1
|
Ajisebiola BS, Adeniyi BD, Alakoso MO, Fapohunda ST, Nwanze KI, Adeyi AO. Therapeutic potency of kaempferol against Naja haje venom induced neurotoxicity, inflammation, biological activities, and antioxidant system damage: a pre-clinical antivenom evaluation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5939-5953. [PMID: 39621086 DOI: 10.1007/s00210-024-03678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/24/2024] [Indexed: 04/11/2025]
Abstract
Naja haje envenoming manifests organ system disorders leading to severe fatalities due to the venom's toxins. The neutralizing capacity of kaempferol has been reported against some medically significant snake venoms with exception of N. haje venom (NhV). This current study assessed the neutralizing profile of kaempferol against toxicities induced by NhV using in vitro and in vivo methods. In in vitro, NhV induced wide spectrum of toxic biological activities with substantial increase in hemorrhagic, anticoagulating, and hemolytic effects. Likewise in the in vivo study, the venom caused hematological disorders by inducing acute anemia, thrombocytopenia, and leucopenia in envenomed rats. Also, the venom caused detrimental effect on the antioxidant defense system of the brain through significant (P < 0.05) elevation of malondialdehyde (MDA), nitrite (NIT), and suppression of reduce glutathione (GSH) antioxidant, superoxide dismutase (SOD), catalase (CAT), and glutathione transferase (GST) enzymes. Additionally, the levels of neurotoxicity biomarkers, monoamine oxidase (MAO) and acetylcholinesterase (AChE), and pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), were significantly (P < 0.0.5) enhanced by NhV in the brain of envenomed rats. Severe pathohistological effects were observed in brain tissues of the envenomed rats. However, kaempferol substantially (P < 0.05) inhibited the NhV-induced biological activities, normalized the hematological disorders, enhanced antioxidants system functions, and significantly (P < 0.05) suppressed the levels of neurotoxicity biomarkers and pro-inflammatory cytokines. Severe structural alterations observed in the brain tissues were ameliorated after kaempferol treatment. Further exploration of kaempferol could lead to the development of an alternative therapy for treatment of N. haje envenoming.
Collapse
Affiliation(s)
| | - Busayo Dayo Adeniyi
- Department of Animal and Environmental Biology, Osun State University, Osogbo, Nigeria
| | | | | | | | | |
Collapse
|
2
|
Chacón J, Chaves-Araya S, Mena G, Chang-Castillo A, Díaz C, Bonilla F, Sasa M, Calvete JJ, Sanz L, Gutiérrez JM, Lomonte B, Fernández J. Snake Venomics of the Arboreal Talamancan Palm-Pitviper, Bothriechis nubestris, Provides Clues on the Origin of a Phenotypic Dichotomy between Type-I and Type-II Venoms. J Proteome Res 2025. [PMID: 40277170 DOI: 10.1021/acs.jproteome.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
We report the biochemical and proteomic characterization of the venom of the arboreal Talamancan palm-pitviper, Bothriechis nubestris, a species endemic to north and central parts of the Costa Rican Cordillera de Talamanca, at 2100 to 3000 m above sea level. The Talamancan palm-pitviper venom arsenal comprised the translated products of 26 unique transcripts into 10 toxin classes, where metalloproteinases PIIa and PIII represent the dominant components. In vitro, the venom proteolyzed azocasein and gelatin but showed no phospholipase A2 or human plasma coagulant activities. In vivo, B. nubestris venom exhibited an intravenous median lethal dose (LD50) of 21.5 (95% confidence interval: 15.6-29.5) μg/mouse, and a minimum hemorrhagic dose (MHD) of 1.85 μg. PoliVal-ICP antivenom neutralized the venom's lethal activity with a potency of 9.7 mg of venom/g of antivenom and significantly reduced the hemorrhagic effect. Comparison of venom gland transcriptomes and venom proteomes of B. nubestris and its closest congeneric relative, B. nigroviridis, revealed that highly conserved venom gland transcriptomes are differentially processed by each species to produce divergent (type-I vs type-II, respectively) venoms. This phenomenon contributes to the remarkable venom phenotypic variability found across the palm-pitviper phylogeny. A possible mechanism for the occurrence of type-I/type-II venom phenotypic dichotomy is discussed.
Collapse
Affiliation(s)
- Johelen Chacón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Stephanie Chaves-Araya
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Gianni Mena
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Arturo Chang-Castillo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | | | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaume Roig 11, 46010 Valencia, Spain
| | - Libia Sanz
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaume Roig 11, 46010 Valencia, Spain
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
3
|
Nayyab BF, Shah M, Asad MH, Zaidi A, Alam F, Mannan A, Rashid U. Design, synthesis, and molecular docking studies of thiazole derivatives against phospholipase A 2 ( Naja oxiana) venom. Future Med Chem 2025; 17:659-667. [PMID: 40091794 PMCID: PMC11938964 DOI: 10.1080/17568919.2025.2478807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
AIM Cobra venom phospholipase A2 (PLA2) has been known to induce life threatening effects post-envenomation in the victims. Being the most abundant and noxious component of snake venom, present study was envisaged to investigate new drug candidates against PLA2 enzyme. METHODS Amide and sulfonamide thiazole derivatives were synthesized and characterized using FTIR, 1HNMR and 13CNMR followed by docking targeted protein techniques. Furthermore, synthetic analogues were evaluated in vitro for their potentials to neutralize PLA2 activity. RESULTS Among the pool of synthetic derivatives, compound (7) (ethyl 2-(2-(4-isobutylphenyl)propanamido)thiazole-4-carboxylate) was found to be completely effective (p > 0.05; IC50 = 1 nM) to mask cent percent PLA2 activity. Moreover, Ramachandran plot further conferred about the location of amino acid residues in the most favored region and, therefore, attributed to confiscate PLA2 activity. Furthermore, ADME profile suggested that compound (7) possesses systemic bioavailability and efficacy with favorable safety profile (high solubility, membrane permeability, metabolic stability, and low potential for off-target results). CONCLUSION Present study highlighted compound (7) as a potential PLA2 inhibitor to reverse PLA2-induced snake venom poisoning in future.
Collapse
Affiliation(s)
- Bibi F. Nayyab
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad H.H.B. Asad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
- Institute of Fundamental Medicine and Biology, Department of Genetics, Kazan Federal University, Kazan, Russia
| | - Asma Zaidi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Fiaz Alam
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
4
|
Venancio de Lima EO, Tasima LJ, Hatakeyama DM, Farias Rodrigues MA, Serino-Silva C, Stuginski DR, Machado da Silveira GP, Prezoto BC, Grego KF, Sant'Anna SS, Tanaka-Azevedo AM, de Morais-Zani K. Understanding the effects of Bothrops erythromelas and Bothrops leucurus venoms on human blood coagulation. Toxicon 2025; 255:108231. [PMID: 39788325 DOI: 10.1016/j.toxicon.2025.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Coagulation disorders are a primary symptom of envenomation caused by snakes belonging to the genus Bothrops. In the Northeast region of Brazil, the species Bothrops erythromelas and Bothrops leucurus are the main responsible for snakebite accidents. Due to the specific action of Bothrops venoms on several components of the coagulation cascade, the objective of this work was to characterize the coagulotoxic profile of B. erythromelas and B. leucurus venoms and the neutralizing potential of bothropic antivenom, considering that their venom are not used in the production of antivenom. Regarding the clotting components targeted by the venom of these species, B. leucurus samples had higher thrombin-like activity and ability to activate prothrombin, while the activation of Factor X was comparable between these two species. B.erythromelas and B. leucurus venom displayed α- and β-fibrinogenolytic activities, with the former presenting higher overall fibrinogenolytic activity. In contrast, B. erythromelas venom showed greater procoagulant activity on human plasma, assessed through the coagulation time induced by the venom samples and thromboelastometry. Bothropic antivenom inhibited the procoagulant potential of B. leucurus venom better than B. erythromelas. However, the ability of the antivenom to neutralize this activity is lower compared to that determined for the venom of B. jararaca, which is used for antivenom production. The results shown herein describe the procoagulant activity of B. leucurus and B. erythromelas venoms and highlight the differences regarding their procoagulant capacity on human plasma, contributing to a deeper understanding of the pathophysiology of the envenomation caused by these species.
