1
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
2
|
López-Ramírez O, González-Garrido A. The role of acid sensing ion channels in the cardiovascular function. Front Physiol 2023; 14:1194948. [PMID: 37389121 PMCID: PMC10300344 DOI: 10.3389/fphys.2023.1194948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Acid Sensing Ion Channels (ASIC) are proton sensors involved in several physiological and pathophysiological functions including synaptic plasticity, sensory systems and nociception. ASIC channels have been ubiquitously localized in neurons and play a role in their excitability. Information about ASIC channels in cardiomyocyte function is limited. Evidence indicates that ASIC subunits are expressed in both, plasma membrane and intracellular compartments of mammalian cardiomyocytes, suggesting unrevealing functions in the cardiomyocyte physiology. ASIC channels are expressed in neurons of the peripheral nervous system including the nodose and dorsal root ganglia (DRG), both innervating the heart, where they play a dual role as mechanosensors and chemosensors. In baroreceptor neurons from nodose ganglia, mechanosensation is directly associated with ASIC2a channels for detection of changes in arterial pressure. ASIC channels expressed in DRG neurons have several roles in the cardiovascular function. First, ASIC2a/3 channel has been proposed as the molecular sensor of cardiac ischemic pain for its pH range activation, kinetics and the sustained current. Second, ASIC1a seems to have a critical role in ischemia-induced injury. And third, ASIC1a, 2 and 3 are part of the metabolic component of the exercise pressure reflex (EPR). This review consists of a summary of several reports about the role of ASIC channels in the cardiovascular system and its innervation.
Collapse
Affiliation(s)
- Omar López-Ramírez
- Instituto de Oftalmología Fundación de Asistencia Privada Conde de Valenciana, I.A.P., Mexico City, Mexico
| | - Antonia González-Garrido
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
3
|
Batista A, Bellettini IC, Brondani PB. Pain and nociception bioinspiration for the development of a micellar-based screening test for antinociceptive drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Majagi S, Mangat S, Chu XP. Commentary: Pharmacological Validation of ASIC1a as a Druggable Target for Neuroprotection in Cerebral Ischemia Using an Intravenously Available Small Molecule Inhibitor. Front Pharmacol 2022; 13:938748. [PMID: 35865964 PMCID: PMC9294732 DOI: 10.3389/fphar.2022.938748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
|
5
|
Zhang L, Zheng L, Yang X, Yao S, Wang H, An J, Jin H, Wen G, Tuo B. Pathology and physiology of acid‑sensitive ion channels in the digestive system (Review). Int J Mol Med 2022; 50:94. [PMID: 35616162 PMCID: PMC9170189 DOI: 10.3892/ijmm.2022.5150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
As a major proton-gated cation channel, acid-sensitive ion channels (ASICs) can perceive large extracellular pH changes. ASICs play an important role in the occurrence and development of diseases of various organs and tissues including in the heart, brain, and gastrointestinal tract, as well as in tumor proliferation, invasion, and metastasis in acidosis and regulation of an acidic microenvironment. The permeability of ASICs to sodium and calcium ions is the basis of their physiological and pathological roles in the body. This review summarizes the physiological and pathological mechanisms of ASICs in digestive system diseases, which plays an important role in the early diagnosis, treatment, and prognosis of digestive system diseases related to ASIC expression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Liming Zheng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
6
|
Morgan M, Thai J, Trinh P, Habib M, Effendi KN, Ivanusic JJ. ASIC3 inhibition modulates inflammation-induced changes in the activity and sensitivity of Aδ and C fiber sensory neurons that innervate bone. Mol Pain 2021; 16:1744806920975950. [PMID: 33280501 PMCID: PMC7724402 DOI: 10.1177/1744806920975950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Acid Sensing Ion Channel 3 (ASIC3) is a non-selective cation channel that is
activated by acidification, and is known to have a role in regulating
inflammatory pain. It has pro-algesic roles in a range of conditions that
present with bone pain, but the mechanism for this has not yet been
demonstrated. We aimed to determine if ASIC3 is expressed in Aδ and/or C fiber
bone afferent neurons, and to explore its role in the activation and
sensitization of bone afferent neurons after acute inflammation. A combination
of retrograde tracing and immunohistochemistry was used to determine expression
of ASIC3 in the soma of bone afferent neurons. A novel, in
vivo, electrophysiological bone-nerve preparation was used to make
recordings of the activity and sensitivity of bone afferent neurons in the
presence of carrageenan-induced inflammation, with and without the selective
ASIC3 inhibitor APET×2. A substantial proportion of bone afferent neurons
express ASIC3, including unmyelinated (neurofilament poor) and small diameter
myelinated (neurofilament rich) neurons that are likely to be C and Aδ nerve
fibers respectively. Electrophysiological recordings revealed that application
of APET×2 to the marrow cavity inhibited carrageenan-induced spontaneous
activity of C and Aδ fiber bone afferent neurons. APET×2 also inhibited
carrageenan-induced sensitization of Aδ and C fiber bone afferent neurons to
mechanical stimulation, but had no effect on the sensitivity of bone afferent
neurons in the absence of inflammation. This evidence supports a role for ASIC3
in the pathogenesis of pain associated with inflammation of the bone.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jenny Thai
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Phu Trinh
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Mohamed Habib
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly N Effendi
