1
|
Castro-Pinheiro C, Junior LCSP, Sanchez EF, da Silva ACR, Dwan CA, Karpiniec SS, Critchley AT, Fuly AL. Effect of Seaweed-Derived Fucoidans from Undaria pinnatifida and Fucus vesiculosus on Coagulant, Proteolytic, and Phospholipase A 2 Activities of Snake Bothrops jararaca, B. jararacussu, and B. neuwiedi Venom. Toxins (Basel) 2024; 16:188. [PMID: 38668613 PMCID: PMC11053494 DOI: 10.3390/toxins16040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.
Collapse
Affiliation(s)
- Camila Castro-Pinheiro
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24001-970, Rio de Janeiro, Brazil; (C.C.-P.); (L.C.S.P.J.); (A.C.R.d.S.)
| | - Luiz Carlos Simas Pereira Junior
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24001-970, Rio de Janeiro, Brazil; (C.C.-P.); (L.C.S.P.J.); (A.C.R.d.S.)
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Minas Gerais, Brazil;
| | - Ana Cláudia Rodrigues da Silva
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24001-970, Rio de Janeiro, Brazil; (C.C.-P.); (L.C.S.P.J.); (A.C.R.d.S.)
| | - Corinna A. Dwan
- Marinova Pty, Ltd., Cambridge, TAS 7170, Australia; (C.A.D.); (S.S.K.)
| | | | - Alan Trevor Critchley
- Independent Researcher, The Evangeline Trail, Highway 1, Paradise, NS B0S 1R0, Canada;
| | - Andre Lopes Fuly
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24001-970, Rio de Janeiro, Brazil; (C.C.-P.); (L.C.S.P.J.); (A.C.R.d.S.)
| |
Collapse
|
2
|
Chang Estrada JE, Guerrero TN, Reyes-Enríquez DF, Nardy ES, Guimarães Ferreira R, Ruiz Calderón CJ, Wellmann IA, Monteiro Espíndola KM, do Prado AF, Soares AM, Fontes MRDM, Chagas Monteiro M, Zingali RB. Potential Biotechnological Applications of Venoms from the Viperidae Family in Central America for Thrombosis. Toxins (Basel) 2024; 16:142. [PMID: 38535808 PMCID: PMC10975971 DOI: 10.3390/toxins16030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2025] Open
Abstract
Central America is home to one of the most abundant herpetofauna in the Americas, occupying only 7% of the continent's total area. Vipers and lizards are among the most relevant venomous animals in medical practice due to the consequences of envenomation from the bite of these animals. A great diversity of biomolecules with immense therapeutic and biotechnological value is contained in their venom. This paper describes the prominent leading representatives of the family Viperidae, emphasizing their morphology, distribution, habitat, feeding, and venom composition, as well as the biotechnological application of some isolated components from the venom of the animals from these families, focusing on molecules with potential anti-thrombotic action. We present the leading protein families that interfere with blood clotting, platelet activity, or the endothelium pro-thrombotic profile. In conclusion, Central America is an endemic region of venomous animals that can provide many molecules for biotechnological applications.
Collapse
Affiliation(s)
- Jorge Eduardo Chang Estrada
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Taissa Nunes Guerrero
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Daniel Fernando Reyes-Enríquez
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Erica Santos Nardy
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Roseane Guimarães Ferreira
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.G.F.); (M.C.M.)
| | - Cristian José Ruiz Calderón
- Department of Biochemistry and Microbiology, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Irmgardt A. Wellmann
- Postgraduate Program in Tropical Medicine, State University of Amazonas, Manaus 69005-010, AM, Brazil;
- Faculty of Medical Sciences, Universidad de San Carlos de Guatemala, Guatemala City 01015, Guatemala
| | - Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Andreimar Martins Soares
- Laboratory of Biotechnology and Education Applied to One Health (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ, RONDÔNIA, Federal University of Rondônia, UNIR, Porto Velho 76812-245, RO, Brazil;
- Sao Lucas University Center, SÃO LUCAS PVH, Porto Velho 76804-414, RO, Brazil
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Basic and Applied Toxinology Research Network (RED-TOX), the National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho 76812-245, Ro, Brazil;
| | - Marcos Roberto de Mattos Fontes
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Basic and Applied Toxinology Research Network (RED-TOX), the National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho 76812-245, Ro, Brazil;
- Institute for Advanced Studies of the Sea (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente 11350-011, SP, Brazil
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil
| | - Marta Chagas Monteiro
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.G.F.); (M.C.M.)
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| |
Collapse
|
3
|
Marinho AD, Lucena da Silva E, Jullyanne de Sousa Portilho A, Lacerda Brasil de Oliveira L, Cintra Austregésilo Bezerra E, Maria Dias Nogueira B, Leitão-Araújo M, Lúcia Machado-Alves M, Correa Neto C, Seabra Ferreira R, de Fátima Aquino Moreira-Nunes C, Elisabete Amaral de Moraes M, Jorge RJB, Montenegro RC. Three snake venoms from Bothrops genus induced apoptosis and cell cycle arrest in K562 human leukemic cell line. Toxicon 2024; 238:107547. [PMID: 38065258 DOI: 10.1016/j.toxicon.2023.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
Cancer is indisputably one of the leading causes of death worldwide. Snake venoms are a potential source of bioactive compounds, complex mixtures constituted mainly of proteins and peptides with several pharmacological possibilities, including the potential to inhibit tumoral cell growth. In the present study, it was evaluated the antitumor effect of crude venom of Bothrops erythromelas (BeV), Bothrops jararaca (from Southern and Southeastern- BjsV and BjsdV, respectively) and Bothrops alternatus (BaV) in in vitro Chronic myeloid leukemia (CML) cancer cell line model. After 24 h of cell exposure to 10 and 50 μg/mL, BjsV, BjsdV, and BaV exerted a decrease in cell viability in both concentrations. BeV was not cytotoxic and, therefore wasn't chosen for further mechanism of action investigation. Furthermore, morphological alterations show modification typical of apoptosis. Also, was observes a significant cell cycle arrest in the S phase by BjsdV and BaV treatment. Flow cytometry evidenced the involvement of changes in the cell membrane permeability and the mitochondrial function by BjsV and BjsdV, corroborating with the triggering of the apoptotic pathway by the venom administration. BjsV, BjsdV, and BaV also led to extensive DNA damage and were shown to modulate the gene expression of transcripts related to the cell cycle progression and suppress the expression of the BCR-ABL1 oncogene. Altogether, these findings suggest that the venoms trigger the apoptosis pathway due to mitochondrial damage and cell cycle arrest, with modulation of intracellular pathways important for CML progression. Thus, indicating the pharmacological potential of these venoms in the development of new antitumoral compounds.
Collapse
Affiliation(s)
- Aline D Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Adrhyann Jullyanne de Sousa Portilho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Laís Lacerda Brasil de Oliveira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Emanuel Cintra Austregésilo Bezerra
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Moema Leitão-Araújo
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Dr. Salvador França St., 1427, 90690-000, Porto Alegre, RS, Brazil
| | - Maria Lúcia Machado-Alves
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Dr. Salvador França St., 1427, 90690-000, Porto Alegre, RS, Brazil
| | - Carlos Correa Neto
- Instituto Vital Brazil, Maestro José Botelho St., 64, 24230-410, Niterói, RJ, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, César Pernetta St., 1573-1675, 21941-902, Rio de Janeiro-RJ, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals, Fazenda Experimental Lageado, São Paulo State University, José Barbosa de Barros St., 1780, 18610-307, Botucatu, SP, Brazil
| | - Caroline de Fátima Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Roberta J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil
| | - Raquel C Montenegro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Larréché S, Chippaux JP, Chevillard L, Mathé S, Résière D, Siguret V, Mégarbane B. Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. Int J Mol Sci 2021; 22:ijms22179643. [PMID: 34502548 PMCID: PMC8431793 DOI: 10.3390/ijms22179643] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Toxins from Bothrops venoms targeting hemostasis are responsible for a broad range of clinical and biological syndromes including local and systemic bleeding, incoagulability, thrombotic microangiopathy and macrothrombosis. Beyond hemostais disorders, toxins are also involved in the pathogenesis of edema and in most complications such as hypovolemia, cardiovascular collapse, acute kidney injury, myonecrosis, compartmental syndrome and superinfection. These toxins can be classified as enzymatic proteins (snake venom metalloproteinases, snake venom serine proteases, phospholipases A2 and L-amino acid oxidases) and non-enzymatic proteins (desintegrins and C-type lectin proteins). Bleeding is due to a multifocal toxicity targeting vessels, platelets and coagulation factors. Vessel damage due to the degradation of basement membrane and the subsequent disruption of endothelial cell integrity under hydrostatic pressure and tangential shear stress is primarily responsible for bleeding. Hemorrhage is promoted by thrombocytopenia, platelet hypoaggregation, consumption coagulopathy and fibrin(ogen)olysis. Onset of thrombotic microangiopathy is probably due to the switch of endothelium to a prothrombotic phenotype with overexpression of tissue factor and other pro-aggregating biomarkers in association with activation of platelets and coagulation. Thrombosis involving large-caliber vessels in B. lanceolatus envenomation remains a unique entity, which exact pathophysiology remains poorly understood.