Collapse
Affiliation(s)
- Eduardo Oliveira Venancio de Lima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | - Lídia Jorge Tasima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | - Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil; Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
5
|
Roman-Ramos H, Ho PL. Current Technologies in Snake Venom Analysis and Applications. Toxins (Basel) 2024; 16:458. [PMID: 39591213 PMCID: PMC11598588 DOI: 10.3390/toxins16110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular composition of venoms, and the regulatory mechanisms underlying toxin production. The application of synthetic biology and multi-omics approaches, collectively known as venomics, has revolutionized the field, providing deeper insights into venom function and its therapeutic potential. Despite significant progress, challenges such as the functional characterization of toxins and the development of cost-effective antivenoms remain. This review also discusses the future directions of venom research, emphasizing the need for interdisciplinary collaborations and new technologies (mRNAs, cryo-electron microscopy for structural determinations of toxin complexes, synthetic biology, and other technologies) to fully harness the biomedical potential of venoms and toxins from snakes and other animals.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
6
|
Sukumaran S, Prasanna VM, Panicker LK, Nair AS, Oommen OV. Discovery of a new Daboia russelli viper venom PLA 2 inhibitor using virtual screening of pharmacophoric features of co-crystallized compound. J Biomol Struct Dyn 2024; 42:6954-6967. [PMID: 37490072 DOI: 10.1080/07391102.2023.2238072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Snake venom PLA2, a member of the group of hydrolase enzymes, has been recognized as a promising drug target for snake envenomation. In the present study, an attempt was made to identify potential inhibitors of snake venom PLA2 by employing a pharmacophore-based virtual screening, docking, and dynamics approach. A receptor-based pharmacophore model was generated based on the features of the established and bound co-crystal ligand (2-carbamoylmethyl-5-propyl-octahydro-indol-7-yl)-acetic acid in the PLA2 complex. The best pharmacophore model (ADDH) derived, consisted of four features, namely one hydrogen bond acceptor, two hydrogen bond donors, and one hydrophobic region. This common pharmacophore was then used to perform virtual screening against a drug-like diverse database, with due consideration to the Lipinski 'rule of five', so as to obtain a pool of lead molecules. The short-listed lead molecules were then subjected to docking analysis with that of the Daboia russelli viper venom PLA2 followed by a molecular simulation study for a duration of 100 ns. CAP04815700 was chosen as the best compound based on the simulation parameters, which were then taken for MM/PBSA calculation, and it was revealed that it has a similar effective inhibitory potential as that of the crystal ligand. Further, the cluster analysis also revealed the structural significance of the backbone protein after the interaction with CAP04815700. This study will continue to explore its bioactivity in vitro and in vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suveena Sukumaran
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
- Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Vinod Manoharan Prasanna
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Laladhas Krishna Panicker
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
- Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Achuthsankar S Nair
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Oommen V Oommen
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
- Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| |
Collapse
|
7
|
Coimbra FCP, Sanchez EE, Lomonte B, Gutiérrez JM, Calvete JJ, Fry BG. Blood Lines: Intraspecific and Interspecific Variations in Anticoagulant Actions of Agkistrodon Viperid Venoms. Toxins (Basel) 2024; 16:291. [PMID: 39057931 PMCID: PMC11281148 DOI: 10.3390/toxins16070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the intraspecific and interspecific variability in the venom effects of Agkistrodon viperid snake species and subspecies (eleven venoms total) on plasma clotting times, fibrinogen levels, and fibrin clot strength. Significant delays in plasma clotting time were observed for A. conanti, A. contortrix mokasen, A. contortrix phaeogaster, A. howardgloydi, A. piscivorus leucostoma, and A. piscivorus piscivorus. Notably, the phylogenetically disjunct lineages A. conanti, A. contortrix mokasen, and A. howardgloydi exhibited the most potent anticoagulant effects, indicating the independent amplification of a basal trait. Inhibition assays with the activated clotting enzymes Factors XIa, IXa, Xa, and IIa (thrombin) revealed that FXa inhibition is another basal trait amplified independently on multiple occasions within the genus, but with A. howardgloydi, notably more potent than all others. Phospholipid degradation and zymogen destruction were identified as mechanisms underlying the variability in venom effects observed experimentally and in previous clinical reports. Thromboelastography demonstrated that the venoms did not clot fibrinogen directly but affected fibrin clot strength by damaging fibrinogen and that thrombin was subsequently only able to cleave into weak, unstable clots. The ability to activate Protein C, an endogenous anticoagulant enzyme, varied across species, with some venoms exceeding that of A. contortrix contortrix, which previously yielded the protein diagnostic agent Protac®. Phylogenetic analysis suggested that both fibrinogen degradation and Protein C activation were each amplified multiple times within the genus, albeit with negative correlation between these two modes of action. This study highlights the evolutionary, clinical, and biodiscovery implications of venom variability in the Agkistrodon species, underscoring their dynamic evolution, emphasising the need for tailored clinical approaches, and highlighting the potential for novel diagnostic and therapeutic developments inspired by the unique properties of snake venoms.
Collapse
Affiliation(s)
- Francisco C. P. Coimbra
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| | - Elda E. Sanchez
- National Natural Toxins Research Center, Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA;
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (B.L.); (J.M.G.)
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (B.L.); (J.M.G.)
| | - Juan J. Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, 46010 Valencia, Spain;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| |
Collapse
|
8
|
Dobson J, Chowdhury A, Tai-A-Pin J, van der Ploeg H, Gillett A, Fry BG. The Clot Thickens: Differential Coagulotoxic and Cardiotoxic Activities of Anguimorpha Lizard Venoms. Toxins (Basel) 2024; 16:283. [PMID: 38922177 PMCID: PMC11209219 DOI: 10.3390/toxins16060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Despite their evolutionary novelty, lizard venoms are much less studied in comparison to the intense research on snake venoms. While the venoms of helodermatid lizards have long been assumed to be for defensive purposes, there is increasing evidence of toxic activities more useful for predation than defence (such as paralytic neurotoxicity). This study aimed to ascertain the effects of Heloderma, Lanthanotus, and Varanus lizard venoms on the coagulation and cardiovascular systems. Anticoagulant toxicity was demonstrated for the Varanus species studied, with the venoms prolonging clotting times in human and bird plasma due to the destructive cleavage of fibrinogen. In contrast, thromboelastographic analyses on human and bird plasmas in this study demonstrated a procoagulant bioactivity for Heloderma venoms. A previous study on Heloderma venom using factor-depleted plasmas as a proxy model suggested a procoagulant factor was present that activated either Factor XI or Factor XII, but could not ascertain the precise target. Our activation studies using purified zymogens confirmed FXII activation. Comparisons of neonate and adult H. exasperatum, revealed the neonates to be more potent in the ability to activate FXII, being more similar to the venom of the smaller species H. suspectum than the adult H. exasperatum. This suggests potent FXII activation a basal trait in the genus, present in the small bodied last common ancestor. This also indicates an ontogenetic difference in prey preferences in the larger Heloderma species paralleing the change in venom biochemistry. In addition, as birds lack Factor XII, the ability to clot avian plasma suggested an additional procoagulant site of action, which was revealed to be the activation of Factor VII, with H. horridum being the most potent. This study also examined the effects upon the cardiovascular system, including the liberation of kinins from kininogen, which contributes to hypotension induction. This form of toxicity was previously described for Heloderma venoms, and was revealed in this study was to also be a pathophysiological effect of Lanthanotus and Varanus venoms. This suggests that this toxic activity was present in the venom of the last common ancestor of the anguimorph lizards, which is consistent with kallikrein enzymes being a shared toxin trait. This study therefore uncovered novel actions of anguimorph lizard venoms, not only contributing to the evolutionary biology body of knowledge but also revealing novel activities to mine for drug design lead compounds.
Collapse
Affiliation(s)
- James Dobson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | | | - Harold van der Ploeg
- Working Group Adder Research Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands;
| | - Amber Gillett
- FaunaVet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| |
Collapse
|
9
|
Kusar S, Saddiqe Z, Asad MHHB, Ali F, Kirmani F. Phytochemical characterization and phospholipase A 2 inhibitory effect of Vitex negundo L. root extracts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117671. [PMID: 38163555 DOI: 10.1016/j.jep.2023.117671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Snake bites are a critical health issue in many parts of the world particularly in Asian countries lacking efficient health facilities in rural areas. Cobra is the most common snake type in Asia and is responsible for a large number of mortalities particularly in rural areas. Plants are usually considered the most effective and easy-to-approach treatment for snake bites in rural areas of various countries. Vitex negundo L. is an important medicinal plant traditionally used to treat snake bite envenomation in many countries of Asia. AIM OF THE STUDY From literature survey of plants traditionally used in the treatment of snake bites in Asian countries including India, Pakistan and Sri Lanka, roots of V. negundo were selected for the present study. Anti-snake venom potential of its roots was assessed through various in vitro assays targeting the phospholipase A2 enzyme. MATERIALS AND METHODS V. negundo roots were sequentially extracted in different organic solvents to get fractions and in methanol to get total extract. The extracts were evaluated for phospholipase A2 (PLA2) inhibitory potential through inhibition of venom-induced hemolysis, ADP-induced platelet aggregation, PLA2-induced fatty acid hydrolysis and anticoagulant effect of cobra venom. Antioxidant power was determined using DPPH and superoxide radical scavenging assays. GC-MS and HPLC analysis was performed for the total methanol extract. RESULTS Strong PLA2 inhibitory effect was observed for all the extracts. The ethyl acetate, acetone and methanol fractions significantly inhibited toxic effects of cobra venom under in vitro conditions. Radical scavenging potential of these fractions was also significantly high as compared to non-polar fractions in both DPPH and superoxide scavenging assays. Phytochemical analysis indicated high phenolic and flavonoid contents in these fractions. GC-MS and HPLC analysis of total methanol extract confirmed the presence of bis(2-ethylhexyl) phthalate, phenol, o-Guaiacol, palmitic acid-methyl ester, methyl stearate, quercetin and kaempferol in the plant. CONCLUSION The study concluded that the roots of V. negundo, particularly their polar extracts, have strong PLA2 inhibitory effect against cobra venom confirming their traditional use to manage snake bites. The roots of this plant can be further studied for isolation of plant-based antisera.
Collapse
Affiliation(s)
- Shabana Kusar
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Zeb Saddiqe
- Department of Botany, Lahore College for Women University, Lahore, Pakistan; Department of Botany, Govt. Queen Mary Graduate College, University of the Punjab, Lahore, Pakistan.
| | | | - Faiza Ali
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Fatima Kirmani
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
10
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Albulescu LO, Westhorpe A, Clare RH, Woodley CM, James N, Kool J, Berry NG, O’Neill PM, Casewell NR. Optimizing drug discovery for snakebite envenoming via a high-throughput phospholipase A2 screening platform. Front Pharmacol 2024; 14:1331224. [PMID: 38273832 PMCID: PMC10808766 DOI: 10.3389/fphar.2023.1331224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes as many as 1.8 million envenomings and 140,000 deaths annually. To address treatment limitations that exist with current antivenoms, the search for small molecule drug-based inhibitors that can be administered as early interventions has recently gained traction. Snake venoms are complex mixtures of proteins, peptides and small molecules and their composition varies substantially between and within snake species. The phospholipases A2 (PLA2) are one of the main pathogenic toxin classes found in medically important viper and elapid snake venoms, yet varespladib, a drug originally developed for the treatment of acute coronary syndrome, remains the only PLA2 inhibitor shown to effectively neutralise venom toxicity in vitro and in vivo, resulting in an extremely limited drug portfolio. Here, we describe a high-throughput drug screen to identify novel PLA2 inhibitors for repurposing as snakebite treatments. We present method optimisation of a 384-well plate, colorimetric, high-throughput screening assay that allowed for a throughput of ∼2,800 drugs per day, and report on the screening of a ∼3,500 post-phase I repurposed drug library against the venom of the Russell's viper, Daboia russelii. We further explore the broad-spectrum inhibitory potential and efficacy of the resulting top hits against a range of medically important snake venoms and demonstrate the utility of our method in determining drug EC50s. Collectively, our findings support the future application of this method to fully explore the chemical space to discover novel PLA2-inhibiting drugs of value for preventing severe pathology caused by snakebite envenoming.
