1
|
Wang Y, Guo S, Ventura T, Jain R, Robinson KE, Mitter N, Herzig V. Development of a soybean leaf disc assay for determining oral insecticidal activity in the lepidopteran agricultural pest Helicoverpa armigera. Toxicon 2024; 238:107588. [PMID: 38147939 DOI: 10.1016/j.toxicon.2023.107588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.
Collapse
Affiliation(s)
- Yachen Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Shaodong Guo
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Ritesh Jain
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Karl E Robinson
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
2
|
Baza-Moreno JD, Vega-Alvarado L, Ibarra-Núñez G, Guillén-Navarro K, García-Fajardo LV, Jiménez-Jacinto V, Diego-García E. Transcriptome analysis of the spider Phonotimpus pennimani reveals novel toxin transcripts. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220031. [PMID: 36721428 PMCID: PMC9881743 DOI: 10.1590/1678-9199-jvatitd-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 01/28/2023] Open
Abstract
Background Phonotimpus pennimani (Araneae, Phrurolithidae) is a small-sized (3-5 mm) spider endemic to the Tacaná volcano in Chiapas, Mexico, where it is found in soil litter of cloud forests and coffee plantations. Its venom composition has so far not been investigated, partly because it is not a species of medical significance. However, it does have an important impact on the arthropod populations of its natural habitat. Methods Specimens were collected in Southeastern Mexico (Chiapas) and identified taxonomically by morphological characteristics. A partial sequence from the mitochondrial gene coxI was amplified. Sequencing on the Illumina platform of a transcriptome library constructed from 12 adult specimens revealed 25 toxin or toxin-like genes. Transcripts were validated (RT-qPCR) by assessing the differential expression of the toxin-like PpenTox1 transcript and normalising with housekeeping genes. Results Analysis of the coxI-gene revealed a similarity to other species of the family Phrurolithidae. Transcriptome analysis also revealed similarity with venom components of species from the families Ctenidae, Lycosidae, and Sicariidae. Expression of the toxin-like PpenTox1 gene was different for each developmental stage (juvenile or adult) and also for both sexes (female or male). Additionally, a partial sequence was obtained for the toxin-like PpenTox1 from DNA. Conclusion Data from the amplification of the mitochondrial coxI gene confirmed that P. pennimani belongs to the family Phrurolithidae. New genes and transcripts coding for venom components were identified.
Collapse
Affiliation(s)
- Jonathan David Baza-Moreno
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias
de la Sustentabilidad, El Colegio de la Frontera Sur (ECOSUR), Tapachula de Córdova
y Ordoñez, Chiapas, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional
Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Guillermo Ibarra-Núñez
- Grupo Académico de Ecología de Artrópodos y Manejo de Plagas,
Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur
(ECOSUR), Tapachula de Córdova y Ordoñez, Chiapas, Mexico
| | - Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias
de la Sustentabilidad, El Colegio de la Frontera Sur (ECOSUR), Tapachula de Córdova
y Ordoñez, Chiapas, Mexico
| | - Luz Verónica García-Fajardo
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias
de la Sustentabilidad, El Colegio de la Frontera Sur (ECOSUR), Tapachula de Córdova
y Ordoñez, Chiapas, Mexico
| | - Verónica Jiménez-Jacinto
- Instituto de Biotecnología, Universidad Nacional Autónoma de México
(UNAM), Cuernavaca, Morelos, Mexico
| | - Elia Diego-García
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias
de la Sustentabilidad, El Colegio de la Frontera Sur (ECOSUR), Tapachula de Córdova
y Ordoñez, Chiapas, Mexico.,Investigadora CONACyT - ECOSUR, Consejo Nacional de Ciencia y
Técnología, Ciudad de Mexico, Mexico.,Correspondence:
| |
Collapse
|
3
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
4
|
Bell J, Sukiran NA, Walsh S, Fitches EC. The insecticidal activity of recombinant nemertide toxin α-1 from Lineus longissimus towards pests and beneficial species. Toxicon 2021; 197:79-86. [PMID: 33852905 DOI: 10.1016/j.toxicon.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
The nemertide toxins from the phylum Nemertea are a little researched family of neurotoxins with potential for development as biopesticides. Here we report the recombinant production of nemertide α-1 (α-1), a 65-residue inhibitor cystine knot (ICK) peptide from Lineus longissimus, known to target insect voltage-gated sodium channels. The insecticidal activity of α-1 was assessed and compared with the well characterised ICK venom peptide, ω-atracotoxin/hexatoxin-Hv1a (Hv1a). α-1 elicited potent spastic paralysis when injected into cabbage moth (Mamestra brassicae) larvae; conferring an ED50 3.90 μg/larva (10.30 nmol/g larva), followed by mortality (60% within 48 h after 10 μg injection). By comparison, injection of M. brassicae larvae with recombinant Hv1a produced short-lived flaccid paralysis with an ED50 over 6 times greater than that of α-1 at 26.20 μg/larva (64.70 nmol/g larva). Oral toxicity of α-1 was demonstrated against two aphid species (Myzus persicae and Acyrthosiphon pisum), with respective LC50 values of 0.35 and 0.14 mg/mL, some 6-fold lower than those derived for recombinant Hv1a. When delivered orally to M. brassicae larvae, α-1 caused both paralysis (ED50 11.93 μg/larva, 31.5 nmol/g larva) and mortality. This contrasts with the lack of oral activity of Hv1a, which when fed to M. brassicae larvae had no effect on feeding or survival. Hv1a has previously been shown to be non-toxic by injection to the beneficial honeybee (Apis mellifera). By contrast, rapid paralysis and 100% mortality was observed following injection of α-1 (31.6 nmol/g insect). These results demonstrate the great potential of naturally occurring non-venomous peptides, such as α-1, for development as novel effective biopesticides, but equally highlights the importance of understanding the phyletic specificity of a given toxin at an early stage in the quest to discover and develop safe and sustainable pesticides.
