomation by rear-fanged snakes may also cause hemorrhage. We purified the major metalloproteinase in Alsophis portoricensis (Puerto Rican Racer) venom through HPLC size exclusion and ion exchange chromatography. Named alsophinase, it is the first protein purified and characterized from the venom of Alsophis. Alsophinase is a single polypeptide chain protein, and based on mass, activity and complete inhibition by 1,10-phenanthroline, it is a class P-III snake venom member of the M12 ADAM family of metalloproteinases. Alsophinase has a molecular mass of 56.003kDa and an N-terminal sequence of QDTYLNAKKYIEFYLVVDNGMFxKYSxxFTV, with 67% sequence identity to a metalloproteinase isolated from venom of Philodryas olfersii (another rear-fanged species). Alsophinase rapidly catalyzed cleavage of only the Ala14-Leu15 bond of oxidized insulin B chain, had potent hemorrhagic activity in mice, and degraded only the α-subunit of human fibrinogen in vitro. Alsophinase is responsible for hemorrhagic and fibrinogenolytic activity of crude venom, and it may contribute to localized edema and ecchymosis associated with human envenomations by A. portoricensis. It may be more specific in peptide bond recognition than many well-characterized viperid P-III metalloproteinases, and it could have utility as a new protein fragmentation enzyme for mass spectrometry studies.
Collapse
Affiliation(s)
- Caroline L Weldon
- School of Biological Sciences, University of Northern Colorado, 501 20th Street, CB 92, Greeley, CO 80639-0017, USA
| | | |
Collapse
|
15
|
Peichoto ME, Zychar BC, Tavares FL, de Camargo Gonçalves LR, Acosta O, Santoro ML. Inflammatory effects of patagonfibrase, a metalloproteinase from Philodryas patagoniensis (Patagonia Green Racer; Dipsadidae) venom. Exp Biol Med (Maywood) 2011; 236:1166-72. [PMID: 21885478 DOI: 10.1258/ebm.2011.011125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patagonfibrase is a P-III class metalloproteinase isolated from the venom of Philodryas patagoniensis, a South-American, rear-fanged 'colubrid' snake responsible for accidents with clinical significance. Since local inflammatory reactions are conspicuous signs of snakebites inflicted by this species and taking into consideration that most snake venom metalloproteinases exhibit inflammatory activity, this study deals with the proinflammatory effects evoked by patagonfibrase. Herein, we demonstrate that patagonfibrase causes a time- and dose-dependent hemorrhagic edema when injected into mouse hind paws. The peak of edema occurred at 30 min after injection, and the minimum edematogenic dose was 0.021 μg. By histological analysis, the presence of moderate to marked edema and hemorrhage, and a mild inflammatory infiltrate was observed. When injected subcutaneously into the scrotal bag of mice, patagonfibrase induced cell recruitment with a significant alteration in physiological parameters of leukocyte-endothelium interaction. The presence of 1 mmol/L o-phenanthroline, which chelates metal ions, significantly inhibited the proinflammatory effects induced by patagonfibrase. Taken together, these results imply that patagonfibrase is an important contributor to local inflammation elicited by P. patagoniensis envenomation, which may pave the way for novel therapeutic strategies to treat this snakebite. Moreover, our findings demonstrate for the first time that a venom metalloproteinase from a rear-fanged snake elicits proinflammatory effects mainly mediated by its catalytic activity.
Collapse
Affiliation(s)
- María Elisa Peichoto
- Cátedra de Farmacología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Sargento Cabral 2139, 3400 Corrientes, Argentina.