Collapse
Affiliation(s)
- Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Adam Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Rachel H. Clare
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Nivya James
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
12
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
13
|
Castro-Amorim J, Novo de Oliveira A, Da Silva SL, Soares AM, Mukherjee AK, Ramos MJ, Fernandes PA. Catalytically Active Snake Venom PLA 2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J Med Chem 2023; 66:5364-5376. [PMID: 37018514 PMCID: PMC10150362 DOI: 10.1021/acs.jmedchem.3c00097] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Snake venom-secreted phospholipase A2 (svPLA2) enzymes, both catalytically active and inactive, are a central component in envenoming. These are responsible for disrupting the cell membrane's integrity, inducing a wide range of pharmacological effects, such as the necrosis of the bitten limb, cardiorespiratory arrest, edema, and anticoagulation. Although extensively characterized, the reaction mechanisms of enzymatic svPLA2 are still to be thoroughly understood. This review presents and analyses the most plausible reaction mechanisms for svPLA2, such as the "single-water mechanism" or the "assisted-water mechanism" initially proposed for the homologous human PLA2. All of the mechanistic possibilities are characterized by a highly conserved Asp/His/water triad and a Ca2+ cofactor. The extraordinary increase in activity induced by binding to a lipid-water interface, known as "interfacial activation," critical for the PLA2s activity, is also discussed. Finally, a potential catalytic mechanism for the postulated noncatalytic PLA2-like proteins is anticipated.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Novo de Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Saulo Luís Da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Andreimar M Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Rondônia 76812-245, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Rondônia 76805-846, Brazil
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
Lim ASS, Tan KY, Quraishi NH, Farooque S, Khoso ZA, Ratanabanangkoon K, Tan CH. Proteomic Analysis, Immuno-Specificity and Neutralization Efficacy of Pakistani Viper Antivenom (PVAV), a Bivalent Anti-Viperid Antivenom Produced in Pakistan. Toxins (Basel) 2023; 15:toxins15040265. [PMID: 37104203 PMCID: PMC10145215 DOI: 10.3390/toxins15040265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Snakebite envenoming is a neglected tropical disease prevalent in South Asia. In Pakistan, antivenoms are commonly imported from India despite the controversy over their effectiveness. To solve the problem, the locals have developed the Pakistani Viper Antivenom (PVAV), raised against Sochurek’s Saw-scaled Viper (Echis carinatus sochureki) and Russell’s Viper (Daboia russelii) of Pakistani origin. This study is set to evaluate the composition purity, immuno-specificity and neutralization efficacy of PVAV. Chromatographic and electrophoretic profiling coupled with proteomic mass spectrometry analysis showed PVAV containing high-purity immunoglobulin G with minimum impurities, notably the absence of serum albumin. PVAV is highly immuno-specific toward the venoms of the two vipers and Echis carinatus multisquamatus, which are indigenous to Pakistan. Its immunoreactivity, however, reduces toward the venoms of other Echis carinatus subspecies and D. russelii from South India as well as Sri Lanka. Meanwhile, its non-specific binding activities for the venoms of Hump-nosed Pit Vipers, Indian Cobras and kraits were extremely low. In the neutralization study, PVAV effectively mitigated the hemotoxic and lethal effects of the Pakistani viper venoms, tested in vitro and in vivo. Together, the findings suggest the potential utility of PVAV as a new domestic antivenom for the treatment of viperid envenoming in Pakistan.
Collapse
Affiliation(s)
- Andy Shing Seng Lim
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naeem H. Quraishi
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Saud Farooque
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Zahoor Ahmed Khoso
- Snake Antivenom/Antirabies Serology Laboratory, Department of Community Medicine & Public Health Sciences, People’s University of Medical and Health Sciences for Women, Nawabshah 67450, Pakistan
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 73170, Thailand
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
15
|
Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases-What Is the Secret of Their Activity? Int J Mol Sci 2023; 24:ijms24021579. [PMID: 36675102 PMCID: PMC9863470 DOI: 10.3390/ijms24021579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Secreted phospholipases of type A2 (sPLA2s) are proteins of 14-16 kDa present in mammals in different forms and at different body sites. They are involved in lipid transformation processes, and consequently in various immune, inflammatory, and metabolic processes. sPLA2s are also major components of snake venoms, endowed with various toxic and pharmacological properties. The activity of sPLA2s is not limited to the enzymatic one but, through interaction with different types of molecules, they exert other activities that are still little known and explored, both outside and inside the cells, as they can be endocytosed. The aim of this review is to analyze three features of sPLA2s, yet under-explored, knowledge of which could be crucial to understanding the activity of these proteins. The first feature is their disulphide bridge pattern, which has always been considered immutable and necessary for their stability, but which might instead be modulable. The second characteristic is their ability to undergo various post-translational modifications that would control their interaction with other molecules. The third feature is their ability to participate in active molecular condensates both on the surface and within the cell. Finally, the implications of these features in the design of anti-inflammatory drugs are discussed.
Collapse
|
16
|
Bickler PE, Abouyannis M, Bhalla A, Lewin MR. Neuromuscular Weakness and Paralysis Produced by Snakebite Envenoming: Mechanisms and Proposed Standards for Clinical Assessment. Toxins (Basel) 2023; 15:49. [PMID: 36668869 PMCID: PMC9861841 DOI: 10.3390/toxins15010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Respiratory and airway-protective muscle weakness caused by the blockade of neuromuscular transmission is a major cause of early mortality from snakebite envenoming (SBE). Once weakness is manifest, antivenom appears to be of limited effectiveness in improving neuromuscular function. Herein, we review the topic of venom-induced neuromuscular blockade and consider the utility of adopting clinical management methods originally developed for the safe use of neuromuscular blocking agents by anesthesiologists in operating rooms and critical care units. Failure to quantify neuromuscular weakness in SBE is predicted to cause the same significant morbidity that is associated with failure to do so in the context of using a clinical neuromuscular block in surgery and critical care. The quantitative monitoring of a neuromuscular block, and an understanding of its neurophysiological characteristics, enables an objective measurement of weakness that may otherwise be overlooked by traditional clinical examination at the bedside. This is important for the initial assessment and the monitoring of recovery from neurotoxic envenoming. Adopting these methods will also be critical to the conduct of future clinical trials of toxin-inhibiting drugs and antivenoms being tested for the reversal of venom-induced neuromuscular block.
Collapse
Affiliation(s)
- Philip E. Bickler
- Center for Exploration and Travel Health, California Academy of Science, San Francisco, CA 94118, USA
- Anesthesia and Perioperative Care, University of California at San Francisco, 513 Parnassus Ave, Medical Science Room S-257, San Francisco, CA 94143-0542, USA
| | - Michael Abouyannis
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ashish Bhalla
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Matthew R. Lewin
- Center for Exploration and Travel Health, California Academy of Science, San Francisco, CA 94118, USA
- Ophirex, Inc., Corte Madera, CA 94925, USA
| |
Collapse
|
17
|
Nguyen GTT, O'Brien C, Wouters Y, Seneci L, Gallissà-Calzado A, Campos-Pinto I, Ahmadi S, Laustsen AH, Ljungars A. High-throughput proteomics and in vitro functional characterization of the 26 medically most important elapids and vipers from sub-Saharan Africa. Gigascience 2022; 11:giac121. [PMID: 36509548 PMCID: PMC9744630 DOI: 10.1093/gigascience/giac121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Venomous snakes are important parts of the ecosystem, and their behavior and evolution have been shaped by their surrounding environments over the eons. This is reflected in their venoms, which are typically highly adapted for their biological niche, including their diet and defense mechanisms for deterring predators. Sub-Saharan Africa is rich in venomous snake species, of which many are dangerous to humans due to the high toxicity of their venoms and their ability to effectively deliver large amounts of venom into their victims via their bite. In this study, the venoms of 26 of sub-Saharan Africa's medically most relevant elapid and viper species were subjected to parallelized toxicovenomics analysis. The analysis included venom proteomics and in vitro functional characterization of whole venom toxicities, enabling a robust comparison of venom profiles between species. The data presented here corroborate previous studies and provide biochemical details for the clinical manifestations observed in envenomings by the 26 snake species. Moreover, two new venom proteomes (Naja anchietae and Echis leucogaster) are presented here for the first time. Combined, the presented data can help shine light on snake venom evolutionary trends and possibly be used to further improve or develop novel antivenoms.
Collapse
Affiliation(s)
- Giang Thi Tuyet Nguyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Carol O'Brien
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Lorenzo Seneci
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Alex Gallissà-Calzado
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Isabel Campos-Pinto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Mogha NG, Kalokora OJ, Amir HM, Kacholi DS. Ethnomedicinal plants used for treatment of snakebites in Tanzania - a systematic review. PHARMACEUTICAL BIOLOGY 2022; 60:1925-1934. [PMID: 36205572 PMCID: PMC9553154 DOI: 10.1080/13880209.2022.2123942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Snake envenomation is one of the neglected health problems in Tanzania. Since most people, especially in rural areas, suffer from its burden, their cases are not documented due to reliance on medicinal plants. Despite the pivotal role of medicinal plants in treating snakebites, there is a paucity of information. OBJECTIVE This review documents medicinal plants used to treat snakebites in Tanzania. MATERIALS AND METHODS A systematic search using electronic databases such as PubMed, Google Scholar, Scopus, Science Direct and grey literature was conducted to retrieve relevant information on medicinal plants used to treat snakebites in Tanzania. The review was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The obtained information from 19 published articles was organized and analysed based on citation frequency. RESULTS A total of 109 plant species belonging to 49 families are used as snakebite antivenom in Tanzania. Fabaceae had the highest number of medicinal plants (19.3%). The dominant plant growth forms were trees (35%) and shrubs (33%). Roots were the most frequently used plant part (54%), followed by leaves (26%) and bark (11%). Annona senegalensis Pers. (Annonaceae), Dichrostachys cinerea (L.) (Fabaceae), Suregada zanzibariensis Baill. (Euphorbiaceae), Antidesma venosum E.Mey. ex Tul. (Phyllanthaceae), Cissampelos pareira L. (Menispermaceae) and Dalbergia melanoxylon Guill. & Perr. (Fabaceae) were the most cited medicinal plants. CONCLUSIONS Tanzania has diverse plants used for snakebite treatment; a few have been analysed for their bioactive components. Further study of the phytochemicals may provide scientific information to develop snakebite drugs.