Collapse
Affiliation(s)
- Jack Bell
- Durham University, Department of Biosciences, Stockton Rd, Durham, DH1 3LE, UK.
| | - Nur Afiqah Sukiran
- Durham University, Department of Biosciences, Stockton Rd, Durham, DH1 3LE, UK
| | - Stephen Walsh
- Durham University, Department of Biosciences, Stockton Rd, Durham, DH1 3LE, UK
| | - Elaine C Fitches
- Durham University, Department of Biosciences, Stockton Rd, Durham, DH1 3LE, UK
| |
Collapse
|
5
|
Wang J, Yan Z, Xiao S, Wang B, Fang Q, Schlenke T, Ye G. Characterization of a cell death-inducing endonuclease-like venom protein from the parasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). PEST MANAGEMENT SCIENCE 2021; 77:224-233. [PMID: 32673424 PMCID: PMC9282878 DOI: 10.1002/ps.6011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Parasitoid wasps are valuable natural enemies for controlling pests. To ensure successful parasitism, these wasps inject venoms along with their eggs that are deposited either into or on their hosts. Parasitoid venoms regulate host behaviors, development, metabolism and immune responses. Pteromalus puparum is a pupal endoparasitoid that parasitizes a number of butterflies, including the worldwide pest cabbage butterfly, Pieris rapae. Venom from P. puparum has a variety of effects on host hemocytes, including alteration of absolute and relative hemocyte counts, and inhibition of hemocyte spreading and encapsulation. In particular, P. puparum venom causes hemocyte cell death in vivo and in vitro. RESULTS Using assay-guided chromatography, a cell death-inducing venom fraction was identified and defined as P. puparum endonuclease-like venom protein (PpENVP). It belongs to the DNA/RNA nonspecific endonuclease family, which contains two conserved endonuclease activation sites. We analyzed its expression profiles and demonstrated that PpENVP inhibits gene expression in transfected cells relying on two activation sites. However, RNA interference of PpENVP did not significantly reduce P. puparum venom cytotoxicity, suggesting that PpENVP may not be the sole cytotoxic factor present. CONCLUSION Our results provide novel insight into the function of the P. puparum venom cocktail and identify a promising insecticide candidate endonuclease that targets insect hemocytes.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Entomology, University of Arizona, Tucson 85719, AZ, USA
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Beibei Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Todd Schlenke
- Department of Entomology, University of Arizona, Tucson 85719, AZ, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Peng X, Dai Z, Wang X. Comparative proteomic analysis to probe into the differences in protein expression profiles and toxicity bases of Latrodectus tredecimguttatus spiderlings and adult spiders. Comp Biochem Physiol C Toxicol Pharmacol 2020; 232:108762. [PMID: 32251727 DOI: 10.1016/j.cbpc.2020.108762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023]
Abstract
The early reports and our previous work confirmed the existence of the toxic proteinaceous components in the body of the L. tredecimguttatus newborn and adult spiders. For revealing the differences in the protein expression profiles and toxicity bases of the spiders at different developmental stages, the spiderling and adult spider proteins were comparatively analyzed using a proteomic strategy. Totals of 429 and 958 proteins were identified from the spiderlings and adult spiders, respectively, with 239 proteins being identified from both of them. Although some similarities between the spiderling and adult spider proteomes exist, there are obvious differences between the two proteomes in size, complexity, molecular weight (MW) distribution, acid-base property, and hydropathicity, etc. Gene ontology (GO) analysis demonstrates that, comparing based on the percentages of proteins, the spiderling and adult spider proteins have generally similar distribution profiles with respect to the subcellular localization, molecular function and biological process. However, there are still some differences between these two sets of proteins in some classifications of the three GO categories. For the adult spiders, latrotoxins together with other toxins and toxin-like proteins, etc. constitute their toxicity basis, whereas the toxicity of the spiderlings depends mainly on the synergistic action of atypical latrotoxins and toxin-like proteins, most of which are different from those of the adult spiders, demonstrating that the spiders at different developmental stages have largely different toxicity mechanisms.