Collapse
Affiliation(s)
- Sébastien Larréché
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
- Department of Medical Biology, Bégin Military Teaching Hospital, 94160 Saint-Mandé, France
| | - Jean-Philippe Chippaux
- MERIT, IRD, Paris University, 75006 Paris, France;
- CRT, Pasteur Institute, 75015 Paris, France
| | - Lucie Chevillard
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
| | - Simon Mathé
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
| | - Dabor Résière
- Clinical Toxicology Unit, Critical Care Department, University Hospital of Martinique, Fort de France, 97200 Martinique, France;
| | - Virginie Siguret
- INSERM, UMRS-1140, Paris University, 75006 Paris, France;
- Laboratory of Hematology, Lariboisière Hospital, 75010 Paris, France
| | - Bruno Mégarbane
- INSERM, UMRS-1144, Paris University, 75006 Paris, France; (S.L.); (L.C.); (S.M.)
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, 75010 Paris, France
- Correspondence: ; Tel.: +33-(0)-143-985-299
| |
Collapse
|
5
|
Ferraz CR, Carvalho TT, Fattori V, Saraiva-Santos T, Pinho-Ribeiro FA, Borghi SM, Manchope MF, Zaninelli TH, Cunha TM, Casagrande R, Clissa PB, Verri WA. Jararhagin, a snake venom metalloproteinase, induces mechanical hyperalgesia in mice with the neuroinflammatory contribution of spinal cord microglia and astrocytes. Int J Biol Macromol 2021; 179:610-619. [PMID: 33662422 DOI: 10.1016/j.ijbiomac.2021.02.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Jararhagin is a hyperalgesic metalloproteinase from Bothrops jararaca venom. In rodents, jararhagin induces nociceptive behaviors that correlate with an increase in peripheral cytokine levels. However, the role of the spinal cord glia in pain processing after peripheral stimulus of jararhagin has not been investigated. Aiming to explore this proposal, mice received intraplantar (i.pl.) injection of jararhagin and the following parameters were evaluated: hyperalgesia, spinal cord TNF-α, IL-1β levels, and CX3CR1, GFAP and p-NFκB activation. The effects of intrathecal (i.t.) injection of TNF-α soluble receptor (etanercept), IL-1 receptor antagonist (IL-1Ra), and inhibitors of NFκB (PDTC), microglia (minocycline) and astrocytes (α-aminoadipate) were investigated. Jararhagin inoculation induced cytokine production (TNF-α and IL-1β) in the spinal cord, which was reduced by treatment with PDTC (40% and 50%, respectively). Jararhagin mechanical hyperalgesia and cytokine production were inhibited by treatment with etanercept (67%), IL-1Ra (60%), PDTC (70%), minocycline (60%) and α-aminoadipate (45%). Furthermore, jararhagin induced an increase in p-NFκB, CX3CR1 and GFAP detection in the spinal cord indicating activation of NFκB, microglia and astrocytes. These results demonstrate for the first time that jararhagin-induced mechanical hyperalgesia is dependent on spinal cord activation of glial cells, consequent NFκB activation, and cytokine production in mice.
Collapse
Affiliation(s)
- Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Thacyana T Carvalho
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil; Center for Research in Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Marília F Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, Londrina, Parana, Brazil
| | - Patricia B Clissa
- Laboratory of Immunopathology, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
6
|
Functional variability of Bothrops atrox venoms from three distinct areas across the Brazilian Amazon and consequences for human envenomings. Toxicon 2019; 164:61-70. [DOI: 10.1016/j.toxicon.2019.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/21/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022]
|
7
|
Cesar PHS, Braga MA, Trento MVC, Menaldo DL, Marcussi S. Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Curr Drug Targets 2019; 20:465-477. [DOI: 10.2174/1389450119666181022154737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Disintegrins are non-enzymatic proteins that interfere on cell–cell interactions and signal transduction, contributing to the toxicity of snake venoms and play an essential role in envenomations. Most of their pharmacological and toxic effects are the result of the interaction of these molecules with cell surface ligands, which has been widely described and studied. These proteins may act on platelets, leading to hemorrhage, and may also induce apoptosis and cytotoxicity, which highlights a high pharmacological potential for the development of thrombolytic and antitumor agents. Additionally, these molecules interfere with the functions of integrins by altering various cellular processes such as migration, adhesion and proliferation. This review gathers information on functional characteristics of disintegrins isolated from snake venoms, emphasizing a comprehensive view of the possibility of direct use of these molecules in the development of new drugs, or even indirectly as structural models.
Collapse
Affiliation(s)
- Pedro Henrique Souza Cesar
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Mariana Aparecida Braga
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Marcus Vinicius Cardoso Trento
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Danilo Luccas Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (FCFRP-USP), Ribeirão Preto-SP, Brazil
| | - Silvana Marcussi
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
8
|
Xie B, Yu H, Kerkkamp H, Wang M, Richardson M, Shi Q. Comparative transcriptome analyses of venom glands from three scorpionfishes. Genomics 2018; 111:231-241. [PMID: 30458272 DOI: 10.1016/j.ygeno.2018.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/15/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022]
Abstract
Scorpionfishes (Scorpaenidae) are a relatively common cause of human envenomation. They often enter coastal waters and their stings can be quite hazardous, provoking extreme pain and causing the victims to take days to recover. There are few genomic resources available for the scorpionfishes. In this study, we elucidated the transcriptomic profile of the venom glands from three different scorpionfish species, namely Scorpaenopsis cirrosa, S. neglecta and S. possi. This is the first report of scorpionfish transcriptomes. After functional and pathway annotation, we employed toxin annotation to identify many species-specific (18, 13 and 19 respectively) and overlapping putative toxins among the three species. Our study represents a significant improvement in the genetic information about the venoms from these three species. Moreover, this work also provides an archive for future studies on evolution of fish toxins and can be used for comparative studies of other fishes.
Collapse
Affiliation(s)
- Bing Xie
- Institute of Biology Leiden, Leiden University, Leiden 2333BE, Netherlands; BGI-Shenzhen, Shenzhen 518083, China.
| | - Huang Yu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Harald Kerkkamp
- Institute of Biology Leiden, Leiden University, Leiden 2333BE, Netherlands.
| | - Min Wang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Michael Richardson
- Institute of Biology Leiden, Leiden University, Leiden 2333BE, Netherlands.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| |
Collapse
|
9
|
Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104:94-113. [PMID: 30261311 DOI: 10.1016/j.biocel.2018.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
Both mythologically and logically, snakes have always fascinated man. Snakes have attracted both awe and fear not only because of the elegant movement of their limbless bodies, but also because of the potency of their deadly venoms. Practically, in 2017, the world health organization (WHO) listed snake envenomation as a high priority neglected disease, as snakes inflict up to 2.7 million poisonous bites, around 100.000 casualties, and about three times as many invalidities on man. The venoms of poisonous snakes are a cocktail of potent compounds which specifically and avidly target numerous essential molecules with high efficacy. The individual effects of all venom toxins integrate into lethal dysfunctions of almost any organ system. It is this efficacy and specificity of each venom component, which after analysis of its structure and activity may serve as a potential lead structure for chemical imitation. Such toxin mimetics may help in influencing a specific body function pharmaceutically for the sake of man's health. In this review article, we will give some examples of snake venom components which have spurred the development of novel pharmaceutical compounds. Moreover, we will provide examples where such snake toxin-derived mimetics are in clinical use, trials, or consideration for further pharmaceutical exploitation, especially in the fields of hemostasis, thrombosis, coagulation, and metastasis. Thus, it becomes clear why a snake captured its symbolic place at the Asclepius rod with good reason still nowadays.
Collapse
Affiliation(s)
- Maria-Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Benjamin Johanningmeier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
10
|
Amazonas DR, Portes-Junior JA, Nishiyama-Jr MY, Nicolau CA, Chalkidis HM, Mourão RH, Grazziotin FG, Rokyta DR, Gibbs HL, Valente RH, Junqueira-de-Azevedo IL, Moura-da-Silva AM. Molecular mechanisms underlying intraspecific variation in snake venom. J Proteomics 2018; 181:60-72. [DOI: 10.1016/j.jprot.2018.03.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/08/2018] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
|
11
|
Xiong S, Huang C. Synergistic strategies of predominant toxins in snake venoms. Toxicol Lett 2018; 287:142-154. [PMID: 29428543 DOI: 10.1016/j.toxlet.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/17/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022]
Abstract
Synergism is a significant phenomenon present in snake venoms that may be an evolving strategy to potentiate toxicities. Synergism exists between different toxins or toxin complexes in various snake venoms, with phospholipaseA2s (PLA2s) (toxins or subunits) the main enablers. The predominant toxins, snake venom PLA2s, metalloproteases (SVMPs), serine proteases (SVSPs) and three-finger toxins (3FTxs), play essential roles in synergistic processes. The hypothetical mechanisms of synergistic effect can be generalized under the effects of amplification and chaperoning. The Toxicity Score is among the few quantitative methods to assess synergism. Selection of toxins involved in synergistically enhanced toxicity as the targets are important for development of novel antivenoms or inhibitors.