Collapse
Affiliation(s)
- Neema Gideon Mogha
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Olivia John Kalokora
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Halima Mvungi Amir
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - David Sylvester Kacholi
- Department of Biological Sciences, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
19
|
Menon JC, Joseph JK, Jose MP, Janakiram C, Kumar K D, Lakappa DB, Sudhakaran PR, Oomen OV. Hypocholesterolaemia as a prognostic factor in venomous snakebite: a retrospective study from a single centre in Kerala, India. Trans R Soc Trop Med Hyg 2022; 116:1071-1076. [PMID: 35771650 DOI: 10.1093/trstmh/trac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/11/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Studies have suggested a association between serum cholesterol values and severity of envenoming. The objective of the study was to correlate the serum cholesterol levels with severity of envenoming in victims of snakebite, across snake species in our patient population. METHODS Retrospective secondary data analysis of health records of a cohort of snakebite victims treated at Little Flower Hospital, Angamaly, Kerala during June 2006-January 2008 was performed. The cholesterol values were assessed in 205 consecutive patients admitted with snakebite envenoming, within 24 h of admission and 10 h of overnight fasting. Lipid fractions were estimated from fasting serum through the standard CHOD-PAP method on a Hitachi analyzer. The cholesterol level was compared between victims with mild and serious envenoming to assess the proportion among each category with a low cholesterol (defined as ≤150 mg/dl as per institutional criteria). In addition, low cholesterol as a marker of severity was compared with other laboratory parameters suggesting severe envenoming such as low fibrinogen, low platelet count, neutrophilia, elevated creatinine, d-dimer, hepatic transaminases and albuminuria. RESULTS Of the 146 victims with serious degree of snakebite envenoming 116 (79%) had low cholesterol values ≤150 mg%, while 30 (21%) had values >150 mg%. Of the patients with low cholesterol, 116 (78%) had serious envenoming, while 22% had mild envenoming. By contrast, 30 patients (21%) had values >150 mg%. The risk of moderate-severe envenoming with low cholesterol was 2.7 times (170%) that of victims with normal or high cholesterol on admission. CONCLUSIONS A low cholesterol on admission in victims of snake envenoming suggested a more severe degree of envenoming and likelihood of complications.
Collapse
Affiliation(s)
- Jaideep C Menon
- Preventive Cardiology & Population Health Sciences, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Joseph K Joseph
- Senior Consultant Nephrologist, Little Flower hospital & Research centre, Angamaly Kerala, 683572, India
| | - Manoj P Jose
- Senior Consultant Physician, Little Flower hospital & Research centre, Angamaly Kerala, 683572, India
| | - Chandrasekhar Janakiram
- Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwavidhyapeetham, Cochin, Kerala, 680241, India
| | - Dileep Kumar K
- Indriyam Biologics Pvt. Ltd, SCTIMST-TIMED, 5th Floor. M S Valiathan Building, BMT Wing - Poojappura, Thiruvananthapuram, Kerala, 695012, India
| | - Dhananjaya B Lakappa
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Jakksandra post, Kanakapura Taluk, Ramanagara, Karnataka, 562112, India
| | - Perumana R Sudhakaran
- Asuthosh Mookerjee Fellow, Department of Computational BioAlogy and Bioinformatics, University of Kerala, Kariavattom, Trivandrum, Kerala, 695581, India
| | - Oomen V Oomen
- Centre for Venom Informatics, Dept. of Computational Biology & Bioinformatics, University of Kerala, Kariavattom North Campus, Thiruvananthapuram, Keralam, 695581, India
| |
Collapse
|
20
|
Arrahman A, Kazandjian TD, Still KBM, Slagboom J, Somsen GW, Vonk FJ, Casewell NR, Kool J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins (Basel) 2022; 14:736. [PMID: 36355986 PMCID: PMC9695013 DOI: 10.3390/toxins14110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Envenomation by elapid snakes primarily results in neurotoxic symptoms and, consequently, are the primary focus of therapeutic research concerning such venoms. However, mounting evidence suggests these venoms can additionally cause coagulopathic symptoms, as demonstrated by some Asian elapids and African spitting cobras. This study sought to investigate the coagulopathic potential of venoms from medically important elapids of the genera Naja (true cobras), Hemachatus (rinkhals), and Dendroaspis (mambas). Crude venoms were bioassayed for coagulant effects using a plasma coagulation assay before RPLC/MS was used to separate and identify venom toxins in parallel with a nanofractionation module. Subsequently, coagulation bioassays were performed on the nanofractionated toxins, along with in-solution tryptic digestion and proteomics analysis. These experiments were then repeated on both crude venoms and on the nanofractionated venom toxins with the addition of either the phospholipase A2 (PLA2) inhibitor varespladib or the snake venom metalloproteinase (SVMP) inhibitor marimastat. Our results demonstrate that various African elapid venoms have an anticoagulant effect, and that this activity is significantly reduced for cobra venoms by the addition of varespladib, though this inhibitor had no effect against anticoagulation caused by mamba venoms. Marimastat showed limited capacity to reduce anticoagulation in elapids, affecting only N. haje and H. haemachatus venom at higher doses. Proteomic analysis of nanofractionated toxins revealed that the anticoagulant toxins in cobra venoms were both acidic and basic PLA2s, while the causative toxins in mamba venoms remain uncertain. This implies that while PLA2 inhibitors such as varespladib and metalloproteinase inhibitors such as marimastat are viable candidates for novel snakebite treatments, they are not likely to be effective against mamba envenomings.
Collapse
Affiliation(s)
- Arif Arrahman
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
| | - Taline D. Kazandjian
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Kristina B. M. Still
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Naturalis Biodiversity Centre, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
21
|
Boeno CN, Paloschi MV, Lopes JA, Souza Silva MD, Evangelista JR, Dos Reis VP, da S Setúbal S, Soares AM, Zuliani JP. Dynamics of action of a Lys-49 and an Asp-49 PLA 2s on inflammasome NLRP3 activation in murine macrophages. Int Immunopharmacol 2022; 112:109194. [PMID: 36041255 DOI: 10.1016/j.intimp.2022.109194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Phospholipases A2 (PLA2s) are proteins found in snake venoms with hemolytic, anticoagulant, myotoxic, edematogenic, bactericidal and inflammatory actions. In Bothrops jararacussu snake venom were isolated a Lys49-PLA2 (BthTX-I) and an Asp49-PLA2 (BthTX-II) with myotoxic and inflammatory actions. Both PLA2s can activate the NLRP3 inflammasome, an intracytoplasmic platform that recognizes molecules released when tissue is damaged liberating IL-1β that contributes to the inflammatory response observed in envenoming. The dynamic of action of BthTX-I and BthTX-II in both thioglycollate (TG)-elicited macrophages and C2C12 myoblasts and the involvement of EP1 and EP2 receptors, and PGE2 in NLRP3 inflammasome activation were evaluated. Both toxins induced PGE2 liberation and inflammasome components (NLRP3, Caspase-1, ASC, IL-1β, and IL18), IL-6, P2X7, COX-1, COX-2, EP2 and EP4 gene expression in TG-elicited macrophages but not in C2C12 myoblasts. EP2 (PF04418948) and EP4 (GW627368X) inhibitors abolished this effect. Both PLA2s also induced NLRP3 inflammasome protein expression that was abolished with the inhibitors used. Immunofluorescence and IL-1β assays confirmed the NLRP3 activation in TG-elicited macrophages with the participation of both EP2 and EP4 receptors confirming their involvement in this effect. All in all, BthTX-I and BthTX-II activate macrophages and induce the NLRP3 inflammasome complex activation with the participation of the PGE2 via COX pathway and EP2 and EP4, both PGE2 receptors, contributing to the local inflammatory effects observed in envenoming.
Collapse
Affiliation(s)
- Charles N Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Jéssica A Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena D Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Jaína R Evangelista
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Valdison P Dos Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
22
|
Myers EA, Strickland JL, Rautsaw RM, Mason AJ, Schramer TD, Nystrom GS, Hogan MP, Yooseph S, Rokyta DR, Parkinson CL. De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (Azemiops feae). Genome Biol Evol 2022; 14:evac082. [PMID: 35670514 PMCID: PMC9256536 DOI: 10.1093/gbe/evac082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Despite the medical significance to humans and important ecological roles filled by vipers, few high-quality genomic resources exist for these snakes outside of a few genera of pitvipers. Here we sequence, assemble, and annotate the genome of Fea's Viper (Azemiops feae). This taxon is distributed in East Asia and belongs to a monotypic subfamily, sister to the pitvipers. The newly sequenced genome resulted in a 1.56 Gb assembly, a contig N50 of 1.59 Mb, with 97.6% of the genome assembly in contigs >50 Kb, and a BUSCO completeness of 92.4%. We found that A. feae venom is primarily composed of phospholipase A2 (PLA2) proteins expressed by genes that likely arose from lineage-specific PLA2 gene duplications. Additionally, we show that renin, an enzyme associated with blood pressure regulation in mammals and known from the venoms of two viper species including A. feae, is expressed in the venom gland at comparative levels to known toxins and is present in the venom proteome. The cooption of this gene as a toxin may be more widespread in viperids than currently known. To investigate the historical population demographics of A. feae, we performed coalescent-based analyses and determined that the effective population size has remained stable over the last 100 kyr. This suggests Quaternary glacial cycles likely had minimal influence on the demographic history of A. feae. This newly assembled genome will be an important resource for studying the genomic basis of phenotypic evolution and understanding the diversification of venom toxin gene families.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Tristan D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
23
|
Chowdhury A, Youngman NJ, Liu J, Lewin MR, Carter RW, Fry BG. The relative efficacy of chemically diverse small-molecule enzyme-inhibitors against anticoagulant activities of Black Snake (Pseudechis spp.) venoms. Toxicol Lett 2022; 366:26-32. [PMID: 35788045 DOI: 10.1016/j.toxlet.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Snakebite remains a worldwide public health burden and a severely neglected tropical disease. Recent research has begun to focus on the potential use of repurposed small-molecule enzyme-inhibitors as early treatments to neutralise the effects of snake venoms. Black snakes (Pseudechis spp.) are a widespread and dangerously venomous group found throughout Australia and New Guinea. Utilising validated coagulation assays, our study assessed the efficacy of two chemically different small molecule inhibitors, a phospholipase A2 inhibitor (varespladib) and a metalloproteinase inhibitor (prinomastat), in vitro neutralisation of the anticoagulant prothrombinase-inhibiting activity of venom from seven species within the Pseudechis genus (P. australis, P. butleri, P. coletti, P. guttatus, P. papuanus, P.rossignolii, P. sp (NT).). Varespladib was shown to be highly effective at neutralising this anticoagulant activity for all seven species, but with P. coletti notably less so than the others. In contrast, prinomastat showed strong neutralisation for five out of the seven species, but was ineffective at neutralising the activity of P. coletti or P. rossignolii venoms. This suggests that varespladib binds to a highly conserved site but that prinomastat binds to a more variable site. These results build upon recent literature indicating that metalloproteinase inhibitors have cross-neutralising potential towards snake venom phospholipase A2 toxins, but with higher degrees of variability that PLA2-specific inhibitors. An important caveat is that these are in vitro tests and while suggestive of potential clinical utility, in vivo animal testing and clinical trials are required as future work.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia; Department of Biochemistry & Microbiology, North South University, Dhaka 1229, Bangladesh.