Collapse
Affiliation(s)
- Xiaozhen Peng
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China; College of Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Zhipan Dai
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
7
|
Powell ME, Bradish HM, Cao M, Makinson R, Brown AP, Gatehouse JA, Fitches EC. Demonstrating the potential of a novel spider venom-based biopesticide for target-specific control of the small hive beetle, a serious pest of the European honeybee. JOURNAL OF PEST SCIENCE 2019; 93:391-402. [PMID: 31997983 PMCID: PMC6957549 DOI: 10.1007/s10340-019-01143-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 06/01/2023]
Abstract
The parasitic small hive beetle (Aethina tumida) feeds on pollen, honey and brood of the European honey bee (Apis mellifera); establishment in North America and Australia has resulted in severe economic damage to the apiculture industry. We report potential for the "in-hive" use of a novel biopesticide that is toxic to this invasive beetle pest but harmless to honeybees. Constructs encoding the spider venom neurotoxin ω-hexatoxin-Hv1a (Hv1a) linked to the N- or C-terminus of snowdrop lectin (GNA) were used to produce recombinant Hv1a/GNA and GNA/Hv1a fusion proteins. Both were similarly toxic to beetles by injection (respective LD50s 1.5 and 0.9 nmoles/g larvae), whereas no effects on adult honeybee survival were observed at injection doses of > 200 nmoles/g insect. When fed to A. tumida larvae, GNA/Hv1a was significantly more effective than Hv1a/GNA (LC50s of 0.52 and 1.14 mg/ml diet, respectively), whereas both proteins were similarly toxic to adults. Results suggested that the reduced efficacy of Hv1a/GNA against larvae was attributable to differences in the susceptibility of the fusion proteins to cleavage by gut serine proteases. In laboratory assays, A. tumida larval survival was significantly reduced when brood, inoculated with eggs, was treated with GNA/Hv1a.
Collapse
Affiliation(s)
| | | | - Min Cao
- School of Biosciences, University of Durham, Durham, UK
| | | | | | | | - Elaine C. Fitches
- Fera Science Ltd, Sand Hutton, York, YO41 1LZ UK
- School of Biosciences, University of Durham, Durham, UK
| |
Collapse
|
8
|
Wang X, Tang X, Xu D, Yu D. Molecular basis and mechanism underlying the insecticidal activity of venoms and toxins from Latrodectus spiders. PEST MANAGEMENT SCIENCE 2019; 75:318-323. [PMID: 30204933 DOI: 10.1002/ps.5206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Latrodectus species are among the most venomous of spiders, with abundant toxic proteinaceous components in their venomous glands and other tissues, as well as their eggs. To date, several proteinaceous toxins with insecticidal potential, including α-insectotoxin and δ-insectotoxin, two of the most potent known insecticidal toxins, have been purified and characterized by comprehensively utilizing conventional biochemical techniques. This has greatly enhanced our knowledge of the molecular basis and mechanism of action of their toxicity. Application of proteomic and transcriptomic techniques further revealed the synergistic action of multiple Latrodectus proteinaceous toxins and toxin-like components. Insecticidal toxins from Latrodectus spiders have great potential in insect pest control; however, more studies are needed to further reveal their mechanisms of action and understand their structures and properties before any practical application, for example, the insecticidal toxin-containing fusion proteins with oral activity. Here, we review current knowledge of the molecular basis and mechanism of action underlying the insecticidal activity of venoms and toxins from Latrodectus spiders, and examine their potential application in insect pest control. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Xiaochao Tang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Dehong Xu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Dianmei Yu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
9
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
10
|
Evaluation of Chemical Strategies for Improving the Stability and Oral Toxicity of Insecticidal Peptides. Biomedicines 2018; 6:biomedicines6030090. [PMID: 30154370 PMCID: PMC6164231 DOI: 10.3390/biomedicines6030090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
Spider venoms are a rich source of insecticidal peptide toxins. Their development as bioinsecticides has, however, been hampered due to concerns about potential lack of stability and oral bioactivity. We therefore systematically evaluated several synthetic strategies to increase the stability and oral potency of the potent insecticidal spider-venom peptide ω-HXTX-Hv1a (Hv1a). Selective chemical replacement of disulfide bridges with diselenide bonds and N- to C-terminal cyclization were anticipated to improve Hv1a resistance to proteolytic digestion, and thereby its activity when delivered orally. We found that native Hv1a is orally active in blowflies, but 91-fold less potent than when administered by injection. Introduction of a single diselenide bond had no effect on the susceptibility to scrambling or the oral activity of Hv1a. N- to C-terminal cyclization of the peptide backbone did not significantly improve the potency of Hv1a when injected into blowflies and it led to a significant decrease in oral activity. We show that this is likely due to a dramatically reduced rate of translocation of cyclic Hv1a across the insect midgut, highlighting the importance of testing bioavailability in addition to toxin stability.