| | | | | | | | | | | |
Collapse
|
16
|
Bites by the colubrid snake Philodryas patagoniensis: A clinical and epidemiological study of 297 cases. Toxicon 2010; 56:1018-24. [DOI: 10.1016/j.toxicon.2010.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 07/04/2010] [Accepted: 07/09/2010] [Indexed: 11/22/2022]
|
17
|
Zelanis A, Teixeira da Rocha MM, de Fátima Domingues Furtado M. Preliminary biochemical characterization of the venoms of five Colubridae species from Brazil. Toxicon 2010; 55:666-9. [DOI: 10.1016/j.toxicon.2009.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/19/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
18
|
Oussedik-Oumehdi H, Laraba-Djebari F. IrradiatedCerastes cerastesVenom as a Novel Tool for Immunotherapy. Immunopharmacol Immunotoxicol 2008; 30:37-52. [DOI: 10.1080/08923970701812324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Carreiro da Costa RS, Prudêncio L, Ferrari EF, Souza GHMF, de Mello SM, Prianti Júnior ACG, Ribeiro W, Zamunér SR, Hyslop S, Cogo JC. Neuromuscular action of venom from the South American colubrid snake Philodryas patagoniensis. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:31-8. [PMID: 18455482 DOI: 10.1016/j.cbpc.2008.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 11/21/2022]
Abstract
Snakes of the opisthoglyphous genus Philodryas are widespread in South America and cause most bites by colubrids in this region. In this study, we examined the neurotoxic and myotoxic effects of venom from Philodryas patagoniensis in biventer cervicis and phrenic nerve-diaphragm preparations and we compared the biochemical activities of venoms from P. patagoniensis and Philodryas olfersii. Philodryas patagoniensis venom (40 microg/mL) had no effect on mouse phrenic nerve-diaphragm preparations but caused time-dependent neuromuscular blockade of chick biventer cervicis preparations. This blockade was not reversed by washing. The highest concentration of venom tested (40 microg/mL) significantly reduced (p<0.05) the contractures to exogenous acetylcholine (55 microM and 110 microM) and K(+) (13.4 mM) after 120 min; lower concentrations of venom had no consistent or significant effect on these responses. Venom caused a concentration- and time-dependent release of creatine kinase (CK) from biventer cervicis preparations. Histological analysis showed contracted muscle fibers at low venom concentrations and myonecrosis at high concentrations. Philodryas venoms had low esterase and phospholipase A(2) but high proteolytic activities compared to the pitviper Bothrops jararaca. SDS-PAGE showed that the Philodryas venoms had similar electrophoretic profiles, with most proteins having a molecular mass of 25-80 kDa. Both of the Philodryas venoms cross-reacted with bothropic antivenom in ELISA, indicating the presence of proteins immunologically related to Bothrops venoms. RP-HPLC of P. patagoniensis venom yielded four major peaks, each of which contained several proteins, as shown by SDS-PAGE. These results indicate that P. patagoniensis venom has neurotoxic and myotoxic components that may contribute to the effects of envenoming by this species.
Collapse
Affiliation(s)
- Roberta S Carreiro da Costa
- Serpentário do Centro de Estudos da Natureza, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba , São José dos Campos, 12244-000, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rocha MMTD, Furtado MDFD. Análise das atividades biológicas dos venenos de Philodryas olfersii (Lichtenstein) e P. patagoniensis (Girard) (Serpentes, Colubridae). ACTA ACUST UNITED AC 2007. [DOI: 10.1590/s0101-81752007000200019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Philodryas olfersii (Lichtenstein, 1823) e P.patagonienis (Girard, 1857) são serpentes colubrídeas da série opistóglifa, restritas à América do Sul. Vários acidentes ocasionados por estas serpentes têm sido relatados, caracterizando-se por ação local importante: dor, edema e hemorragia. É um acidente muito semelhante àquele causado por serpentes do gênero Bothrops Wagler, 1824 e muitas vezes os pacientes são tratados com soro antibotrópico. Poucos estudos tratam da caracterização destes venenos, assim tivemos como objetivo de trabalho o estudo dos venenos de P.olfersii e P.patagonienis. Os venenos apresentaram teor de proteínas entre 75 e 90%. A atividade desfibrinante não foi detectada quando testada em camundongos. O quadro de dor causado pelo envenenamento experimental, em camundongos, mostrou que os venenos de P.olfersii e P.patagoniensis causaram intensa reatividade, sendo que o veneno de P.patagoniensis foi o mais ativo. Ambos os venenos apresentaram dose mínima edematogênica em torno de 1 µg/camundongo com ação máxima em 30 minutos.A ação hemorrágica se instalou rapidamente, com doses mínimas semelhantes. As atividades tóxicas foram semelhantes, com valores em torno de 60,0 µg/camundongo, comparáveis aos venenos botrópicos.
Collapse
|
21
|
Peichoto ME, Teibler P, Mackessy SP, Leiva L, Acosta O, Gonçalves LRC, Tanaka-Azevedo AM, Santoro ML. Purification and characterization of patagonfibrase, a metalloproteinase showing α-fibrinogenolytic and hemorrhagic activities, from Philodryas patagoniensis snake venom. Biochim Biophys Acta Gen Subj 2007; 1770:810-9. [PMID: 17306461 DOI: 10.1016/j.bbagen.2006.12.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/11/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
Venoms of Colubridae snakes are a rich source of novel compounds, which may have applications in medicine and biochemistry. In the present study, we describe the purification and characterization of a metalloproteinase (patagonfibrase), the first protein to be isolated from Philodryas patagoniensis (Colubridae) snake venom. Patagonfibrase is a single-chain protein, showing a molecular mass of 53,224 Da and an acidic isoelectric point (5.8). It hydrolyzed selectively the Aalpha-chain of fibrinogen and when incubated with fibrinogen or plasma, the thrombin clotting time was prolonged. Prominent hemorrhage developed in mouse skin after intradermal injection of patagonfibrase. When administered into mouse gastrocnemius muscle, it induced local hemorrhage and necrosis, and systemic bleeding in lungs. Patagonfibrase showed proteolytic activity toward azocasein, which was enhanced by Ca(2+) and inhibited by Zn(2+), cysteine, dithiothreitol and Na(2)EDTA. Patagonfibrase impaired platelet aggregation induced by collagen and ADP. Thus, patagonfibrase may play a key role in the pathogenesis of disturbances that occur in P. patagoniensis envenomation, and may be used as a biological tool to explore many facets of hemostasis.