| | - Nicholas J Youngman
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia
| | - Jiaojiao Liu
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia
| | - Matthew R Lewin
- California Academy of Sciences, San Francisco, CA, 94118, USA; Ophirex, Inc., Corte Madera, CA, 94925, USA
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia QLD, 4072 Australia.
| |
Collapse
|
24
|
Rucavado A, Chacón M, Villalobos D, Argüello I, Campos M, Guerrero G, Méndez ML, Escalante T, Gutiérrez JM. Coagulopathy induced by viperid snake venoms in a murine model: Comparison of standard coagulation tests and rotational thromboelastometry. Toxicon 2022; 214:121-129. [DOI: 10.1016/j.toxicon.2022.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
|
25
|
Youngman NJ, Carlsson DJ, Jones L, Neri-Castro E, Alago´n A, Fry BG. Cloud serpent coagulotoxicity: The biochemical mechanisms underpinning the anticoagulant actions of Mixcoatlus and Ophryacus venoms. Toxicon 2022; 211:44-49. [DOI: 10.1016/j.toxicon.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
26
|
Analysis of High Molecular Mass Compounds from the Spider Pamphobeteus verdolaga Venom Gland. A Transcriptomic and MS ID Approach. Toxins (Basel) 2021; 13:toxins13070453. [PMID: 34209760 PMCID: PMC8309857 DOI: 10.3390/toxins13070453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022] Open
Abstract
Nowadays, spider venom research focuses on the neurotoxic activity of small peptides. In this study, we investigated high-molecular-mass compounds that have either enzymatic activity or housekeeping functions present in either the venom gland or venom of Pamphobeteus verdolaga. We used proteomic and transcriptomic-assisted approaches to recognize the proteins sequences related to high-molecular-mass compounds present in either venom gland or venom. We report the amino acid sequences (partial or complete) of 45 high-molecular-mass compounds detected by transcriptomics showing similarity to other proteins with either enzymatic activity (i.e., phospholipases A2, kunitz-type, hyaluronidases, and sphingomyelinase D) or housekeeping functions involved in the signaling process, glucanotransferase function, and beta-N-acetylglucosaminidase activity. MS/MS analysis showed fragments exhibiting a resemblance similarity with different sequences detected by transcriptomics corresponding to sphingomyelinase D, hyaluronidase, lycotoxins, cysteine-rich secretory proteins, and kunitz-type serine protease inhibitors, among others. Additionally, we report a probably new protein sequence corresponding to the lycotoxin family detected by transcriptomics. The phylogeny analysis suggested that P. verdolaga includes a basal protein that underwent a duplication event that gave origin to the lycotoxin proteins reported for Lycosa sp. This approach allows proposing an evolutionary relationship of high-molecular-mass proteins among P. verdolaga and other spider species.
Collapse
|
27
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
28
|
Clinical implications of ontogenetic differences in the coagulotoxic activity of Bothrops jararacussu venoms. Toxicol Lett 2021; 348:59-72. [PMID: 34044056 DOI: 10.1016/j.toxlet.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Is snake venom activity influenced by size? This is a long-standing question that can have important consequences for the treatment of snake envenomation. Ontogenetic shifts in venom composition are a well-documented characteristic of numerous snake species. Although snake venoms can cause a range of pathophysiological disturbances, establishing the coagulotoxic profiles related to such shifts is a justified approach because coagulotoxicity can be deadly, and its neutralisation is a challenge for current antivenom therapy. Thus, we aimed to assess the coagulotoxicity patterns on plasma and fibrinogen produced by B othrops jararacussu venoms from individuals of different sizes and sex, and the neutralisation potential of SAB (anti bothropic serum produced by Butantan Institute). The use of a metalloproteinase inhibitor (Prinomastat) and a serine proteinase inhibitor (AEBSF) enabled us to determine the toxin class responsible for the observed coagulopathy: activity on plasma was found to be metalloprotease driven, while the activity on fibrinogen is serine protease driven. To further explore differences in venom activity, the activation of Factor X and prothrombin as a function of snake size was also evaluated. All the venoms exhibited a potent procoagulant effect upon plasma and were less potent in their pseudo-procoagulant clotting effect upon fibrinogen. On human plasma, the venoms from smaller snakes produced more rapid clotting than the larger ones. In contrast, the venom activity on fibrinogen had no relation with size or sex. The difference in procoagulant potency was correlated with the bigger snakes being proportionally better neutralized by antivenom due to the lower levels of procoagulant toxins, than the smaller. Thus, while the antivenom ultimately neutralized the venoms, proportionally more would be needed for an equal mass of venom from a small snake than a large one. Similarly, the neutralisation by SAB of the pseudo-procoagulant clotting effects was also correlated with relative potency, with the smaller and bigger snakes being neutralized proportional to potency, but with no correlation to size. Thromboelastography (TEG) tests on human and toad plasma revealed that small snakes' venoms acted quicker than large snakes' venom on both plasmas, with the action upon amphibian plasma consistent with smaller snakes taking a larger proportion of anuran prey than adults. Altogether, the ontogenetic differences regarding coagulotoxic potency and corresponding impact upon relative antivenom neutralisation of snakes with different sizes were shown, underscoring the medical importance of investigating ontogenetic changes in order to provide data crucial for evidence-based design of clinical management strategies.
Collapse
|
29
|
Kazandjian TD, Arrahman A, Still KBM, Somsen GW, Vonk FJ, Casewell NR, Wilkinson MC, Kool J. Anticoagulant Activity of Naja nigricollis Venom Is Mediated by Phospholipase A2 Toxins and Inhibited by Varespladib. Toxins (Basel) 2021; 13:toxins13050302. [PMID: 33922825 PMCID: PMC8145175 DOI: 10.3390/toxins13050302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/03/2022] Open
Abstract
Bites from elapid snakes typically result in neurotoxic symptoms in snakebite victims. Neurotoxins are, therefore, often the focus of research relating to understanding the pathogenesis of elapid bites. However, recent evidence suggests that some elapid snake venoms contain anticoagulant toxins which may help neurotoxic components spread more rapidly. This study examines the effects of venom from the West African black-necked spitting cobra (Naja nigricollis) on blood coagulation and identifies potential coagulopathic toxins. An integrated RPLC-MS methodology, coupled with nanofractionation, was first used to separate venom components, followed by MS, proteomics and coagulopathic bioassays. Coagulation assays were performed on both crude and nanofractionated N. nigricollis venom toxins as well as PLA2s and 3FTx purified from the venom. Assays were then repeated with the addition of either the phospholipase A2 inhibitor varespladib or the snake venom metalloproteinase inhibitor marimastat to assess whether either toxin inhibitor is capable of neutralizing coagulopathic venom activity. Subsequent proteomic analysis was performed on nanofractionated bioactive venom toxins using tryptic digestion followed by nanoLC-MS/MS measurements, which were then identified using Swiss-Prot and species-specific database searches. Varespladib, but not marimastat, was found to significantly reduce the anticoagulant activity of N. nigricollis venom and MS and proteomics analyses confirmed that the anticoagulant venom components mostly consisted of PLA2 proteins. We, therefore, conclude that PLA2s are the most likely candidates responsible for anticoagulant effects stimulated by N. nigricollis venom.
Collapse
Affiliation(s)
- Taline D. Kazandjian
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
| | - Arif Arrahman
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Kampus Baru UI, Universitas Indonesia, Depok 16424, Indonesia
| | - Kristina B. M. Still
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands;
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
| | - Mark C. Wilkinson
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
- Correspondence: (M.C.W.); (J.K.)