Collapse
Affiliation(s)
- Shengwei Xiong
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
12
|
de Queiroz MR, de Sousa BB, da Cunha Pereira DF, Mamede CCN, Matias MS, de Morais NCG, de Oliveira Costa J, de Oliveira F. The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon 2017; 133:33-47. [PMID: 28435120 DOI: 10.1016/j.toxicon.2017.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/09/2022]
Abstract
The human body has a set of physiological processes, known as hemostasis, which keeps the blood fluid and free of clots in normal vessels; in the case of vascular injury, this process induces the local formation of a hemostatic plug, preventing hemorrhage. The hemostatic system in humans presents complex physiological interactions that involve platelets, plasma proteins, endothelial and subendothelial structures. Disequilibrium in the regulatory mechanisms that control the growth and the size of the thrombus is one of the factors that favors the development of diseases related to vascular disorders such as myocardial infarction and stroke, which are among the leading causes of death in the western world. Interfering with platelet function is a strategy for the treatment of thrombotic diseases. Antiplatelet drugs are used mainly in cases related to arterial thrombosis and interfere in the formation of the platelet plug by different mechanisms. Aspirin (acetylsalicylic acid) is the oldest and most widely used antithrombotic drug. Although highly effective in most cases, aspirin has limitations compared to other drugs used in the treatment of homeostatic disorders. For this reason, research related to molecules that interfere with platelet aggregation are of great relevance. In this regard, snake venoms are known to contain a number of molecules that interfere with hemostasis, including platelet function. The mechanisms by which snake venom components inhibit or activate platelet aggregation are varied and can be used as tools for the diagnosis and the treatment of several hemostatic disorders. The aim of this review is to present the role of platelets in hemostasis and the mechanisms by which snake venom toxins interfere with platelet function.
Collapse
Affiliation(s)
- Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | | | - Carla Cristine Neves Mamede
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - Mariana Santos Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Júnia de Oliveira Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Ituiutaba, MG, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Sousa LF, Portes-Junior JA, Nicolau CA, Bernardoni JL, Nishiyama-Jr MY, Amazonas DR, Freitas-de-Sousa LA, Mourão RHV, Chalkidis HM, Valente RH, Moura-da-Silva AM. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon. J Proteomics 2017; 159:32-46. [DOI: 10.1016/j.jprot.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
|
14
|
Snake Genome Sequencing: Results and Future Prospects. Toxins (Basel) 2016; 8:toxins8120360. [PMID: 27916957 PMCID: PMC5198554 DOI: 10.3390/toxins8120360] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022] Open
Abstract
Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.
Collapse
|
15
|
Exploiting the antithrombotic effect of the (pro)thrombin inhibitor bothrojaracin. Toxicon 2016; 119:46-51. [PMID: 27179421 DOI: 10.1016/j.toxicon.2016.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
Abstract
Bothrojaracin is a 27 kDa C-type lectin-like protein from Bothrops jararaca snake venom. It behaves as a potent thrombin inhibitor upon high-affinity binding to thrombin exosites. Bothrojaracin also forms a stable complex with prothrombin that can be detected in human plasma. Formation of the zymogen-inhibitor complex severely decreases prothrombin activation and contributes to the anticoagulant activity of bothrojaracin. In the present study, we employed two rodent models to evaluate the antithrombotic effect of bothrojaracin in vivo: stasis-induced thrombosis and thrombin-induced pulmonary thromboembolism. It was observed that bothrojaracin interacts with rat prothrombin in plasma. Ex-vivo assays showed stable complex formation even after 24 h of a single bothrojaracin dose. As a result, bothrojaracin showed significant antithrombotic activity in a rat venous thrombosis model elicited by thromboplastin combined with stasis. The antithrombotic activity of bothrojaracin (1 mg/kg) persisted for up to 24 h and it was associated with moderate bleeding as assessed by a tail transection method. Formation of bothrojaracin-prothrombin complex has been also observed following intravenous administration of the inhibitor into mice. As a result, bothrojaracin effectively protected mice from thrombin-induced fatal thromboembolism. We conclude that bothrojaracin is a potent antithrombotic agent in vivo and may serve as a prototype for the development of new zymogen-directed drugs that could result in prolonged half-life and possible decreased hemorrhagic risk.
Collapse
|
16
|
Marinho AD, Morais ICO, Lima DB, Jorge ARC, Jorge RJB, Menezes RRPPB, Mello CP, Pereira GJS, Silveira JAM, Toyama MH, Orzáez M, Martins AMC, Monteiro HSA. Bothropoides pauloensis venom effects on isolated perfused kidney and cultured renal tubular epithelial cells. Toxicon 2015; 108:126-33. [PMID: 26410111 DOI: 10.1016/j.toxicon.2015.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022]
Abstract
Snake envenomation (Bothrops genus) is common in tropical countries and acute kidney injury is one of the complications observed in Bothrops snakebite with relevant morbidity and mortality. Here, we showed that Bothropoides pauloensis venom (BpV) decreased cell viability (IC50 of 7.5 μg/mL). Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by apoptosis and late apoptosis, through caspases 3 and 7 activation, mitochondrial membrane potential collapse and ROS overproduction. BpV reduced perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, percentage of sodium, chloride or potassium tubular transportation. These findings demonstrated that BpV cytotoxicity on renal epithelial cells might be responsible for the nephrotoxicity observed in isolated kidney.
Collapse
Affiliation(s)
- Aline D Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil.
| | - Isabel C O Morais
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Dânya B Lima
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Antônio R C Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Roberta J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Ramon R P P B Menezes
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Clarissa P Mello
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - João A M Silveira
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Marcos H Toyama
- São Vicente Unit, Paulista Coastal Campus, São Paulo State University (UNESP), São Paulo, Brazil
| | - Mar Orzáez
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alice M C Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Helena S A Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| |
Collapse
|
17
|
Bernardoni JL, Sousa LF, Wermelinger LS, Lopes AS, Prezoto BC, Serrano SMT, Zingali RB, Moura-da-Silva AM. Functional variability of snake venom metalloproteinases: adaptive advantages in targeting different prey and implications for human envenomation. PLoS One 2014; 9:e109651. [PMID: 25313513 PMCID: PMC4196926 DOI: 10.1371/journal.pone.0109651] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) are major components in most viperid venoms that induce disturbances in the hemostatic system and tissues of animals envenomated by snakes. These disturbances are involved in human pathology of snake bites and appear to be essential for the capture and digestion of snake's prey and avoidance of predators. SVMPs are a versatile family of venom toxins acting on different hemostatic targets which are present in venoms in distinct structural forms. However, the reason why a large number of different SVMPs are expressed in some venoms is still unclear. In this study, we evaluated the interference of five isolated SVMPs in blood coagulation of humans, birds and small rodents. P-III class SVMPs (fractions Ic, IIb and IIc) possess gelatinolytic and hemorrhagic activities, and, of these, two also show fibrinolytic activity. P-I class SVMPs (fractions IVa and IVb) are only fibrinolytic. P-III class SVMPs reduced clotting time of human plasma. Fraction IIc was characterized as prothrombin activator and fraction Ic as factor X activator. In the absence of Ca2+, a firm clot was observed in chicken blood samples with fractions Ic, IIb and partially with fraction IIc. In contrast, without Ca2+, only fraction IIc was able to induce a firm clot in rat blood. In conclusion, functionally distinct forms of SVMPs were found in B. neuwiedi venom that affect distinct mechanisms in the coagulation system of humans, birds and small rodents. Distinct SVMPs appear to be more specialized to rat or chicken blood, strengthening the current hypothesis that toxin diversity enhances the possibilities of the snakes for hunting different prey or evading different predators. This functional diversity also impacts the complexity of human envenoming since different hemostatic mechanisms will be targeted by SVMPs accounting for the complexity of the response of humans to venoms.
Collapse
Affiliation(s)
| | - Leijiane F. Sousa
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Luciana S. Wermelinger
- Laboratório de Hemostasia e Venenos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
- Laboratório de Fisiopatologia da Trombose, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
| | - Aline S. Lopes
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), FAPESP, São Paulo, SP, Brazil
| | | | - Solange M. T. Serrano
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), FAPESP, São Paulo, SP, Brazil
| | - Russolina B. Zingali
- Laboratório de Hemostasia e Venenos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
| | | |
Collapse
|
18
|
Fernandes FFA, Tomaz MA, El-Kik CZ, Monteiro-Machado M, Strauch MA, Cons BL, Tavares-Henriques MS, Cintra ACO, Facundo VA, Melo PA. Counteraction of Bothrops snake venoms by Combretum leprosum root extract and arjunolic acid. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:552-562. [PMID: 24952279 DOI: 10.1016/j.jep.2014.05.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/17/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Serotherapy against snakebite is often unavailable in some regions over Brazil, where people make use of plants from folk medicine to deal with ophidic accidents. About 10% of Combretum species have some ethnopharmacological use, including treatment of snakebites. MATERIALS AND METHODS We evaluated the ability of the extract of Combretum leprosum and its component arjunolic acid to reduce some in vivo and in vitro effects of Bothrops jararacussu and Bothrops jararaca venoms. The protocols investigated include phospholipase, proteolytic, collagenase, hyaluronidase, procoagulant, hemorrhagic, edematogenic, myotoxic and lethal activities induced by these venoms in Swiss mice. RESULTS Oral pre-treatment with arjunolic acid reduced the Bothrops jararacussu lethality in up to 75%, while preincubation prevented the death of all the animals. Hemoconcentration effect of Bothrops jararacussu venom was confirmed two hours after i.p. injection, while preincubation with arjunolic acid preserved the hematocrit levels. Both Combretum leprosum extract and arjunolic acid abolished the myotoxic action of Bothrops jararacussu venom. Preincubation of Bothrops jararacussu venom with the extract or arjunolic acid prevented the increase of plasma creatine kinase activity in mice. The hemorrhagic activity of Bothrops jararaca crude venom was reduced down to about 90% and completely inhibited by preincubation with 10 mg/kg or 100 mg/kg Combretum leprosum extract, respectively, while the preincubation and the pretreatment with 30 mg/kg of arjunolic acid reduced the venom hemorrhagic activity down to about 12% and 58%, respectively. The preincubation of the venom with both extract and 30 mg/kg arjunolic acid significantly reduced the bleeding amount induced by Bothrops jararacussu venom. The extract of Combretum leprosum decreased the edema formation induced by Bothrops jararacussu venom both in preincubation and pretreatment, but not in posttreatment. Similarly, arjunolic acid preincubated with the venom abolished edema formation, while pre- and posttreatment have been partially effective. Some enzymatic activities of Bothrops jararacussu and Bothrops jararaca venoms, i.e. phospholipase A2, collagenase, proteolytic and hyaluronidase activities, were to some extent inhibited by the extract and arjunolic acid in a concentration-dependent manner. CONCLUSIONS Altogether, our results show that Combretum leprosum extract can inhibit different activities of two important Brazilian snake venoms, giving support for its popular use in folk medicine in the management of venomous snakebites.