Collapse
|
11
|
Guo S, Herzig V, King GF. Dipteran toxicity assays for determining the oral insecticidal activity of venoms and toxins. Toxicon 2018; 150:297-303. [DOI: 10.1016/j.toxicon.2018.06.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/07/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
|
12
|
Wanderley LF, Batista KLR, Carvalho JFD, Lima ADS, Landulfo GA, Soares AMDS, Costa Junior LM. The first assessment of the stress inducible defense of Leucaena leucocephala with acaricidal potential effect against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2017; 26:171-176. [DOI: 10.1590/s1984-29612017026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/13/2017] [Indexed: 11/22/2022]
Abstract
Abstract Plants respond to wounding caused by mechanical stress or herbivory by synthesizing defense proteins. There are no studies reporting the action of induced plant proteins against ticks. The aim of this study was to investigate the effect of mechanically wounded Leucaena leucocephala leaves against Rhipicephalus (Boophilus) microplus. Initially, we carried out time course experiments to evaluate the impact of mechanical wounding on the protein content and the peroxidase, catalase and protease inhibitor activities in L. leucocephala. We then evaluated the acaricidal activity on R. (B.) microplus from protein extract collected from L. leucocephala after mechanical wounding. L. leucocephala leaves were artificially wounded, and after 6, 12, 24 and 48h, the leaves were collected for protein extraction. Quantitative and qualitative analyses of the proteins were performed. The protein content and peroxidase and protease activities increased 12h after wounding, and the acaricidal activity of this protein extract was evaluated using engorged R. (B.) microplus females. The protein extract obtained after wounding reduced egg production (8.5%) compared to those without wounding. Furthermore, the extract reduced egg hatching by 47.7% and showed an overall efficacy of 56.3% at 0.1 mgP/mL of the protein. We demonstrated that L. leucocephala defensive proteins could be effective against R. (B.) microplus.
Collapse
|
13
|
Insect-Active Toxins with Promiscuous Pharmacology from the African Theraphosid Spider Monocentropus balfouri. Toxins (Basel) 2017; 9:toxins9050155. [PMID: 28475112 PMCID: PMC5450703 DOI: 10.3390/toxins9050155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/22/2023] Open
Abstract
Many chemical insecticides are becoming less efficacious due to rising resistance in pest species, which has created much interest in the development of new, eco-friendly bioinsecticides. Since insects are the primary prey of most spiders, their venoms are a rich source of insect-active peptides that can be used as leads for new bioinsecticides or as tools to study molecular receptors that are insecticidal targets. In the present study, we isolated two insecticidal peptides, µ/ω-TRTX-Mb1a and -Mb1b, from venom of the African tarantula Monocentropus balfouri. Recombinant µ/ω-TRTX-Mb1a and -Mb1b paralyzed both Lucilia cuprina (Australian sheep blowfly) and Musca domestica (housefly), but neither peptide affected larvae of Helicoverpa armigera (cotton bollworms). Both peptides inhibited currents mediated by voltage-gated sodium (NaV) and calcium channels in Periplaneta americana (American cockroach) dorsal unpaired median neurons, and they also inhibited the cloned Blattella germanica (German cockroach) NaV channel (BgNaV1). An additional effect seen only with Mb1a on BgNaV1 was a delay in fast inactivation. Comparison of the NaV channel sequences of the tested insect species revealed that variations in the S1–S2 loops in the voltage sensor domains might underlie the differences in activity between different phyla.
Collapse
|
14
|
Herzig V, Ikonomopoulou M, Smith JJ, Dziemborowicz S, Gilchrist J, Kuhn-Nentwig L, Rezende FO, Moreira LA, Nicholson GM, Bosmans F, King GF. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami. Sci Rep 2016; 6:29538. [PMID: 27383378 PMCID: PMC4935840 DOI: 10.1038/srep29538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022] Open
Abstract
The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroach Periplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1–S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species.