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
- Correspondence: (M.C.W.); (J.K.)
| |
Collapse
|
30
|
Harris RJ, Youngman NJ, Chan W, Bosmans F, Cheney KL, Fry BG. Getting stoned: Characterisation of the coagulotoxic and neurotoxic effects of reef stonefish (Synanceia verrucosa) venom. Toxicol Lett 2021; 346:16-22. [PMID: 33878385 DOI: 10.1016/j.toxlet.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023]
Abstract
The reef stonefish (Synanceia verrucosa) is a venomous fish which causes excruciatingly painful envenomations. While some research on the pathophysiology and functions of the venom have been conducted, there are still some gaps in the understanding of the venom effects due to the extreme lability of fish venom toxins and the lack of available testing platforms. Here we set out to assess new functions of the venom whilst also attempting to address some unclear pathophysiological effects from previous literature. Utilising a biolayer interferometry assay, our results highlight that the venom binds to the orthosteric site of the α-1 nicotinic acetylcholine receptor as well as the domain IV of voltage-gated Ca2+ (CaV1.2) channel mimotopes. Both these results add some clarity to the previously ambiguous literature. We further assessed the coagulotoxic effects of the venom using thromboelastography and Stago STA-R Max coagulation analyser assays. We reveal that the venom produced anticoagulant activity and significantly delayed time until clot formation of recalcified human plasma which is likely through the degradation of phospholipids. There was a difference between fresh and lyophilised venom activity toward the nicotinic acetylcholine receptor mimotopes and coagulation assays, whilst no difference was observed in the activity toward the domain IV of CaV1.2 mimotopes. This research adds further insights into the neglected area of fish venom whilst also highlighting the extreme labile nature of fish venom toxins.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Nicholas J Youngman
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Weili Chan
- Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Karen L Cheney
- Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Bryan G Fry
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
31
|
Okafor AI, Onyike E. Inhibition of key enzymes linked to snake venom induced local tissue damage by kolaviron. J Basic Clin Physiol Pharmacol 2020; 32:1121-1130. [PMID: 34898137 DOI: 10.1515/jbcpp-2020-0176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/30/2020] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Snakebite envenoming is an important public health problem that threatens the lives of healthy individuals especially in many tropical countries like Nigeria. Antivenins, the only efficient approach for snakebite envenoming, are limited in their efficacy in the neutralization of local tissue damage. Snake venom phospholipase A2 (PLA2), protease, hyaluronidase and l-amino acid oxidase (LAAO) are the major hydrolytic enzymes involve in local tissue damage. Therefore, this study evaluates the inhibitory effect of kolaviron (KV) against Naja n. nigricollis (NNN) snake venom hydrolytic enzymes involved in local tissue damage. METHODS Kolaviron was evaluated for its ability to inhibit the hydrolytic enzyme activities of NNN venom phospholipase A2 (PLA2), protease, hyaluronidase and l-amino acid oxidase (LAAO). Present study also deals with the neutralization of NNN venom enzyme(s) induced complications such as myotoxic, edemic, hemolytic and procoagulant effects. RESULTS Kolaviron inhibited the PLA2, protease, hyaluronidase and LAAO enzyme activities of NNN venom in a dose-dependent manner. Furthermore, myotoxic, edemic, hemolytic and procoagulant effects induced by NNN venom enzyme were neutralized significantly (p<0.05) when different doses of KV were pre-incubated with venom before assays. CONCLUSIONS These findings clearly present kolaviron as a potent inhibitor against NNN venom hydrolytic enzymes involved in local tissue damage and may act by either forming an inhibitor-enzyme complex that restricts the substrate availability to the enzyme or direct binding to the enzyme active site that affects the enzyme activity thereby mitigating venom-induced toxicity.
Collapse
Affiliation(s)
| | - Elewechi Onyike
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
32
|
Gimenez BT, Cezarette GN, Bomfim ADS, Monteiro WM, Russo EMDS, Frantz FG, Sampaio SV, Sartim MA. Role of crotoxin in coagulation: novel insights into anticoagulant mechanisms and impairment of inflammation-induced coagulation. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200076. [PMID: 33293940 PMCID: PMC7702976 DOI: 10.1590/1678-9199-jvatitd-2020-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Snake venom phospholipases A2 (svPLA2) are
biologically active toxins, capable of triggering and modulating a wide
range of biological functions. Among the svPLA2s, crotoxin (CTX)
has been in the spotlight of bioprospecting research due to its role in
modulating immune response and hemostasis. In the present study, novel
anticoagulant mechanisms of CTX, and the modulation of inflammation-induced
coagulation were investigated. Methods: CTX anticoagulant activity was evaluated using platelet poor plasma (PPP)
and whole blood (WB), and also using isolated coagulation factors and
complexes. The toxin modulation of procoagulant and pro-inflammatory effects
was evaluated using the expression of tissue factor (TF) and cytokines in
lipopolysaccharide (LPS)-treated peripheral blood mononuclear cells (PBMC)
and in WB. Results: The results showed that CTX impaired clot formation in both PPP and WB, and
was responsible for the inhibition of both intrinsic (TF/factor VIIa) and
extrinsic (factor IXa/factor VIIIa) tenase complexes, but not for factor Xa
and thrombin alone. In addition, the PLA2 mitigated the
prothrombinase complex by modulating the coagulation phospholipid role in
the complex. In regards to the inflammation-coagulation cross talk, the
toxin was capable of reducing the production of the pro-inflammatory
cytokines IL-1β, IL-6 and TNF-α, and was followed by decreased levels of TF
and procoagulant activity from LPS-treated PBMC either isolated or in
WB. Conclusion: The results obtained in the present study recognize the toxin as a novel
medicinal candidate to be applied in inflammatory diseases with coagulation
disorders.
Collapse
Affiliation(s)
- Bruna Terada Gimenez
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Neves Cezarette
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Aline de Sousa Bomfim
- Center for Cell-Based Therapy and Regional Blood Center of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University, Manaus, AM, Brazil.,Carlos Borborema Clinical Research Institute, Doutor Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Elisa Maria de Sousa Russo
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy and Regional Blood Center of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Marco Aurelio Sartim
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Basic and Applied Immunology Graduate Program, Institute of Biological Sciences, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
33
|
Dashevsky D, Bénard-Valle M, Neri-Castro E, Youngman NJ, Zdenek CN, Alagón A, Portes-Junior JA, Frank N, Fry BG. Anticoagulant Micrurus venoms: Targets and neutralization. Toxicol Lett 2020; 337:91-97. [PMID: 33197555 DOI: 10.1016/j.toxlet.2020.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Snakebite is a neglected tropical disease with a massive global burden of injury and death. The best current treatments, antivenoms, are plagued by a number of logistical issues that limit supply and access in remote or poor regions. We explore the anticoagulant properties of venoms from the genus Micrurus (coral snakes), which have been largely unstudied, as well as the effectiveness of antivenom and a small-molecule phospholipase inhibitor-varespladib-at counteracting these effects. Our in vitro results suggest that these venoms likely interfere with the formation or function of the prothrombinase complex. We find that the anticoagulant potency varies widely across the genus and is especially pronounced in M. laticollaris. This variation does not appear to correspond to previously described patterns regarding the relative expression of the three-finger toxin and phospholipase A2 (PLA2) toxin families within the venoms of this genus. The coral snake antivenom Coralmyn, is largely unable to ameliorate these effects except for M. ibiboboca. Varespladib on the other hand completely abolished the anticoagulant activity of every venom. This is consistent with the growing body of results showing that varespladib may be an effective treatment for a wide range of toxicity caused by PLA2 toxins from many different snake species. Varespladib is a particularly attractive candidate to help alleviate the burden of snakebite because it is an approved drug that possesses several logistical advantages over antivenom including temperature stability and oral availability.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia; Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601 Australia
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Nicholas J Youngman
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Christina N Zdenek
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo 05503-900, Brazil
| | | | - Bryan G Fry
- Toxin Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia.
| |
Collapse
|
34
|
Youngman NJ, Walker A, Naude A, Coster K, Sundman E, Fry BG. Varespladib (LY315920) neutralises phospholipase A 2 mediated prothrombinase-inhibition induced by Bitis snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108818. [PMID: 32512199 DOI: 10.1016/j.cbpc.2020.108818] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 01/28/2023]
Abstract
Anticoagulant toxicity is a common function of venoms produced by species within the Bitis genus. Potent inhibition of the prothrombinase complex is an identified mechanism of action for the dwarf species B. cornuta and B. xeropaga, along with some localities of B. atropos and B. caudalis. Snake venom phospholipase A2 toxins that inhibit the prothrombinase complex have been identified in snake venom, including an isolated phospholipase A2 toxin from B. caudalis. Current research is investigating the ability of the drug varespladib to inhibit snake venom phospholipase A2 toxins and reduce their toxicity. In particular, varespladib is being investigated as a treatment that could be administered prior to hospital referral which is a major necessity for species such as those from the genus Bitis, due to envenomations often occurring in remote regions of Africa where antivenom is unavailable. Using previously validated coagulation assays, this study aimed to determine if the toxins responsible for inhibition of the prothrombinase complex in the venom of four Bitis species are phospholipase A2 toxins, and if varespladib is able to neutralise this anticoagulant activity. Our results demonstrate that varespladib strongly neutralises the prothrombinase-inhibiting effects of all venoms tested in this study, and that this prothrombinase-inhibiting mechanism of anticoagulant activity is driven by phospholipase A2 class toxins in these four species. This study extends previous reports demonstrating varespladib has broad efficacy for treatment of phospholipase A2 rich snake venoms, indicating it also inhibits their anticoagulant effects mediated by prothrombinase-inhibition.
Collapse
Affiliation(s)
- Nicholas J Youngman
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew Walker
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Arno Naude
- Snakebite Assist, Pretoria ZA-0001, South Africa
| | | | - Eric Sundman
- Universeum, Södra Vägen 50, 412 54 Gothenburg, Sweden
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
35
|
Zdenek CN, Youngman NJ, Hay C, Dobson J, Dunstan N, Allen L, Milanovic L, Fry BG. Anticoagulant activity of black snake (Elapidae: Pseudechis) venoms: Mechanisms, potency, and antivenom efficacy. Toxicol Lett 2020; 330:176-184. [PMID: 32442717 DOI: 10.1016/j.toxlet.2020.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Venoms from Pseudechis species (Australian black snakes) within the Elapidae family are rich in anticoagulant PLA2 toxins, with the exception of one species (P. porphyriacus) that possesses procoagulant mutated forms of the clotting enzyme Factor Xa. Previously the mechanism of action of the PLA2 toxins' anticoagulant toxicity was said to be due to inhibition of Factor Xa, but this statement was evidence free. We conducted a series of anticoagulation assays to elucidate the mechanism of anticoagulant action produced by P. australis venom. Our results revealed that, rather than targeting FXa, the PLA2 toxins inhibited the prothrombinase complex, with FVa-alone or as part of the prothrombinase complex-as the primary target; but with significant thrombin inhibition also noted. In contrast, FXa, and other factors inhibited only to a lesser degree were minor targets. We quantified coagulotoxic effects upon human plasma caused by all nine anticoagulant Pseudechis species, including nine localities of P. australis across Australia, and found similar anticoagulant potency across all Pseudechis species, with greater potency in P. australis and the undescribed Pseudechis species in the NT. In addition, the northern localities and eastern of P. australis were significantly more potent than the central, western, and southern localities. All anticoagulant venoms responded well to Black Snake Antivenom, except P. colletti which was poorly neutralised by Black Snake Antivenom and also Tiger Snake Antivenom (the prescribed antivenom for this species). However, we found LY315920 (trade name: Varespladib), a small molecule inhibitor of PLA2 proteins, exhibited strong potency against P. colletti venom. Thus, Varespladib may be a clinically viable treatment for anticoagulant toxicity exerted by this species that is not neutralised by available antivenoms. Our results provide insights into coagulotoxic venom function, and suggest future in vivo work be conducted to progress the development of a cheaper, first-line treatment option to treat PLA2-rich snake venoms globally.