Collapse
Affiliation(s)
- Fabrício F A Fernandes
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo A Tomaz
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Camila Z El-Kik
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Monteiro-Machado
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo A Strauch
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno L Cons
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Matheus S Tavares-Henriques
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Valdir A Facundo
- Departamento de Química - Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Paulo A Melo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Mendes MM, Vieira SAPB, Gomes MSR, Paula VF, Alcântara TM, Homsi-Brandeburgo MI, dos Santos JI, Magro AJ, Fontes MRM, Rodrigues VM. Triacontyl p-coumarate: an inhibitor of snake venom metalloproteinases. PHYTOCHEMISTRY 2013; 86:72-82. [PMID: 23141056 DOI: 10.1016/j.phytochem.2012.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/18/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A(2)). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37°C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH - minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments.
Collapse
Affiliation(s)
- M M Mendes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
da Silva IRF, Lorenzetti R, Rennó AL, Baldissera L, Zelanis A, Serrano SMDT, Hyslop S. BJ-PI2, A non-hemorrhagic metalloproteinase from Bothrops jararaca snake venom. Biochim Biophys Acta Gen Subj 2012; 1820:1809-21. [DOI: 10.1016/j.bbagen.2012.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/07/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
|
21
|
Abstract
Recent proteomic analyses of snake venoms show that metalloproteinases represent major components in most of the Crotalid and Viperid venoms. In this chapter we discuss the multiple activities of the SVMPs. In addition to hemorrhagic activity, members of the SVMP family also have fibrin(ogen)olytic activity, act as prothrombin activators, activate blood coagulation factor X, possess apoptotic activity, inhibit platelet aggregation, are pro-inflammatory and inactivate blood serine proteinase inhibitors. Clearly the SVMPs have multiple functions in addition to their well-known hemorrhagic activity. The realization that there are structural variations in the SVMPs and the early studies that led to their classification represents an important event in our understanding of the structural forms of the SVMPs. The SVMPs were subdivided into the P-I, P-II and P-III protein classes. The noticeable characteristic that distinguished the different classes was their size (molecular weight) differences and domain structure: Class I (P-I), the small SVMPs, have molecular masses of 20-30 kDa, contain only a pro domain and the proteinase domain; Class II (P-II), the medium size SVMPs, molecular masses of 30-60 kDa, contain the pro domain, proteinase domain and disintegrin domain; Class III (P-III), the large SVMPs, have molecular masses of 60-100 kDa, contain pro, proteinase, disintegrin-like and cysteine-rich domain structure. Another significant advance in the SVMP field was the characterization of the crystal structure of the first P-I class SVMP. The structures of other P-I SVMPs soon followed and the structures of P-III SVMPs have also been determined. The active site of the metalloproteinase domain has a consensus HEXXHXXGXXHD sequence and a Met-turn. The "Met-turn" structure contains a conserved Met residue that forms a hydrophobic basement for the three zinc-binding histidines in the consensus sequence.
Collapse
Affiliation(s)
- Francis S Markland
- University of Southern California, Keck School of Medicine, Cancer Research Laboratory #106, 1303 N. Mission Rd., Los Angeles, CA 90033, USA.
| | | |
Collapse
|
22
|
Moura-da-Silva AM, Baldo C. Jararhagin, a hemorrhagic snake venom metalloproteinase from Bothrops jararaca. Toxicon 2012; 60:280-9. [PMID: 22534074 DOI: 10.1016/j.toxicon.2012.03.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
Jararhagin is a metalloproteinase isolated from Bothrops jararaca snake venom, which has been extensively studied. These studies showed its involvement on most of the systemic and local damaging effects of snakebite envenomings. In this review we comment on the major targets of jararhagin as the vascular endothelium, platelets and coagulation factors and also its action on other cell systems as inflammatory cells and their mediators, cancer and cell signaling. The mechanisms of jararhagin action are discussed together with structural features essential for the expression of its biological activities. The studies reviewed here denote jararhagin as a prototype for studies of snake venom metalloproteinases, bringing new insights into cellular-matrix interactions and adding for the improvement of snakebite treatment.
Collapse
Affiliation(s)
- Ana M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil 1500, CEP-05503-900 São Paulo, SP, Brazil.
| | | |
Collapse
|
23
|
Brand GD, Salbo R, Jørgensen TJD, Bloch C, Boeri Erba E, Robinson CV, Tanjoni I, Moura-da-Silva AM, Roepstorff P, Domont GB, Perales J, Valente RH, Neves-Ferreira AGC. The interaction of the antitoxin DM43 with a snake venom metalloproteinase analyzed by mass spectrometry and surface plasmon resonance. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:567-73. [PMID: 22549991 DOI: 10.1002/jms.2990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
DM43 is a circulating dimeric antitoxin isolated from Didelphis aurita, a South American marsupial naturally immune to snake envenomation. This endogenous inhibitor binds non-covalently to jararhagin, the main hemorrhagic metalloproteinase from Bothrops jararaca snake venom, and efficiently neutralizes its toxicity. The aim of this study was to apply mass spectrometry (MS) and surface plasmon resonance (SPR) to improve the molecular characterization of this heterocomplex. The stoichiometry of the interaction was confirmed by nanoelectrospray ionization-quadrupole-time-of-flight MS; from native solution conditions, the complex showed a molecular mass of ~94 kDa, indicating that one molecule of jararhagin (50 kDa) interacts with one monomer of DM43 (43 kDa). Although readily observed in solution, the dimeric structure of the inhibitor was barely preserved in the gas phase. This result suggests that, in contrast to the toxin-antitoxin complex, hydrophobic interactions are the primary driving force for the inhibitor dimerization. For the real-time interaction analysis, the toxin was captured on a sensor chip derivatized with the anti-jararhagin monoclonal antibody MAJar 2. The sensorgrams obtained after successive injections of DM43 in a concentration series were globally fitted to a simple bimolecular interaction, yielding the following kinetic rates for the DM43/jararhagin interaction: k(a) = 3.54 ± 0.03 × 10(4) M(-1) s(-1) and k(d) = 1.16 ± 0.07 × 10(-5) s(-1), resulting in an equilibrium dissociation constant (K(D) ) of 0.33 ± 0.06 nM. Taken together, MS and SPR results show that DM43 binds to its target toxin with high affinity and constitute the first accurate quantitative study on the extent of the interaction between a natural inhibitor and a metalloproteinase toxin, with unequivocal implications for the use of this kind of molecule as template for the rational development of novel antivenom therapies.
Collapse
Affiliation(s)
- Guilherme D Brand
- Laboratório de Espectrometria de Massa, Embrapa-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, 70770-900, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barrios M, Taylor P, Rodríguez-Acosta A, Sánchez EE, Arocha-Piñango CL, Gil A, Salazar AM, Carvajal Z, Abad MJ, Guerrero B. A mouse model to study the alterations in haemostatic and inflammatory parameters induced by Lonomia achelous caterpillar haemolymph. Toxicon 2012; 59:547-54. [PMID: 22310207 DOI: 10.1016/j.toxicon.2012.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 11/30/2022]
Abstract
A mouse model was established to reproduce the haemorrhagic syndrome which occurs in humans after accidental contact with the hairs of the caterpillar Lonomia achelous (LA) and measures the haemostatic and inflammatory alterations that occur as a result of this contact. Mice were injected intradermally with different doses (0.4, 0.8 and 1.6 mg/animal) of L. achelous haemolymph (LAH). Haematological (haemoglobin, haematocrit, platelet count, differential leukocyte count), haemostatic (fibrinogen, plasminogen, factor XIII [FXIII], fibrinolytic activity) and inflammatory parameters (tumour necrosis factor alpha [TNF-α], nitric oxide [NO]) were measured at different times up to 48 h. C57BL/6 mice responded to LAH injection, in terms of these parameters, in a manner similar to that seen in humans, whereas the BALB/c mice were unresponsive. In C57BL/6 mice injected with LAH, time course measurements showed: a) a reduction in the haemoglobin, haematocrit, fibrinogen, FXIII and plasminogen levels, b) no effect on the platelet count and c) immediate leukocytosis and an increase in the fibrinolytic activity in plasma. An inflammatory response (TNF-α) was observed within 1 h post-injection, followed by a more persistent increase in serum NO. These findings suggest that C57BL/6 mice represent a useful model of the haemorrhagic syndrome observed in humans who have suffered contact with the caterpillar, permitting a deeper understanding of the role of the inflammatory response in the haematological and haemostatic manifestations of this syndrome.