Collapse
Affiliation(s)
- Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Maria Ikonomopoulou
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jennifer J Smith
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sławomir Dziemborowicz
- School of Medical &Molecular Biosciences, University of Technology, Sydney, NSW 2007, Australia
| | - John Gilchrist
- Department of Physiology &Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Lucia Kuhn-Nentwig
- Institute of Ecology &Evolution, University of Bern, CH 3012 Bern, Switzerland
| | | | | | - Graham M Nicholson
- School of Medical &Molecular Biosciences, University of Technology, Sydney, NSW 2007, Australia
| | - Frank Bosmans
- Department of Physiology &Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
15
|
Bende NS, Dziemborowicz S, Herzig V, Ramanujam V, Brown GW, Bosmans F, Nicholson GM, King GF, Mobli M. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large β-hairpin loop. FEBS J 2015; 282:904-20. [PMID: 25559770 DOI: 10.1111/febs.13189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/27/2022]
Abstract
Spider venoms contain a plethora of insecticidal peptides that act on neuronal ion channels and receptors. Because of their high specificity, potency and stability, these peptides have attracted much attention as potential environmentally friendly insecticides. Although many insecticidal spider venom peptides have been isolated, the molecular target, mode of action and structure of only a small minority have been explored. Sf1a, a 46-residue peptide isolated from the venom of the tube-web spider Segesteria florentina, is insecticidal to a wide range of insects, but nontoxic to vertebrates. In order to investigate its structure and mode of action, we developed an efficient bacterial expression system for the production of Sf1a. We determined a high-resolution solution structure of Sf1a using multidimensional 3D/4D NMR spectroscopy. This revealed that Sf1a is a knottin peptide with an unusually large β-hairpin loop that accounts for a third of the peptide length. This loop is delimited by a fourth disulfide bond that is not commonly found in knottin peptides. We showed, through mutagenesis, that this large loop is functionally critical for insecticidal activity. Sf1a was further shown to be a selective inhibitor of insect voltage-gated sodium channels, consistent with its 'depressant' paralytic phenotype in insects. However, in contrast to the majority of spider-derived sodium channel toxins that function as gating modifiers via interaction with one or more of the voltage-sensor domains, Sf1a appears to act as a pore blocker.
Collapse
Affiliation(s)
- Niraj S Bende
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pineda SS, Sollod BL, Wilson D, Darling A, Sunagar K, Undheim EAB, Kely L, Antunes A, Fry BG, King GF. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders. BMC Genomics 2014; 15:177. [PMID: 24593665 PMCID: PMC4029134 DOI: 10.1186/1471-2164-15-177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. RESULTS Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. CONCLUSIONS Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bryan G Fry
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072, Australia.
| | | |
Collapse
|
17
|
Smith JJ, Herzig V, King GF, Alewood PF. The insecticidal potential of venom peptides. Cell Mol Life Sci 2013; 70:3665-93. [PMID: 23525661 PMCID: PMC11114029 DOI: 10.1007/s00018-013-1315-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/19/2022]
Abstract
Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.
Collapse
Affiliation(s)
- Jennifer J. Smith
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
18
|
Hardy MC, Daly NL, Mobli M, Morales RAV, King GF. Isolation of an orally active insecticidal toxin from the venom of an Australian tarantula. PLoS One 2013; 8:e73136. [PMID: 24039872 PMCID: PMC3770646 DOI: 10.1371/journal.pone.0073136] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 07/23/2013] [Indexed: 12/20/2022] Open
Abstract
Many insect pests have developed resistance to existing chemical insecticides and consequently there is much interest in the development of new insecticidal compounds with novel modes of action. Although spiders have deployed insecticidal toxins in their venoms for over 250 million years, there is no evolutionary selection pressure on these toxins to possess oral activity since they are injected into prey and predators via a hypodermic needle-like fang. Thus, it has been assumed that spider-venom peptides are not orally active and are therefore unlikely to be useful insecticides. Contrary to this dogma, we show that it is possible to isolate spider-venom peptides with high levels of oral insecticidal activity by directly screening for per os toxicity. Using this approach, we isolated a 34-residue orally active insecticidal peptide (OAIP-1) from venom of the Australian tarantula Selenotypus plumipes. The oral LD50 for OAIP-1 in the agronomically important cotton bollworm Helicoverpa armigera was 104.2±0.6 pmol/g, which is the highest per os activity reported to date for an insecticidal venom peptide. OAIP-1 is equipotent with synthetic pyrethroids and it acts synergistically with neonicotinoid insecticides. The three-dimensional structure of OAIP-1 determined using NMR spectroscopy revealed that the three disulfide bonds form an inhibitor cystine knot motif; this structural motif provides the peptide with a high level of biological stability that probably contributes to its oral activity. OAIP-1 is likely to be synergized by the gut-lytic activity of the Bacillus thuringiensis Cry toxin (Bt) expressed in insect-resistant transgenic crops, and consequently it might be a good candidate for trait stacking with Bt.
Collapse
Affiliation(s)
- Margaret C. Hardy
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Norelle L. Daly
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Mehdi Mobli
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | | | - Glenn F. King
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| |
Collapse
|
19
|
Aphicidal efficacy of scorpion- and spider-derived neurotoxins. Toxicon 2013; 70:114-22. [DOI: 10.1016/j.toxicon.2013.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/10/2013] [Accepted: 04/17/2013] [Indexed: 01/14/2023]
|
20
|
King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:475-96. [PMID: 23020618 DOI: 10.1146/annurev-ento-120811-153650] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Spider venoms are an incredibly rich source of disulfide-rich insecticidal peptides that have been tuned over millions of years to target a wide range of receptors and ion channels in the insect nervous system. These peptides can act individually, or as part of larger toxin cabals, to rapidly immobilize envenomated prey owing to their debilitating effects on nervous system function. Most of these peptides contain a unique arrangement of disulfide bonds that provides them with extreme resistance to proteases. As a result, these peptides are highly stable in the insect gut and hemolymph and many of them are orally active. Thus, spider-venom peptides can be used as stand-alone bioinsecticides, or transgenes encoding these peptides can be used to engineer insect-resistant crops or enhanced entomopathogens. We critically review the potential of spider-venom peptides to control insect pests and highlight their advantages and disadvantages compared with conventional chemical insecticides.