Collapse
Affiliation(s)
- Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nicholas J Youngman
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Chris Hay
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; Australian School of Herpetology, Southport, QLD, Australia
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nathan Dunstan
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA, 5352, Australia
| | - Luke Allen
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA, 5352, Australia
| | - Leontina Milanovic
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
36
|
An Integrated Proteomic and Transcriptomic Analysis Reveals the Venom Complexity of the Bullet Ant Paraponera clavata. Toxins (Basel) 2020; 12:toxins12050324. [PMID: 32422990 PMCID: PMC7290781 DOI: 10.3390/toxins12050324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
A critical hurdle in ant venom proteomic investigations is the lack of databases to comprehensively and specifically identify the sequence and function of venom proteins and peptides. To resolve this, we used venom gland transcriptomics to generate a sequence database that was used to assign the tandem mass spectrometry (MS) fragmentation spectra of venom peptides and proteins to specific transcripts. This was performed alongside a shotgun liquid chromatography-mass spectrometry (LC-MS/MS) analysis of the venom to confirm that these assigned transcripts were expressed as proteins. Through the combined transcriptomic and proteomic investigation of Paraponera clavata venom, we identified four times the number of proteins previously identified using 2D-PAGE alone. In addition to this, by mining the transcriptomic data, we identified several novel peptide sequences for future pharmacological investigations, some of which conform with inhibitor cysteine knot motifs. These types of peptides have the potential to be developed into pharmaceutical or bioinsecticide peptides.
Collapse
|
37
|
Anticoagulant activity of krait, coral snake, and cobra neurotoxic venoms with diverse proteomes are inhibited by carbon monoxide. Blood Coagul Fibrinolysis 2020; 30:379-384. [PMID: 31415248 DOI: 10.1097/mbc.0000000000000842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND A phenomena of interest is the in vitro anticoagulant effects of neurotoxins found in elapid venoms that kill by paralysis. These enzymes include phospholipase A2 (PLA2), and it has recently been demonstrated that carbon monoxide inhibits the PLA2-dependent neurotoxin contained in Mojave rattlesnake type A venom. The purpose of this investigation was to assess if the anticoagulant activity of elapid venoms containing PLA2 and/or three finger toxins could be inhibited by carbon monoxide. METHODS Venoms collected from Bungarus multicinctus, Micrurus fulvius, and five Naja species were exposed to carbon monoxide via carbon monoxide releasing molecule-2 prior to placement into human plasma. Coagulation kinetics were assessed via thrombelastography. RESULTS Compared with plasma without venom addition, all venoms had significant anticoagulant effects, with a 160-fold range of concentrations having similar anticoagulant effects in a species-specific manner. Carbon monoxide significantly inhibited the anticoagulant effect of all venoms tested, but inhibition was not complete in all cases. CONCLUSION Given that individual neurotoxin activity often depends on intact activity that includes anticoagulant action, it may be possible that carbon monoxide inhibits neurotoxicity. Future investigation is justified to assess such carbon monoxide mediated inhibition with purified neurotoxins in vitro and in vivo.
Collapse
|
38
|
Conlon JM, Attoub S, Musale V, Leprince J, Casewell NR, Sanz L, Calvete JJ. Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae). Toxicon X 2020; 6:100030. [PMID: 32550585 PMCID: PMC7285909 DOI: 10.1016/j.toxcx.2020.100030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/09/2023] Open
Abstract
Four peptides with cytotoxic activity against BRIN-BD11 rat clonal β-cells were purified from the venom of the black-necked spitting cobra Naja nigricollis using reversed-phase HPLC. The peptides were identified as members of the three-finger superfamily of snake toxins by ESI-MS/MS sequencing of tryptic peptides. The most potent peptide (cytotoxin-1N) showed strong cytotoxic activity against three human tumor-derived cell lines (LC50 = 0.8 ± 0.2 μM for A549 non-small cell lung adenocarcinoma cells; LC50 = 7 ± 1 μM for MDA-MB-231 breast adenocarcinoma cells; and LC50 = 9 ± 1 μM for HT-29 colorectal adenocarcinoma cells). However, all the peptides were to varying degrees cytotoxic against HUVEC human umbilical vein endothelial cells (LC50 in the range 2–22 μM) and cytotoxin-2N was moderately hemolytic (LC50 = 45 ± 3 μM against mouse erythrocytes). The lack of differential activity against cells derived from non-neoplastic tissue limits their potential for development into anti-cancer agents. In addition, two proteins in the venom, identified as isoforms of phospholipase A2, effectively stimulated insulin release from BRIN-BD11 cells (an approximately 6-fold increase in rate compared with 5.6 mM glucose alone) at a concentration (1 μM) that was not cytotoxic to the cells suggesting possible application in therapy for Type 2 diabetes. Four members of the three-finger superfamily of toxins were isolated from N. nigricollis venom. All peptides were cytotoxic to human tumor-derived cells. The peptides were also cytotoxic to non-neoplastic HUVEC cells. Two isoforms of phospholipase A2 effectively stimulated insulin release from rat clonal β-cells.
Collapse
Affiliation(s)
- J M Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vishal Musale
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Jérôme Leprince
- Inserm U1239, PRIMACEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76000, Rouen, France
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, UK
| | - Libia Sanz
- Laboratorio de Venómica Evolutiva y Traslacional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
39
|
Filkin SY, Lipkin AV, Fedorov AN. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2020; 85:S177-S195. [DOI: 10.1134/s0006297920140096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Factor XII-Deficient Chicken Plasma as a Useful Target for Screening of Pro- and Anticoagulant Animal Venom Toxins. Toxins (Basel) 2020; 12:toxins12020079. [PMID: 31979411 PMCID: PMC7076771 DOI: 10.3390/toxins12020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
The sensitivity of vertebrate citrated plasma to pro- and anticoagulant venom or toxins occurs on a microscale level (micrograms). Although it improves responses to agonists, recalcification triggers a relatively fast thrombin formation process in mammalian plasma. As it has a natural factor XII deficiency, the recalcification time (RT) of chicken plasma (CP) is comparatively long [≥ 1800 seconds (s)]. Our objective was to compare the ability of bee venom phospholipase A2 (bvPLA2) to neutralize clot formation induced by an activator of coagulation (the aPTT clot) in recalcified human and chicken plasmas, through rotational thromboelastometry. The strategy used in this study was to find doses of bvPLA2 that were sufficient enough to prolong the clotting time (CT) of these activated plasmas to values within their normal RT range. The CT of CP was prolonged in a dose-dependent manner by bvPLA2, with 17 ± 2.8 ng (n = 6) being sufficient to displace the CT values of the activated samples to ≥ 1800 s. Only amounts up to 380 ± 41 ng (n = 6) of bvPLA2 induced the same effect in activated human plasma samples. In conclusion, the high sensitivity of CP to agonists and rotational thromboelastometry could be useful. For example, during screening procedures for assaying the effects of toxins in several stages of the coagulation pathway, such as clot initiation, formation, stability, strength, or dissolution.
Collapse
|
41
|
Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel) 2019; 11:toxins11100564. [PMID: 31557973 PMCID: PMC6832721 DOI: 10.3390/toxins11100564] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Animal venoms are used as defense mechanisms or to immobilize and digest prey. In fact, venoms are complex mixtures of enzymatic and non-enzymatic components with specific pathophysiological functions. Peptide toxins isolated from animal venoms target mainly ion channels, membrane receptors and components of the hemostatic system with high selectivity and affinity. The present review shows an up-to-date survey on the pharmacology of snake-venom bioactive components and evaluates their therapeutic perspectives against a wide range of pathophysiological conditions. Snake venoms have also been used as medical tools for thousands of years especially in tradition Chinese medicine. Consequently, snake venoms can be considered as mini-drug libraries in which each drug is pharmacologically active. However, less than 0.01% of these toxins have been identified and characterized. For instance, Captopril® (Enalapril), Integrilin® (Eptifibatide) and Aggrastat® (Tirofiban) are drugs based on snake venoms, which have been approved by the FDA. In addition to these approved drugs, many other snake venom components are now involved in preclinical or clinical trials for a variety of therapeutic applications. These examples show that snake venoms can be a valuable source of new principle components in drug discovery.
Collapse
|
42
|
Trento MVC, Sales TA, de Abreu TS, Braga MA, Cesar PHS, Marques TR, Marcussi S. Exploring the structural and functional aspects of the phospholipase A 2 from Naja spp. Int J Biol Macromol 2019; 140:49-58. [PMID: 31421173 DOI: 10.1016/j.ijbiomac.2019.08.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/22/2023]
Abstract
Naja spp. venom is a natural source of active compounds with therapeutic application potential. Phospholipase A2 (PLA2) is abundant in the venom of Naja spp. and can perform neurotoxicity, cytotoxicity, cardiotoxicity, and hematological disorders. The PLA2s from Naja spp. venoms are Asp 49 isoenzymes with the exception of PLA2 Cys 49 from Naja sagittifera. When looking at the functional aspects, the neurotoxicity occurs by PLA2 called β-toxins that have affinity for phosphatidylcholine in nerve endings and synaptosomes membranes, and by α-toxins that block the nicotinic acetylcholine receptors in the neuromuscular junctions. In addition, these neurotoxins may inhibit K+ and Ca++ channels or even interfere with the Na+/K+/ATPase enzyme. The disturbance in the membrane fluidity also results in inhibition of the release of acetylcholine. The PLA2 can act as anticoagulants or procoagulant. The cytotoxicity exerted by PLA2s result from changes in the cardiomyocyte membranes, triggering cardiac failure and hemolysis. The antibacterial activity, however, is the result of alterations that decrease the stability of the lipid bilayer. Thus, the understanding of the structural and functional aspects of PLA2s can contribute to studies on the toxic and therapeutic mechanisms involved in the envenomation by Naja spp. and in the treatment of pathologies.