Collapse
Affiliation(s)
- M Barrios
- Laboratorio de Fisiopatología-Coagulación Sanguínea, Instituto Venezolano de Investigaciones Científicas, IVIC Apartado 20632, Caracas 1020A, Venezuela
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kuniyoshi AK, Rocha M, Cajado Carvalho D, Juliano MA, Juliano Neto L, Tambourgi DV, Portaro FCV. Angiotensin-degrading serine peptidase: a new chymotrypsin-like activity in the venom of Bothrops jararaca partially blocked by the commercial antivenom. Toxicon 2011; 59:124-31. [PMID: 22093545 DOI: 10.1016/j.toxicon.2011.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 11/25/2022]
Abstract
Snakebite envenomation is considered a highly relevant public health hazard in South America, having an impact in terms of mortality and morbidity. In Brazil, Bothrops (sensu latu) poisoning is responsible for 90% of the snakebites and in patients treated at the Vital Brazil Hospital (Butantan Institute) this index reaches 97.5%. The objective of the present study was to analyze more specifically the ability of the antibothropic antivenom, produced by the Butantan Institute, São Paulo, Brazil, to neutralize metallo-and serine peptidases, known as the major toxins present in Bothrops jararaca venom. A set of Fret peptides (Free Ressonance Energy Transfer) was studied using the BjV (B. jararaca venom) and site-directed inhibitors PMSF, EDTA and 1,10-phenanthroline. Two substrates were reached to be used as specific tools for studies with metallo peptidases, Abz-FASSAQ-EDDnp, and the serine peptidases, Abz-RPPGFSPFRQ-EDDnp. In disagreement with the literature, the use of both substrates and the antibothropic serum showed a weak neutralization of the serine peptidases present in this venom and a strong neutralization of the metallo peptidases. In order to investigate possible mechanisms of action that have not yet been described for the serine peptidases from the BjV, the present study shows for the first time a new tyrosine-specific chymotrypsin-like and angiotensin-degrading serine peptidase activity, that was partially blocked by the antibothropic serum. In conclusion, the antivenom presented a good neutralization of metallo peptidases but not of serine peptidases, indicating that further studies about serine peptidases immunogenicity are necessary to improve the antibothropic serum.
Collapse
Affiliation(s)
- Alexandre Kazuo Kuniyoshi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Peichoto ME, Zychar BC, Tavares FL, de Camargo Gonçalves LR, Acosta O, Santoro ML. Inflammatory effects of patagonfibrase, a metalloproteinase from Philodryas patagoniensis (Patagonia Green Racer; Dipsadidae) venom. Exp Biol Med (Maywood) 2011; 236:1166-72. [PMID: 21885478 DOI: 10.1258/ebm.2011.011125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patagonfibrase is a P-III class metalloproteinase isolated from the venom of Philodryas patagoniensis, a South-American, rear-fanged 'colubrid' snake responsible for accidents with clinical significance. Since local inflammatory reactions are conspicuous signs of snakebites inflicted by this species and taking into consideration that most snake venom metalloproteinases exhibit inflammatory activity, this study deals with the proinflammatory effects evoked by patagonfibrase. Herein, we demonstrate that patagonfibrase causes a time- and dose-dependent hemorrhagic edema when injected into mouse hind paws. The peak of edema occurred at 30 min after injection, and the minimum edematogenic dose was 0.021 μg. By histological analysis, the presence of moderate to marked edema and hemorrhage, and a mild inflammatory infiltrate was observed. When injected subcutaneously into the scrotal bag of mice, patagonfibrase induced cell recruitment with a significant alteration in physiological parameters of leukocyte-endothelium interaction. The presence of 1 mmol/L o-phenanthroline, which chelates metal ions, significantly inhibited the proinflammatory effects induced by patagonfibrase. Taken together, these results imply that patagonfibrase is an important contributor to local inflammation elicited by P. patagoniensis envenomation, which may pave the way for novel therapeutic strategies to treat this snakebite. Moreover, our findings demonstrate for the first time that a venom metalloproteinase from a rear-fanged snake elicits proinflammatory effects mainly mediated by its catalytic activity.
Collapse
Affiliation(s)
- María Elisa Peichoto
- Cátedra de Farmacología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Sargento Cabral 2139, 3400 Corrientes, Argentina.
| | | | | | | | | | | |
Collapse
|
27
|
Takeda S, Takeya H, Iwanaga S. Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:164-76. [PMID: 21530690 DOI: 10.1016/j.bbapap.2011.04.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Metalloproteinases are among the most abundant toxins in many Viperidae venoms. Snake venom metalloproteinases (SVMPs) are the primary factors responsible for hemorrhage and may also interfere with the hemostatic system, thus facilitating loss of blood from the vasculature of the prey. SVMPs are phylogenetically most closely related to mammalian ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin type-1 motif) family of proteins and, together with them, constitute the M12B clan of metalloendopeptidases. Large SVMPs, referred to as the P-III class of SVMPs, have a modular architecture with multiple non-catalytic domains. The P-III SVMPs are characterized by higher hemorrhagic and more diverse biological activities than the P-I class of SVMPs, which only have a catalytic domain. Recent crystallographic studies of P-III SVMPs and their mammalian counterparts shed new light on structure-function properties of this class of enzymes. The present review will highlight these structures, particularly the non-catalytic ancillary domains of P-III SVMPs and ADAMs that may target the enzymes to specific substrates. This article is part of a Special Issue entitled: Proteolysis 50years after the discovery of lysosome.
Collapse
Affiliation(s)
- Soichi Takeda
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, Japan.
| | | | | |
Collapse
|
28
|
Comparative analysis of newborn and adult Bothrops jararaca snake venoms. Toxicon 2010; 56:1443-58. [DOI: 10.1016/j.toxicon.2010.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 02/08/2023]
|
29
|
Barone JM, Alponti RF, Frezzatti R, Zambotti-Villela L, Silveira PF. Differential efficiency of simvastatin and lipoic acid treatments on Bothrops jararaca envenomation-induced acute kidney injury in mice. Toxicon 2010; 57:148-56. [PMID: 21087618 DOI: 10.1016/j.toxicon.2010.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/07/2010] [Accepted: 11/09/2010] [Indexed: 12/01/2022]
Abstract
Snake bite accidents by Bothrops genus is an important public health issue in Brazil and one of its most serious complications is the acute kidney injury (AKI). Here we evaluated the effects of Bothrops jararaca venom (vBj) and the treatments with lipoic acid (LA) and simvastatin (SA) on renal function, aminopeptidase (AP) activities and renal redox status. Primordial events for establishment of AKI by vBj were hyperuricemia, hypercreatinemia, urinary hyperosmolality, renal oxidative stress and reduction of hematocrit and protein content in the membrane of renal cortex and medulla and in the plasma. In the renal cortex and medulla the changes caused by vBj in soluble and membrane-bound AP activities had a similar pattern. The beneficial effects of LA and SA on envenomed mice were similar on the hyperuricemia, renal oxidative stress and reduction of hematocrit. LA mitigated the hypercreatinemia, but exacerbated the urinary urea and creatinine, whereas SA mitigated the decrease of plasma urea, urinary hyperosmolality and hypercreatinuria induced by vBj. The beneficial effects of LA and especially of SA on renal effects of vBj open a new perspective for clinical investigations of these drugs as coadjuvant agents in the serotherapy of Bothrops envenomation.
Collapse
Affiliation(s)
- Juliana Marton Barone
- Laboratory of Pharmacology, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
30
|
Anti-coagulant activity of a metalloprotease: further characterization from the Indian cobra (Naja naja) venom. J Thromb Thrombolysis 2010; 29:340-8. [PMID: 19629641 DOI: 10.1007/s11239-009-0379-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A high molecular mass, non toxic metalloprotease the NN-PF3 with the bound Ca(2+) and Zn(2+) from the Naja naja venom has been studied further for its anticoagulant property. The molecular mass by MALDI-TOF mass spectrometry was 67.81 kDa. The NN-PF3 exhibited fibrin(ogen)olytic activity. In addition to fibrinogen, NN-PF3 hydrolyzed blood and plasma clot with the later hydrolyzed about one fold higher. The alpha polymer of fibrin was preferentially hydrolyzed over the alpha chain but the beta chain and gamma-gamma dimer remained untouched. It was devoid of plasminogen activation property. It prolonged the activated partial thromboplastin time, prothrombin time and the thrombin clotting time of citrated human plasma. It did not affect the thrombin activity. In mice, defibrinogentaion, prolonged bleeding time (P < 0.01) and reduced fibrinogen level were observed following intravenous injection. Human plasma or alpha2-macroglobulin did not, but the polyvalent anti-venom inhibited the NN-PF3 activity. In contrast to most snake venom metalloproteases, it did not degrade extra cellular matrix proteins.