Collapse
Affiliation(s)
- Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | | |
Collapse
|
21
|
Schwartz EF, Mourão CBF, Moreira KG, Camargos TS, Mortari MR. Arthropod venoms: A vast arsenal of insecticidal neuropeptides. Biopolymers 2012. [DOI: 10.1002/bip.22100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Fitches EC, Pyati P, King GF, Gatehouse JA. Fusion to snowdrop lectin magnifies the oral activity of insecticidal ω-Hexatoxin-Hv1a peptide by enabling its delivery to the central nervous system. PLoS One 2012; 7:e39389. [PMID: 22761779 PMCID: PMC3382250 DOI: 10.1371/journal.pone.0039389] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background The spider-venom peptide ω-hexatoxin-Hv1a (Hv1a) targets insect voltage-gated calcium channels, acting directly at sites within the central nervous system. It is potently insecticidal when injected into a wide variety of insect pests, but it has limited oral toxicity. We examined the ability of snowdrop lectin (GNA), which is capable of traversing the insect gut epithelium, to act as a “carrier” in order to enhance the oral activity of Hv1a. Methodology/Principal Findings A synthetic Hv1a/GNA fusion protein was produced by recombinant expression in the yeast Pichia pastoris. When injected into Mamestra brassicae larvae, the insecticidal activity of the Hv1a/GNA fusion protein was similar to that of recombinant Hv1a. However, when proteins were delivered orally via droplet feeding assays, Hv1a/GNA, but not Hv1a alone, caused a significant reduction in growth and survival of fifth stadium Mamestra brassicae (cabbage moth) larvae. Feeding second stadium larvae on leaf discs coated with Hv1a/GNA (0.1–0.2% w/v) caused ≥80% larval mortality within 10 days, whereas leaf discs coated with GNA (0.2% w/v) showed no acute effects. Intact Hv1a/GNA fusion protein was delivered to insect haemolymph following ingestion, as shown by Western blotting. Immunoblotting of nerve chords dissected from larvae following injection of GNA or Hv1a/GNA showed high levels of bound proteins. When insects were injected with, or fed on, fluorescently labelled GNA or HV1a/GNA, fluorescence was detected specifically associated with the central nerve chord. Conclusions/Significance In addition to mediating transport of Hv1a across the gut epithelium in lepidopteran larvae, GNA is also capable of delivering Hv1a to sites of action within the insect central nervous system. We propose that fusion to GNA provides a general mechanism for dramatically enhancing the oral activity of insecticidal peptides and proteins.
Collapse
Affiliation(s)
- Elaine C Fitches
- Department for Environment, Food and Rural Affairs, Food and Environmental Research Agency, Sand Hutton, United Kingdom.
| | | | | | | |
Collapse
|
23
|
Fan Q, Treder K, Miller WA. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency. BMC Biotechnol 2012; 12:22. [PMID: 22559081 PMCID: PMC3416697 DOI: 10.1186/1472-6750-12-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/06/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs) containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. RESULTS The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV)-like cap-independent translation elements (BTEs). The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV) did not stimulate translation efficiently. mRNA with the crTMV 5' UTR was unstable in tobacco protoplasts. CONCLUSIONS BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.
Collapse
Affiliation(s)
- Qiuling Fan
- Department of Plant Pathology & Microbiology, and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011, USA
- 1615 E 8th St, #6, Davis, CA, 95616, USA
| | - Krzysztof Treder
- Department of Plant Pathology & Microbiology, and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011, USA
| | - W Allen Miller
- Department of Plant Pathology & Microbiology, and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
24
|
Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM. Spider-venom peptides as bioinsecticides. Toxins (Basel) 2012; 4:191-227. [PMID: 22741062 PMCID: PMC3381931 DOI: 10.3390/toxins4030191] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/07/2012] [Accepted: 03/15/2012] [Indexed: 12/19/2022] Open
Abstract
Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world's annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides.
Collapse
Affiliation(s)
- Monique J. Windley
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway NSW 2007, Australia; (M.J.W.); (S.A.D.)
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; (V.H.); (M.C.H.)
| | - Sławomir A. Dziemborowicz
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway NSW 2007, Australia; (M.J.W.); (S.A.D.)
| | - Margaret C. Hardy
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; (V.H.); (M.C.H.)