Collapse
Affiliation(s)
- M E Peichoto
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Peichoto ME, Teibler P, Ruíz R, Leiva L, Acosta O. Systemic pathological alterations caused by Philodryas patagoniensis colubrid snake venom in rats. Toxicon 2006; 48:520-8. [PMID: 16911815 DOI: 10.1016/j.toxicon.2006.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Very little is known about the systemic effects caused by Philodryas patagoniensis colubrid snake venom. In this work, this venom was tested for its ability to induce histopathological changes in rats after its intramuscular, subcutaneous or intravenous administration, by light microscopic examination of some organs (cerebellum, cerebrum, lung, liver, kidney and heart). Four rats were used for each dose of 0.23, 0.45 and 0.90 mg of venom in 0.3 ml of phosphate-buffered saline solution (pH 7.4). Aliquots of blood were withdrawn at different time intervals for enzymatic determination of alanine aminotransferase, aspartate aminotransferase and creatine kinase levels. After 2h the animals were killed by an overdose of anesthetic, and samples of kidney, heart, liver, lung, cerebrum and cerebellum were taken to microscopic examination (hematoxylin and eosin stain). Histologically, no abnormality was observed in heart tissue, in none of the administration routes of the venom used. However, histological observations showed multifocal hemorrhage in cerebellum, cerebrum and lung sections, severe peritubular capillary congestion in kidney sections and hydropic degeneration in liver sections, when venom was administrated intravenously. The subcutaneous route showed similar results to the previous one, with the exception of cerebellar hemorrhage. Intramuscularly, neither cerebral nor cerebellar hemorrhage was observed. Plasma alanine aminotransferase and aspartate aminotransferase increased levels were demonstrated, mainly when venom was administered intravenously or subcutaneously. Our results suggest that P. patagoniensis venom induces moderate histopathological changes in vital organs of rats. These changes are initiated at early stages of the envenomation and may be associated with a behavioral or functional abnormality of those organs during envenoming.
Collapse
Affiliation(s)
- María Elisa Peichoto
- Cátedra de Química Biológica I, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Av. Libertad 5470, Corrientes 3400, Argentina
| | | | | | | | | |
Collapse
|
23
|
Peichoto ME, Leiva LC, Guaimás Moya LE, Rey L, Acosta O. Duvernoy's gland secretion of Philodryas patagoniensis from the northeast of Argentina: its effects on blood coagulation. Toxicon 2005; 45:527-34. [PMID: 15733575 DOI: 10.1016/j.toxicon.2004.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 12/10/2004] [Indexed: 11/19/2022]
Abstract
Duvernoy's gland secretion of Philodryas patagoniensis exhibits high hemorrhagic activity, containing enzymes that are able to degrade the vascular wall. In this work we aim to determine if the secretion can also affect the hemostatic system by causing changes in blood coagulation. Procoagulant and coagulant activities were evaluated on plasma and fibrinogen, respectively. The delay in the thrombin clotting time of fibrinogen previously incubated with the secretion was also determined. Specific hydrolysis of fibrinogen and fibrin incubated with the secretion at different time intervals was shown by electrophoresis on polyacrylamide gel. To determine the structural characteristics of the enzymes degrading fibrinogen and fibrin, secretion were incubated in the presence of 45 mM Na(2)EDTA, 40 mM Benzamidine, and/or 2 mM PMSF before the incubation with fibrinogen or fibrin, respectively. The effect in vivo was investigated in adult male rats injected with different dose of secretion, aliquots of blood were withdrawn at different time intervals, and the fibrinogen concentration was determined. Duvernoy's gland secretion of P. patagoniensis did not clot plasma or fibrinogen. It exhibited a potent fibrinogenolytic activity degrading the Aalpha-chain faster than the Bbeta-chain, whereas gamma-chain was resistant. This latter corresponded with a strong delay in the thrombin clotting time of fibrinogen (4 mg/ml) pre-incubated with the secretion, being 9.53 microg the amount of protein from Duvernoy's gland secretion that increased the thrombin clotting time from 20 to 60 s. In vivo, the loss of rat plasma fibrinogen was proportional to the amount of secretion injected. The secretion also hydrolyzed fibrin degrading the alpha-monomer. Inhibition studies with Na(2)EDTA, Benzamidine, and/or PMSF showed that metalloproteinases and serinoproteinases are the main enzymes responsible for the hydrolyzing activity on fibrinogen and fibrin. All these results demonstrate that Duvernoy's gland secretion of P. patagoniensis possesses enzymes able to hydrolyze plasma components playing a relevant role in the blood coagulation. These hydrolyzing activities and those acting on the wall of blood vessels let the secretion exhibit a high hemorrhagic activity, which may result in permanent sequelae or even cause the death of the victims bitten by this colubrid snake.
Collapse
Affiliation(s)
- M E Peichoto
- Cátedra de Química Biológica I, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Av. Libertad 5470, Corrientes 3400, Argentina
| | | | | | | | | |
Collapse
|