Collapse
|
31
|
Wang WJ. Acurhagin-C, an ECD disintegrin, inhibits integrin alphavbeta3-mediated human endothelial cell functions by inducing apoptosis via caspase-3 activation. Br J Pharmacol 2010; 160:1338-51. [PMID: 20590625 DOI: 10.1111/j.1476-5381.2010.00781.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Acurhagin, a member of versatile metalloproteinase disintegrins from Agkistrodon acutus venom, has been identified as a platelet aggregation inhibitor, previously. Here, acurhagin-C, the C-terminal Glu-Cys-Asp (ECD)-containing fragment of acurhagin, was evaluated for its biological activities and potential applications in anti-angiogenic therapy. EXPERIMENTAL APPROACH Human umbilical vein endothelial cells (HUVECs) were treated with acurhagin-C to assay effects on viability, apoptosis, adhesion, migration, invasion, proliferation and angiogenesis. The recognition site and signalling involved for the interactions of acurhagin-C with HUVEC were determined using flow cytometric, electrophoresis and immunoblotting analyses. KEY RESULTS Acurhagin-C decreased viability and induced apoptosis in HUVEC. It also dose-dependently inhibited HUVEC adhesion to immobilized extracellular matrices fibronectin, collagen I and vitronectin with respective IC(50) values of approximately 0.6, 0.3 and 0.1 microM. Acurhagin-C prevented migration and invasion of HUVEC through vitronectin- and Matrigel-coated barriers respectively. Furthermore, acurhagin-C attenuated fibroblast growth factor-2-primed angiogenesis both in vitro and in vivo, and specifically blocked the binding of anti-alphavbeta3 monoclonal antibody 23C6 to HUVEC in an ECD-dependent manner. However, purified alphavbeta3 also dose-dependently bound to immobilized acurhagin and acurhagin-C with a saturable pattern. Interference with integrin alphavbeta3-mediated functions and promotion of caspase-3 activation by acurhagin-C affected morphology of HUVEC and induced apoptosis. CONCLUSIONS AND IMPLICATIONS Acurhagin-C elicited endothelial anoikis via disruption of alphavbeta3/focal adhesion kinase/phosphatidylinositol 3-kinase/Akt survival cascade and subsequent initiation of the procaspase-3 apoptotic signalling pathway.
Collapse
Affiliation(s)
- Wen-Jeng Wang
- Department of Nutrition and Health Sciences, Chang-Gung Institute of Technology, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
32
|
Aung HT, Nikai T, Komori Y, Nonogaki T, Niwa M, Takaya Y. Biological and pathological studies of rosmarinic acid as an inhibitor of hemorrhagic Trimeresurus flavoviridis (habu) venom. Toxins (Basel) 2010; 2:2478-89. [PMID: 22069562 PMCID: PMC3153163 DOI: 10.3390/toxins2102478] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/05/2010] [Accepted: 10/22/2010] [Indexed: 11/21/2022] Open
Abstract
In our previous report, rosmarinic acid (RA) was revealed to be an antidote active compound in Argusia argentea (family: Boraginaceae). The plant is locally used in Okinawa in Japan as an antidote for poisoning from snake venom, Trimeresurus flavoviridis (habu). This article presents mechanistic evidence of RA's neutralization of the hemorrhagic effects of snake venom. Anti-hemorrhagic activity was assayed by using several kinds of snake venom. Inhibition against fibrinogen hydrolytic and collagen hydrolytic activities of T. flavoviridis venom were examined by SDS-PAGE. A histopathological study was done by microscopy after administration of venom in the presence or absence of RA. RA was found to markedly neutralize venom-induced hemorrhage, fibrinogenolysis, cytotoxicity and digestion of type IV collagen activity. Moreover, RA inhibited both hemorrhage and neutrophil infiltrations caused by T. flavoviridis venom in pathology sections. These results demonstrate that RA inhibited most of the hemorrhage effects of venom. These findings indicate that rosmarinic acid can be expected to provide therapeutic benefits in neutralization of snake venom accompanied by heat stability.
Collapse
Affiliation(s)
- Hnin Thanda Aung
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan; (H.T.A.); (T.N.); (Y.K.); (M.N.)
| | - Toshiaki Nikai
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan; (H.T.A.); (T.N.); (Y.K.); (M.N.)
| | - Yumiko Komori
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan; (H.T.A.); (T.N.); (Y.K.); (M.N.)
| | - Tsunemasa Nonogaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama, Nagoya, 463-8521, Japan;
| | - Masatake Niwa
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan; (H.T.A.); (T.N.); (Y.K.); (M.N.)
| | - Yoshiaki Takaya
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan; (H.T.A.); (T.N.); (Y.K.); (M.N.)
| |
Collapse
|
33
|
Sánchez EE, Lucena SE, Reyes S, Soto JG, Cantu E, Lopez-Johnston JC, Guerrero B, Salazar AM, Rodríguez-Acosta A, Galán JA, Tao WA, Pérez JC. Cloning, expression, and hemostatic activities of a disintegrin, r-mojastin 1, from the mohave rattlesnake (Crotalus scutulatus scutulatus). Thromb Res 2010; 126:e211-9. [PMID: 20598348 DOI: 10.1016/j.thromres.2010.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 05/21/2010] [Accepted: 06/03/2010] [Indexed: 11/29/2022]
Abstract
Interactions with exposed subendothelial extracellular proteins and cellular integrins (endothelial cells, platelets and lymphocytes) can cause alterations in the hemostatic system associated with atherothrombotic processes. Many molecules found in snake venoms induce pathophysiological changes in humans, cause edema, hemorrhage, and necrosis. Disintegrins are low molecular weight, non-enzymatic proteins found in snake venom that mediate changes by binding to integrins of platelets or other cells and prevent binding of the natural ligands such as fibrinogen, fibronectin or vitronectin. Disintegrins are of great biomedical importance due to their binding affinities resulting in the inhibition of platelet aggregation, adhesion of cancer cells, and induction of signal transduction pathways. RT-PCR was used to obtain a 216 bp disintegrin cDNA from a C. s. scutulatus snake venom gland. The cloned recombinant disintegrin called r-mojastin 1 codes for 71 amino acids, including 12 cysteines, and an RGD binding motif. r-Mojastin 1 inhibited platelet adhesion to fibronectin with an IC50 of 58.3 nM and ADP-induced platelet aggregation in whole blood with an IC50 of 46 nM. r-Mojastin 1 was also tested for its ability to inhibit platelet ATP release using PRP resulting with an IC50 of 95.6 nM. MALDI-TOF mass spectrum analysis showed that r-mojastin has a mass of 7.95676 kDa.
Collapse
Affiliation(s)
- Elda E Sánchez
- Natural Toxins Research Center, College of Arts and Sciences, 975 W. Avenue B. MSC 158, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
OmPraba G, Chapeaurouge A, Doley R, Devi KR, Padmanaban P, Venkatraman C, Velmurugan D, Lin Q, Kini RM. Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res 2010; 9:1882-93. [PMID: 20158271 DOI: 10.1021/pr901044x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerberus rynchops (dog-faced water snake) belongs to Homalopsidae of Colubroidea (rear-fanged snakes). So far, venom compositions of snakes of the Homalopsidae family are not known. To determine the venom composition of C. rynchops, we have used both transcriptomics and proteomics approaches. The venom gland transcriptome revealed 104 ESTs and the presence of three known snake protein families, namely, metalloprotease, CRISP, and C-type lectin. In addition, we identified two proteins that showed sequence homology to ficolin, a mammalian protein with collagen-like and fibrinogen-like domains. We named them as ryncolin 1 and ryncolin 2 (rynchops ficolin) and this new family of snake venom proteins as veficolins (venom ficolins). On the basis of its structural similarity to ficolin, we speculate that ryncolins may induce platelet aggregation and/or initiate complement activation. To determine the proteome, the whole C. rynchops venom was trypsinized and fractionated by reverse phase HPLC followed by MALDI-MS/MS analysis of the tryptic peptides. Analysis of the tandem mass spectrometric data indicated the presence of all protein families compared to the translated cDNA library. Overall, our combined approach of transcriptomics and proteomics revealed that C. rynchops venom is among the least complex snake venom characterized to date despite the presence of a new family of snake venom proteins.
Collapse
Affiliation(s)
- G OmPraba
- Protein Sciences Laboratory, Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Montagna E, Guerreiro JR, Torres BB. Biochemistry of the envenomation response-A generator theme for interdisciplinary integration. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 38:91-96. [PMID: 21567802 DOI: 10.1002/bmb.20376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The understanding of complex physiological processes requires information from many different areas of knowledge. To meet this interdisciplinary scenario, the ability of integrating and articulating information is demanded. The difficulty of such approach arises because, more often than not, information is fragmented through under graduation education in Health Sciences. Shifting from a fragmentary and deep view of many topics to joining them horizontally in a global view is not a trivial task for teachers to implement. To attain that objective we proposed a course herein described-Biochemistry of the envenomation response-aimed at integrating previous contents of Health Sciences courses, following international recommendations of interdisciplinary model. The contents were organized by modules with increasing topic complexity. The full understanding of the envenoming pathophysiology of each module would be attained by the integration of knowledge from different disciplines. Active-learning strategy was employed focusing concept map drawing. Evaluation was obtained by a 30-item Likert-type survey answered by ninety students; 84% of the students considered that the number of relations that they were able to establish as seen by concept maps increased throughout the course. Similarly, 98% considered that both the theme and the strategy adopted in the course contributed to develop an interdisciplinary view.