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; (V.H.); (M.C.H.)
| | - Graham M. Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway NSW 2007, Australia; (M.J.W.); (S.A.D.)
| |
Collapse
|
25
|
King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 2011; 11:1469-84. [PMID: 21939428 DOI: 10.1517/14712598.2011.621940] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An extraordinarily diverse range of animals have evolved venoms for predation, defence, or competitor deterrence. The major components of most venoms are peptides and proteins that are often protease-resistant due to their disulfide-rich architectures. Some of these toxins have become valuable as pharmacological tools and/or therapeutics due to their extremely high specificity and potency for particular molecular targets. There are currently six FDA-approved drugs derived from venom peptides or proteins. AREAS COVERED This article surveys the current pipeline of venom-derived therapeutics and critically examines the potential of peptide and protein drugs derived from venoms. Emerging trends are identified, including an increasing industry focus on disulfide-rich venom peptides and the use of a broader array of molecular targets in order to develop venom-based therapeutics for treating a wider range of clinical conditions. EXPERT OPINION Key technical advances in combination with a renewed industry-wide focus on biologics have converged to provide a larger than ever pipeline of venom-derived therapeutics. Disulfide-rich venom peptides obviate some of the traditional disadvantages of therapeutic peptides and some may be suitable for oral administration. Moreover, some venom peptides can breach the blood brain barrier and translocate across cell membranes, which opens up the possibility of exploiting molecular targets not previously accessible to peptide drugs.
Collapse
Affiliation(s)
- Glenn F King
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
26
|
Zootoxic effects of reduviid Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae) venomous saliva on Spodoptera litura (Fab.). Toxicon 2011; 58:415-25. [PMID: 21787800 DOI: 10.1016/j.toxicon.2011.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 11/24/2022]
Abstract
Rhynocoris marginatus is a predominant and potential reduviid predator of many economically important pests in India. The venomous saliva (VS) was collected by milking method and diluted with HPLC grade water to prepare different concentrations (200, 400, 600, 800 and 1000ppm). The VS from R. marginatus was found to be toxic and the LD(50) of the VS in Spodoptera litura third instar were 768 and 929ppm at 48 and 96h for microinjection and oral toxicity studies, respectively. Level of hydrolase and detoxification enzymes significantly decreased in a dose-dependent manner after treating the host with VS for 96h. A decrease in carbohydrate (21%) and lipid (46%) contents and an increase in the protein content (50%) were prominent in the experimental category. The VS reduced the relative growth rate, approximate digestibility, efficiency of conversion of ingested and digested food of S. litura in the oral toxicity study. Salivary venom inhibits the haemocytes from aggregation and affects spreading behavior of haemocytes separated from the fifth stadium larvae of S. litura. The result showed that VS toxins caused mortality, changed the nutritional indices, and altered the levels of macromolecule quantity and digestive enzymes of S. litura. We concluded that the VS of R. marginatus is venomous to a prey species, S. litura.
Collapse
|
27
|
Chong Y, Hayes JL, Sollod B, Wen S, Wilson DT, Hains PG, Hodgson WC, Broady KW, King GF, Nicholson GM. The omega-atracotoxins: selective blockers of insect M-LVA and HVA calcium channels. Biochem Pharmacol 2007; 74:623-38. [PMID: 17610847 DOI: 10.1016/j.bcp.2007.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/25/2022]
Abstract
The omega-atracotoxins (omega-ACTX) are a family of arthropod-selective peptide neurotoxins from Australian funnel-web spider venoms (Hexathelidae: Atracinae) that are candidates for development as biopesticides. We isolated a 37-residue insect-selective neurotoxin, omega-ACTX-Ar1a, from the venom of the Sydney funnel-web spider Atrax robustus, with high homology to several previously characterized members of the omega-ACTX-1 family. The peptide induced potent excitatory symptoms, followed by flaccid paralysis leading to death, in acute toxicity tests in house crickets. Using isolated smooth and skeletal nerve-muscle preparations, the toxin was shown to lack overt vertebrate toxicity at concentrations up to 1 microM. To further characterize the target of the omega-ACTXs, voltage-clamp analysis using the whole-cell patch-clamp technique was undertaken using cockroach dorsal unpaired median neurons. It is shown here for the first time that omega-ACTX-Ar1a, and its homolog omega-ACTX-Hv1a from Hadronyche versuta, reversibly block both mid-low- (M-LVA) and high-voltage-activated (HVA) insect calcium channel (Ca(v)) currents. This block occurred in the absence of alterations in the voltage-dependence of Ca(v) channel activation, and was voltage-independent, suggesting that omega-ACTX-1 family toxins are pore blockers rather than gating modifiers. At a concentration of 1 microM omega-ACTX-Ar1a failed to significantly affect global K(v) channel currents. However, 1 microM omega-ACTX-Ar1a caused a modest 18% block of insect Na(v) channel currents, similar to the minor block of Na(v) channels reported for other insect Ca(v) channel blockers such as omega-agatoxin IVA. These findings validate both M-LVA and HVA Ca(v) channels as potential targets for insecticides.