Collapse
Affiliation(s)
- Marcus Vinícius Cardoso Trento
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil.
| | - Thais Aparecida Sales
- Computational Chemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil
| | - Tatiane Silva de Abreu
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil
| | - Mariana Aparecida Braga
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil
| | - Pedro Henrique Souza Cesar
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil
| | - Tamara Rezende Marques
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais 37200-000, Brazil
| |
Collapse
|
43
|
Sachetto A, Mackman N. Modulation of the mammalian coagulation system by venoms and other proteins from snakes, arthropods, nematodes and insects. Thromb Res 2019; 178:145-154. [DOI: 10.1016/j.thromres.2019.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
|
44
|
Sousa ID, Barbosa AR, Salvador GH, Frihling BE, Santa-Rita PH, Soares AM, Pessôa HL, Marchi-Salvador DP. Secondary hemostasis studies of crude venom and isolated proteins from the snake Crotalus durissus terrificus. Int J Biol Macromol 2019; 131:127-133. [DOI: 10.1016/j.ijbiomac.2019.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
45
|
Zdenek CN, Hay C, Arbuckle K, Jackson TNW, Bos MHA, Op den Brouw B, Debono J, Allen L, Dunstan N, Morley T, Herrera M, Gutiérrez JM, Williams DJ, Fry BG. Coagulotoxic effects by brown snake (Pseudonaja) and taipan (Oxyuranus) venoms, and the efficacy of a new antivenom. Toxicol In Vitro 2019; 58:97-109. [PMID: 30910521 DOI: 10.1016/j.tiv.2019.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/03/2023]
Abstract
Snakebite is a neglected tropical disease that disproportionately affects the poor. Antivenom is the only specific and effective treatment for snakebite, but its distribution is severely limited by several factors, including the prohibitive cost of some products. Papua New Guinea (PNG) is a snakebite hotspot but the high costs of Australian antivenoms (thousands of dollars per treatment) makes it unaffordable in PNG. A more economical taipan antivenom has recently been developed at the Instituto Clodomiro Picado (ICP) in Costa Rica for PNG and is currently undergoing clinical trials for the treatment of envenomations by coastal taipans (Oxyuranus scutellatus). In addition to potentially having the capacity to neutralise the effects of envenomations of non-PNG taipans, this antivenom may have the capacity to neutralise coagulotoxins in venom from closely related brown snakes (Pseudonaja spp.) also found in PNG. Consequently, we investigated the cross-reactivity of taipan antivenom across the venoms of all Oxyuranus and Pseudonaja species. In addition, to ascertain differences in venom biochemistry that influence variation in antivenom efficacy, we tested for relative cofactor dependence. We found that the new ICP taipan antivenom exhibited high selectivity for Oxyuranus venoms and only low to moderate cross-reactivity with any Pseudonaja venoms. Consistent with this genus level distinction in antivenom efficacy were fundamental differences in the venom biochemistry. Not only were the Pseudonaja venoms significantly more procoagulant, but they were also much less dependent upon the cofactors calcium and phospholipid. There was a strong correlation between antivenom efficacy, clotting time and cofactor dependence. This study sheds light on the structure-function relationships of the procoagulant toxins within these venoms and may have important clinical implications including for the design of next-generation antivenoms.
Collapse
Affiliation(s)
- Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chris Hay
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Reptile Kingdom Australia, Carrara, QLD, Australia
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, SA2 8PP, United Kingdom
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, 3010, VIC, Australia
| | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Luke Allen
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA 5352, Australia
| | - Nathan Dunstan
- Venom Supplies Pty Ltd, Stonewell Rd, Tanunda, SA 5352, Australia
| | | | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - José M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - David J Williams
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, 3010, VIC, Australia; Charles Campbell Toxinology Centre, School of Medicine and Health Sciences, University of Papua New Guinea, Boroko 121, National Capital District, Papua New Guinea
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
46
|
Molecular docking and dynamic studies of crepiside E beta glucopyranoside as an inhibitor of snake venom PLA2. J Mol Model 2019; 25:88. [PMID: 30847632 DOI: 10.1007/s00894-019-3954-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Alternative treatments from plant-derived small molecules for neutralizing the venom lethality in snake envenomation are prevalent now. Elephantopus scaber, a tropical plant species has been recognized for its various pharmacological activities and especially anti-snake venom property; however, the molecular basis for this property is not understood. It is reported that snake venom PLA2 is a toxic factor with pharmacological effects independent of their catalytic activity. Here we report the inhibition of catalytic property of Cobra and Viper (group I and group II) snake venom PLA2 by the phytocompounds from E. scaber through molecular docking and dynamics studies. Initially, Lipinski's rule, ADMET, and molecular docking studies were carried out. Our results show that among 124 phytocompounds, crepiside E (deacylcynaropicrin-3' beta-glucopyranoside) has shown interactions with the conserved catalytic active site residues, His 48 and Asp 49, in both the PLA2s. Further, molecular dynamic simulations for 60 ns confirmed the stability of crepiside E in the active site of PLA2s and were found to be stable throughout the simulation. In order to understand the drug-likeness of crepiside E, pIC50 and MMGBSA scores were correlated by performing a linear regression analysis. Crepiside E was found to have similar chemical features to that of doxycycline, a known PLA2 inhibitor as indicated by a similarity score of 64.15%. Hence, it is concluded that crepiside E beta glucopyranoside present in Elephantopus scaber contributes to neutralizing the snake venom.
Collapse
|
47
|
Shivashankar S, Murali A, Sangeetha M. Molecular interaction of phytochemicals with snake venom: Phytochemicals of Andrographis paniculata inhibits phospholipase A2 of Russell's viper (Daboia russelli). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Mud in the blood: Novel potent anticoagulant coagulotoxicity in the venoms of the Australian elapid snake genus Denisonia (mud adders) and relative antivenom efficacy. Toxicol Lett 2019; 302:1-6. [DOI: 10.1016/j.toxlet.2018.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022]
|
49
|
Dutta S, Sinha A, Dasgupta S, Mukherjee AK. Binding of a Naja naja venom acidic phospholipase A 2 cognate complex to membrane-bound vimentin of rat L6 cells: Implications in cobra venom-induced cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:958-977. [PMID: 30776333 DOI: 10.1016/j.bbamem.2019.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 01/28/2023]
Abstract
An acidic phospholipase A2 enzyme (NnPLA2-I) interacts with three finger toxins (cytotoxin and neurotoxin) from Naja naja venom to form cognate complexes to enhance its cytotoxicity towards rat L6 myogenic cells. The cytotoxicity was further enhanced in presence of trace quantity of venom nerve growth factor. The purified rat myoblast cell membrane protein showing interaction with NnPLA2-I was identified as vimentin by LC-MS/MS analysis. The ELISA, immunoblot and spectrofluorometric analyses showed greater binding of NnPLA2-I cognate complex to vimentin as compared to the binding of individual NnPLA2-I. The immunofluorescence and confocal microscopy studies evidenced the internalization of NnPLA2-I to partially differentiated myoblasts post binding with vimentin in a time-dependent manner. Pre-incubation of polyvalent antivenom with NnPLA2-I cognate complex demonstrated better neutralization of cytotoxicity towards L6 cells as compared to exogenous addition of polyvalent antivenom 60-240 min post treatment of L6 cells with cognate complex suggesting clinical advantage of early antivenom treatment to prevent cobra venom-induced cytotoxicity. The in silico analysis showed that 19-22 residues, inclusive of Asp48 residue, of NnPLA2-I preferentially binds with the rod domain (99-189 and 261-335 regions) of vimentin with a predicted free binding energy (ΔG) and dissociation constant (KD) values of -12.86 kcal/mol and 3.67 × 10-10 M, respectively; however, NnPLA2-I cognate complex showed greater binding with the same regions of vimentin indicating the pathophysiological significance of cognate complex in cobra venom-induced cytotoxicity.
Collapse
Affiliation(s)
- Sumita Dutta
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Archana Sinha
- Molecular Endocrinology and Metabolism Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Suman Dasgupta
- Molecular Endocrinology and Metabolism Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
50
|
Neri-Castro E, Hernández-Dávila A, Olvera-Rodríguez A, Cardoso-Torres H, Bénard-Valle M, Bastiaans E, López-Gutierrez O, Alagón A. Detection and quantification of a β-neurotoxin (crotoxin homologs) in the venom of the rattlesnakes Crotalus simus, C. culminatus and C. tzabcan from Mexico. Toxicon X 2019; 2:100007. [PMID: 32550564 PMCID: PMC7286086 DOI: 10.1016/j.toxcx.2019.100007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/10/2019] [Accepted: 02/03/2019] [Indexed: 11/30/2022] Open
Abstract
Snake venom may vary in composition and toxicity across the geographic distribution of a species. In the case of the three species of the Neotropical rattlesnakes Crotalus simus, C. culminatus and C. tzabcan recent research has revealed that their venoms can contain a neurotoxic component (crotoxin homologs), but is not always the case. In the present work, we detected and quantified crotoxin homologs in venom samples from three species distributed across Mexico, to describe variation at the individual and subspecific levels, using slot blot and ELISA immunoassays. We found that all C. simus individuals analyzed had substantial percentages of crotoxin homologs in their venoms (7.6–44.3%). In contrast, C. culminatus lacked them completely and six of ten individuals of the species C. tzabcan had low percentages (3.0–7.7%). We also found a direct relationship between the lethality of a venom and the percentage of crotoxin homologs it contained, indicating that the quantity of this component influences venom lethality in the rattlesnake C. simus. Monoclonal antibodies were produced that specifically recognized crotoxin homologs in venoms of Crotalus species. Crotoxin homologs were quantified in three species of Crotalus: C. simus, C. culminatus and C. tzabcan. All specimens of C. simus contained crotoxin homologs at different levels, while C. culminatus venoms lacked them completely. In C. tzabcan, some venoms possess and other lack crotoxin homologs.
Collapse
Affiliation(s)
- Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Arely Hernández-Dávila
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Héctor Cardoso-Torres
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Melisa Bénard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Elizabeth Bastiaans
- Department of Biology, State University of New York at Oneonta, Oneonta, NY, USA
| | - Oswaldo López-Gutierrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|