Collapse
Affiliation(s)
- Erik Montagna
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
36
|
Terra RM, Pinto AF, Guimarães JA, Fox JW. Proteomic profiling of snake venom metalloproteinases (SVMPs): Insights into venom induced pathology. Toxicon 2009; 54:836-44. [DOI: 10.1016/j.toxicon.2009.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 12/23/2022]
|
37
|
Chotenimitkhun R, Rojnuckarin P. Systemic antivenom and skin necrosis after green pit viper bites. Clin Toxicol (Phila) 2009; 46:122-5. [DOI: 10.1080/15563650701266826] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Gomes MSR, Mendes MM, de Oliveira F, de Andrade RM, Bernardes CP, Hamaguchi A, de Alcântara TM, Soares AM, Rodrigues VM, Homsi-Brandeburgo MI. BthMP: a new weakly hemorrhagic metalloproteinase from Bothrops moojeni snake venom. Toxicon 2009; 53:24-32. [DOI: 10.1016/j.toxicon.2008.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/10/2008] [Accepted: 10/07/2008] [Indexed: 11/15/2022]
|
39
|
Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon 2008; 52:842-51. [DOI: 10.1016/j.toxicon.2008.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/05/2008] [Accepted: 10/07/2008] [Indexed: 11/21/2022]
|
40
|
Da Silva M, Lucena S, Aguilar I, Rodríguez-Acosta A, Salazar AM, Sánchez EE, Girón ME, Carvajal Z, Arocha-Piñango CL, Guerrero B. Anti-platelet effect of cumanastatin 1, a disintegrin isolated from venom of South American Crotalus rattlesnake. Thromb Res 2008; 123:731-9. [PMID: 18835011 DOI: 10.1016/j.thromres.2008.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 11/25/2022]
Abstract
Disintegrins have been previously described in the venom of several snake families inhibiting signal transduction, cell-cell interactions, and cell-matrix interactions and may have therapeutic potential in heart attacks, thrombotic diseases, and cancers. This investigation describes the first disintegrin isolated from South American Crotalus venom (Venezuelan rattlesnake Crotalus durissus cumanensis), which inhibits platelet adhesion to matrix proteins. C. d. cumanensis crude venom was first separated on a Sephadex G-100 column into 4 fractions (SI to SIV). Crude venom and SIII fraction significantly diminished platelet adhesion to fibrinogen (Fg) and to fibronectin (Fn). Anti-adhesive SIII fraction was further separated by DEAE-Sephacel followed by C-18 reverse phase high performance liquid chromatography (HPLC). The platelet anti-adhesive fraction obtained was designated as cumanastatin-1. This disintegrin has a mass of 7.442 kDa as determined by mass spectrometry (MALDI-TOF/TOF) and pI of 8.5. Cumanastatin-1 also inhibited ADP-induced platelet aggregation with an IC(50) of 158 nM. However, it did not significantly inhibit collagen and thrombin-induced platelet aggregation. Cumanastatin-1 considerably inhibited anti-alpha(IIb)beta(3) integrin binding to platelets in a dose-dependent manner; however, it did not present any effect on the alpha(5)beta(1) integrin or on P-selectin.
Collapse
Affiliation(s)
- Manuel Da Silva
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020, Venezuela
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Muniz JRC, Ambrosio ALB, Selistre-de-Araujo HS, Cominetti MR, Moura-da-Silva AM, Oliva G, Garratt RC, Souza DHF. The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: insights for a new classification of snake venom metalloprotease subgroups. Toxicon 2008; 52:807-16. [PMID: 18831982 DOI: 10.1016/j.toxicon.2008.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/01/2008] [Accepted: 08/08/2008] [Indexed: 01/28/2023]
Abstract
Bothropasin is a 48kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys189 is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from PII SVMPs. The ECD motif is stabilized by the Cys277-Cys310 disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu276 of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other PIII SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other PIII members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain.
Collapse
Affiliation(s)
- João R C Muniz
- Departamento de Física e Informática, Instituto de Física de São Carlos, USP, São Carlos-SP CEP 13560-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Carneiro AS, Ribeiro OG, Cabrera WHK, Vorraro F, De Franco M, Ibañez OM, Starobinas N. Bothrops jararaca venom (BjV) induces differential leukocyte accumulation in mice genetically selected for acute inflammatory reaction: the role of host genetic background on expression of adhesion molecules and release of endogenous mediators. Toxicon 2008; 52:619-27. [PMID: 18723041 DOI: 10.1016/j.toxicon.2008.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
The dynamics of the local inflammatory events induced by Bothrops jararaca venom (BjV) inoculation in footpad of mice genetically selected for maximal (AIRmax) and minimal (AIRmin) acute inflammatory reactivity (AIR) was investigated. The BjV injection induced a marked inflammatory cell infiltrate with predominance of neutrophils, with increased blood cell numbers before its accumulation, suggesting a stimulatory action of BjV on mechanisms of cell mobilization from bone marrow. The process of cell migration is regulated by different cell-adhesion molecules (CAM). Our results showed that neutrophil cells from both lines had the same pattern of response concerning CAMs expression, presenting the involvement of l-selectin, Mac-1 and PECAM-1 adhesion molecules in BjV-induced neutrophil accumulation. The effect of BjV on the release of pro-inflammatory cytokines and chemokines related with cellular migration was also studied and IL-1beta, IL-6, TNF-alpha and MIP-2 levels could be detected after venom injection. The AIRmax mice were shown to be more responsive than AIRmin with respect to leukocyte influx, expression of MIP-2 and release of IL-1beta and IL-6. These results demonstrate the importance of host genetic background in the local response and the involvement of alleles accumulated in AIRmax mice in the inflammatory events induced by BjV.
Collapse
Affiliation(s)
- Adriana S Carneiro
- Laboratório de Imunogenética, Instituto Butantan, Av. Vital Brasil 1500 - cep 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Lambert LJ, Bobkov AA, Smith JW, Marassi FM. Competitive interactions of collagen and a jararhagin-derived disintegrin peptide with the integrin alpha2-I domain. J Biol Chem 2008; 283:16665-72. [PMID: 18417478 PMCID: PMC2423259 DOI: 10.1074/jbc.m710483200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 04/15/2008] [Indexed: 11/06/2022] Open
Abstract
Integrin alpha2beta1 is a major receptor required for activation and adhesion of platelets, through the specific recognition of collagen by the alpha2-I domain (alpha2-I), which binds fibrillar collagen via Mg(2+)-bridged interactions. The crystal structure of a truncated form of the alpha2-I domain, bound to a triple helical collagen peptide, revealed conformational changes suggestive of a mechanism where the ligand-bound I domain can initiate and propagate conformational change to the full integrin complex. Collagen binding by alpha2-I and fibrinogen-dependent platelet activity can be inhibited by snake venom polypeptides. Here we describe the inhibitory effect of a short cyclic peptide derived from the snake toxin metalloprotease jararhagin, with specific amino acid sequence RKKH, on the ability of alpha2-I to bind triple helical collagen. Isothermal titration calorimetry measurements showed that the interactions of alpha2-I with collagen or RKKH peptide have similar affinities, and NMR chemical shift mapping experiments with (15)N-labeled alpha2-I, and unlabeled RKKH peptide, indicate that the peptide competes for the collagen-binding site of alpha2-I but does not induce a large scale conformational rearrangement of the I domain.
Collapse
|
44
|
Rafael A, Tanjoni I, Fernandes I, Moura-da-Silva A, Furtado M. An alternative method to access in vitro the hemorrhagic activity of snake venoms. Toxicon 2008; 51:479-87. [DOI: 10.1016/j.toxicon.2007.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/21/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
|
45
|
Moura-da-Silva AM, Ramos OHP, Baldo C, Niland S, Hansen U, Ventura JS, Furlan S, Butera D, Della-Casa MS, Tanjoni I, Clissa PB, Fernandes I, Chudzinski-Tavassi AM, Eble JA. Collagen binding is a key factor for the hemorrhagic activity of snake venom metalloproteinases. Biochimie 2008; 90:484-92. [PMID: 18096518 DOI: 10.1016/j.biochi.2007.11.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 11/26/2007] [Indexed: 11/24/2022]
Abstract
Snake venom metalloproteinases (SVMPs) are multifunctional enzymes involved in several symptoms following snakebite, such as severe local hemorrhage. Multidomain P-III SVMPs are strongly hemorrhagic, whereas single domain P-I SVMPs are not. This indicates that disintegrin-like and cysteine-rich domains allocate motifs that enable catalytic degradation of ECM components leading to disruption of capillary vessels. Interestingly, some P-III SVMPs are completely devoid of hemorrhagic activity despite their highly conserved disintegrin-like and cysteine-rich domains. This observation was approached in the present study by comparing the effects of jararhagin, a hemorrhagic P-III SVMP, and berythractivase, a pro-coagulant and non-hemorrhagic P-III SVMP. Both toxins inhibited collagen-induced platelet aggregation, but only jararhagin was able to bind to collagen I with high affinity. The monoclonal antibody MAJar 3, that neutralizes the hemorrhagic effect of Bothrops venoms and jararhagin binding to collagen, did not react with berythractivase. The three-dimensional structures of jararhagin and berythractivase were compared to explain the differential binding to collagen and MAJar 3. Thereby, we pinpointed a motif within the Da disintegrin subdomain located opposite to the catalytic domain. Jararhagin binds to both collagen I and IV in a triple helix-dependent manner and inhibited in vitro fibrillogenesis. The jararhagin-collagen complex retained the catalytic activity of the toxin as observed by hydrolysis of fibrin. Thus, we suggest that binding of hemorrhagic SVMPs to collagens I and IV occurs through a motif located in the Da subdomain. This allows accumulation of toxin molecules at the site of injection, close to capillary vessels, where their catalytic activity leads to a local hemorrhage. Toxins devoid of this motif would be more available for vascular internalization leading to systemic pro-coagulant effects. This reveals a novel function of the disintegrin domain in hemorrhage formation.