Collapse
Affiliation(s)
- Youmie Chong
- Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, Broadway, NSW 2007, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bosmans F, Tytgat J. Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels. Toxicon 2007; 49:550-60. [PMID: 17224168 PMCID: PMC1868498 DOI: 10.1016/j.toxicon.2006.11.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/17/2006] [Indexed: 12/19/2022]
Abstract
Sea anemones produce a myriad of toxic peptides and proteins of which a large group acts on voltage-gated Na+ channels. However, in comparison to other organisms, their venoms and toxins are poorly studied. Most of the known voltage-gated Na+ channel toxins isolated from sea anemone venoms act on neurotoxin receptor site 3 and inhibit the inactivation of these channels. Furthermore, it seems that most of these toxins have a distinct preference for crustaceans. Given the close evolutionary relationship between crustaceans and insects, it is not surprising that sea anemone toxins also profoundly affect insect voltage-gated Na+ channels, which constitutes the scope of this review. For this reason, these peptides can be considered as insecticidal lead compounds in the development of insecticides.
Collapse
Affiliation(s)
- Frank Bosmans
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, Building 35, 3B 211, NINDS, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
King GF. Modulation of insect Cav channels by peptidic spider toxins. Toxicon 2007; 49:513-30. [PMID: 17197008 DOI: 10.1016/j.toxicon.2006.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
Insects have a much smaller repertoire of voltage-gated calcium (Ca(V)) channels than vertebrates. Drosophila melanogaster harbors only a single ortholog of each of the vertebrate Ca(V)1, Ca(V)2, and Ca(V)3 subtypes, although its basal inventory is expanded by alternative splicing and editing of Ca(V) channel transcripts. Nevertheless, there appears to be little functional plasticity within this limited panel of insect Ca(V) channels, since severe loss-of-function mutations in genes encoding the pore-forming alpha1 subunits in Drosophila are embryonic lethal. Since the primary role of spider venom is to paralyze or kill insect prey, it is not surprising that most, if not all, spider venoms contain peptides that potently modify the activity of these functionally critical insect Ca(V) channels. Unfortunately, it has proven difficult to determine the precise ion channel subtypes recognized by these peptide toxins since insect Ca(V) channels have significantly different pharmacology to their vertebrate counterparts, and cloned insect Ca(V) channels are not available for electrophysiological studies. However, biochemical and genetic studies indicate that some of these spider toxins might ultimately become the defining pharmacology for certain subtypes of insect Ca(V) channels. This review focuses on peptidic spider toxins that specifically target insect Ca(V) channels. In addition to providing novel molecular tools for ion channel characterization, some of these toxins are being used as leads to develop new methods for controlling insect pests.
Collapse
Affiliation(s)
- Glenn F King
- Division of Chemical and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane Qld. 4072, Australia.
| |
Collapse
|
30
|
Nicholson GM. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon 2007; 49:490-512. [PMID: 17223149 DOI: 10.1016/j.toxicon.2006.11.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 11/17/2006] [Indexed: 12/21/2022]
Abstract
The voltage-gated sodium (Na(v)) channel is a target for a number of drugs, insecticides and neurotoxins. These bind to at least seven identified neurotoxin binding sites and either block conductance or modulate Na(v) channel gating. A number of peptide neurotoxins from the venoms of araneomorph and mygalomorph spiders have been isolated and characterized and determined to interact with several of these sites. These all conform to an 'inhibitor cystine-knot' motif with structural, but not sequence homology, to a variety of other spider and marine snail toxins. Of these, spider toxins several show phyla-specificity and are being considered as lead compounds for the development of biopesticides. Hainantoxin-I appears to target site-1 to block Na(v) channel conductance. Magi 2 and Tx4(6-1) slow Na(v) channel inactivation via an interaction with site-3. The delta-palutoxins, and most likely mu-agatoxins and curtatoxins, target site-4. However, their action is complex with the mu-agatoxins causing a hyperpolarizing shift in the voltage-dependence of activation, an action analogous to scorpion beta-toxins, but with both delta-palutoxins and mu-agatoxins slowing Na(v) channel inactivation, a site-3-like action. In addition, several other spider neurotoxins, such as delta-atracotoxins, are known to target both insect and vertebrate Na(v) channels most likely as a result of the conserved structures within domains of voltage-gated ion channels across phyla. These toxins may provide tools to establish the molecular determinants of invertebrate selectivity. These studies are being greatly assisted by the determination of the pharmacophore of these toxins, but without precise identification of their binding site and mode of action their potential in the above areas remains underdeveloped.
Collapse
Affiliation(s)
- Graham M Nicholson
- Neurotoxin Research Group, Department of Medical and Molecular Biosciences, University of Technology, Sydney P.O. Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|