Collapse
Affiliation(s)
- A M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pahari S, Mackessy SP, Kini RM. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC Mol Biol 2007; 8:115. [PMID: 18096037 PMCID: PMC2242803 DOI: 10.1186/1471-2199-8-115] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 12/20/2007] [Indexed: 11/14/2022] Open
Abstract
Background Snake venoms are complex mixtures of pharmacologically active proteins and peptides which belong to a small number of superfamilies. Global cataloguing of the venom transcriptome facilitates the identification of new families of toxins as well as helps in understanding the evolution of venom proteomes. Results We have constructed a cDNA library of the venom gland of a threatened rattlesnake (a pitviper), Sistrurus catenatus edwardsii (Desert Massasauga), and sequenced 576 ESTs. Our results demonstrate a high abundance of serine proteinase and metalloproteinase transcripts, indicating that the disruption of hemostasis is a principle mechanism of action of the venom. In addition to the transcripts encoding common venom proteins, we detected two varieties of low abundance unique transcripts in the library; these encode for three-finger toxins and a novel toxin possibly generated from the fusion of two genes. We also observed polyadenylated ribosomal RNAs in the venom gland library, an interesting preliminary obsevation of this unusual phenomenon in a reptilian system. Conclusion The three-finger toxins are characteristic of most elapid venoms but are rare in viperid venoms. We detected several ESTs encoding this group of toxins in this study. We also observed the presence of a transcript encoding a fused protein of two well-characterized toxins (Kunitz/BPTI and Waprins), and this is the first report of this kind of fusion in a snake toxin transcriptome. We propose that these new venom proteins may have ancillary functions for envenomation. The presence of a fused toxin indicates that in addition to gene duplication and accelerated evolution, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms. The detection of low abundance toxins, as observed in this and other studies, indicates a greater compositional similarity of venoms (though potency will differ) among advanced snakes than has been previously recognized.
Collapse
Affiliation(s)
- Susanta Pahari
- Center for Post Graduate Studies, Sri Bhagawan Mahaveer Jain College, 18/3, 9th Main, Jayanagar 3rd Block, Bangalore, India.
| | | | | |
Collapse
|
47
|
Bernardes CP, Santos-Filho NA, Costa TR, Gomes MSR, Torres FS, Costa J, Borges MH, Richardson M, dos Santos DM, de Castro Pimenta AM, Homsi-Brandeburgo MI, Soares AM, de Oliveira F. Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom. Toxicon 2007; 51:574-84. [PMID: 18187176 DOI: 10.1016/j.toxicon.2007.11.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 11/06/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
A proteinase, named BmooMPalpha-I, from the venom of Bothrops moojeni, was purified by DEAE-Sephacel, Sephadex G-75 and heparin-agarose column chromatography. The enzyme was purified to homogeneity as judged by its migration profile in SDS-PAGE stained with coomassie blue, and showed a molecular mass of about 24.5 kDa. Its complete cDNA was obtained by RT-PCR and the 615 bp codified for a mature protein of 205 amino acid residues. The multiple alignment of its deduced amino acid sequence and those of other snake venom metalloproteinases showed a high structural similarly, mainly among class P-IB proteases. The enzyme cleaves the Aalpha-chain of fibrinogen first, followed by the Bbeta-chain, and shows no effects on the gamma-chain. On fibrin, the enzyme hydrolyzed only the beta-chain, leaving the gamma-dimer apparently untouched. It was devoid of phospholipase A(2), hemorrhagic and thrombin-like activities. Like many venom enzymes, it is stable at pH values between 4 and 10 and stable at 70 degrees C for 15 min. The inhibitory effects of EDTA on the fibrinogenolytic activity suggest that BmooMPalpha-I is a metalloproteinase and inhibition by beta-mercaptoethanol revealed the important role of the disulfide bonds in the stabilization of the native structure. Aprotinin and benzamidine, specific serine proteinase inhibitors, had no effect on BmooMPalpha-I activity. Since the BmooMPalpha-I enzyme was found to cause defibrinogenation when administered i.p. on mice, it is expected that it may be of medical interest as a therapeutic agent in the treatment and prevention of arterial thrombosis.
Collapse
Affiliation(s)
- Carolina P Bernardes
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Singhamatr P, Rojnuckarin P. Molecular cloning of albolatin, a novel snake venom metalloprotease from green pit viper (Trimeresurus albolabris), and expression of its disintegrin domain. Toxicon 2007; 50:1192-200. [PMID: 17870140 DOI: 10.1016/j.toxicon.2007.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 11/27/2022]
Abstract
Disintegrins are snake venom-derived, RGD- or KGD-containing peptides that can inhibit integrin-mediated platelet aggregation and cell-matix interactions. The aim of this study is to analyze the full-length cDNA sequence of a snake venom metalloprotease (SVMP) from green pit viper (Trimeresurus albolabris) venom and characterize functions of its disintegrin domain on human platelets. From the primary cDNA library of venom glands, a partial sequence of a novel SVMP (Albolatin) was obtained. Using the 5'-RACE, the 2040bp full-length sequence of albolatin mRNA was derived. The deduced amino acid sequence revealed a type P-II SVMP of 484 amino acid residues comprising a signal region, pro-peptide, inactive metalloprotease domain and a disintegrin domain. It showed 85% amino acid identical to Trimeresurus jerdonii jerdonitin and 81% to Gloydius halys agkistin. Sequence alignment revealed that all cysteines were conserved except for an extra cysteine in the protease domain of albolatin. The disintegrin domain of albolatin, which comprised 76 amino acids with a KGDW sequence, was expressed in Pichia pastoris with the yield of 3.3mg/L of culture medium. The molecular weights were 11kDa in reduced and 22kDa in non-reduced states indicating a homodimer. It can inhibit collagen-induced platelet aggregation with IC(50) of 976nM and, therefore, should be investigated for a potential to be a novel therapeutic agent.
Collapse
Affiliation(s)
- Pon Singhamatr
- Faculty of Medicine, Department of Medicine, Chulalongkorn University, Rama IV Road, Patumwan, Bangkok 10330, Thailand
| | | |
Collapse
|
49
|
da Silva NMV, Arruda EZ, Murakami YLB, Moraes RAM, El-Kik CZ, Tomaz MA, Fernandes FFA, Oliveira CZ, Soares AM, Giglio JR, Melo PA. Evaluation of three Brazilian antivenom ability to antagonize myonecrosis and hemorrhage induced by Bothrops snake venoms in a mouse model. Toxicon 2007; 50:196-205. [PMID: 17466354 DOI: 10.1016/j.toxicon.2007.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/12/2007] [Accepted: 03/15/2007] [Indexed: 11/27/2022]
Abstract
Despite preventing death after snakebites, there is little evidence that polyvalent antivenoms (PAVs) protect against myotoxicity and local damages. We evaluated antibothropic Brazilian PAVs from three manufacturers against the myotoxicity and hemorrhagic activity of Bothrops jararacussu and B. jararaca venoms, respectively, by using two protocols: preincubation of PAVs with venom, and i.v. pretreatment with PAVs, prior to the venom inoculation. In this investigation, we used doses of PAVs ranging from 0.4 to 4.0mL/mg of venom equivalent up to 10 times the amount recommended by the producers for the clinical practice in Brazil. In our preincubation protocol in vivo, PAVs antagonized myotoxicity of B. jararacussu venom by 40-95%, while our pretreatment protocol antagonized myotoxic activity by 0-60%. Preincubation of antivenoms with B. jararaca venom antagonized its hemorrhagic activity by 70-95%, while pretreatment antagonized hemorrhagic activity by 10-50%. Although all PAVs demonstrated partial antagonism against both venoms, the magnitude of these effects varied greatly among the manufactures. The results suggest that the current clinical doses of these PAVs may have negligible antimyotoxic effect.
Collapse
Affiliation(s)
- Noelson M V da Silva
- Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro--UFRJ, CEP 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yamanouye N, Kerchove CM, Moura-da-Silva AM, Carneiro SM, Markus RP. Long-term primary culture of secretory cells of Bothrops jararaca venom gland for venom production in vitro. Nat Protoc 2007; 1:2763-6. [PMID: 17406533 DOI: 10.1038/nprot.2006.423] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol details the optimal conditions to establish a long-term primary culture of secretory cells from the venom gland of the Bothrops jararaca snake. Furthermore, these conditions allow the production and secretion of venom into the culture medium. Snake venom is a rich source of active molecules and has been used for bioprospection studies. However, obtaining enough venom from snakes is a major obstacle. Secretory cells of venom glands are capable of producing active toxins. Therefore, a culture of secretory cells is a good in vitro system to acquire the venom of snakes without capturing the animal from the wild. The protocol described here provides a rapid (approximately 4 h) and reproducible means of producing sufficient amounts of snake venom for biological investigations.
Collapse
Affiliation(s)
- Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|