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Mayeux C, Burk P, Gal JF, Leito I, Massi L. Alkali Metal Cations Bonding to Carboxylate Anions: Studies using Mass Spectrometry and Quantum Chemical Calculations. J Phys Chem A 2020; 124:4390-4399. [PMID: 32378904 DOI: 10.1021/acs.jpca.9b11864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Data on the gas-phase energetics of anion/cation interactions are relatively scarce. In this work, gas-phase alkali metal cation basicity (AMCB) scales were established for a series of 15 benzoate ions XC6H4COO- with Li+, Na+, K+, Rb+, and Cs+ on the basis of mass spectrometry experiments and high-level calculations. A wide range of electron-donating and electron-withdrawing substituents were included in the study. The thermochemical values were calculated by ab initio methodologies and extrapolated to the complete basis set limit. For each metal cation, the experimental relative cation basicity values of the anions were established quantitatively by applying the Cooks' kinetic method to the cation-bound heterodimers [(XC6H4COO-)M+(YC6H4COO-)]-, generated by electrospray ionization. The self-consistency of these AMCB scales was ascertained by multiple overlap of the individual relative basicities. In parallel, the proton gas-phase basicities (GBs) of the benzoate anions (gas-phase acidities of the respective benzoic acids) were calculated in order to compare the results of the theoretical method with known experimental GB values. The experimental and calculated GB values agree quite accurately (average absolute deviation = 3.2 kJ mol-1). The relative experimental AMCB scales and the absolute calculated AMCB scales are highly correlated, and the two sets agree by better than 4 kJ mol-1. It is also demonstrated that the five series of calculated AMCBs are highly correlated with the calculated GB.
Collapse
Affiliation(s)
- C Mayeux
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - P Burk
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - J-F Gal
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France
| | - I Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - L Massi
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France
| |
Collapse
|
8
|
Nematocyst types and venom effects of Aurelia aurita and Velella velella from the Mediterranean Sea. Toxicon 2020; 175:57-63. [DOI: 10.1016/j.toxicon.2019.12.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 01/10/2023]
|
9
|
Manandhar A, Chakraborty K, Tang PK, Kang M, Zhang P, Cui H, Loverde SM. Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. J Phys Chem B 2019; 123:10582-10593. [DOI: 10.1021/acs.jpcb.9b07417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anjela Manandhar
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Kaushik Chakraborty
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Phu K. Tang
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Myungshim Kang
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| | - Pengcheng Zhang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sharon M. Loverde
- Department of Chemistry, College of Staten Island, City University of New York, New York 10314, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York 10016, United States
| |
Collapse
|
10
|
Zhang XH, Šarić T, Mehrjardi NZ, Hamad S, Morad M. Acid-Sensitive Ion Channels Are Expressed in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2019; 28:920-932. [PMID: 31119982 DOI: 10.1089/scd.2018.0234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are potential sources for cardiac regeneration and drug development. hiPSC-CMs express all the cardiac ion channels and the unique cardiac Ca2+-signaling phenotype. In this study, we tested for expression of acid sensing ion channels (ASICs) in spontaneously beating cardiomyocytes derived from three different hiPSC lines (IMR-90, iPSC-K3, and Ukki011-A). Rapid application of solutions buffered at pH 6.7, 6.0, or 5.0 triggered rapidly activating and slowly inactivating voltage-independent inward current that reversed at voltages positive to ENa, was suppressed by 5 μM amiloride and withdrawal of [Na+]o, like neuronal ASIC currents. ASIC currents were expressed at much lower percentages and densities in undifferentiated hiPSC and in dermal fibroblasts. ASIC1 mRNA and protein were measured in first 60 days but decreased in 100 days postdifferentiation hiPSC cultures. Hyperacidification (pH 5 and 6) also triggered large Ca2+ transients in intact hiPSC-CMs that were neither ruthenium red nor amiloride-sensitive, but were absent in whole cell-clamped hiPSC-CMs. Neither ASIC1 current nor its protein was detected in rat adult cardiomyocytes, but hyperacidification did activate smaller and slowly activating currents with drug sensitivity similar to TRPV channels. Considering ASIC expression in developing but not adult myocardium, a role in heart development is likely.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- 1Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston, South Carolina
| | - Tomo Šarić
- 2Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Narges Zare Mehrjardi
- 2Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Sarkawt Hamad
- 2Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Martin Morad
- 1Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston, South Carolina
| |
Collapse
|
11
|
Abstract
A large series of different ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including pain. Among these channels, the voltage gated calcium channels (VGCC) are inhibited by drugs for the treatment of migraine, neuropathic pain or intractable pain. Transient receptor potential (TRP) channels are emerging as important pain transducers as they sense low pH media or oxidative stress and other mediators and are abundantly found at sites of inflammation or tissue injury. Low pH may also activate acid sensing ion channels (ASIC) and mechanical forces stimulate the PIEZO channels. While potent agonists of TRP channels due to their desensitizing action on pain transmission are used as topical applications, the potential of TRP antagonists as pain therapeutics remains an exciting field of investigation. The study of ASIC or PIEZO channels in pain signaling is in an early stage, whereas antagonism of the purinergic P2X3 channels has been reported to provide beneficial effects in chronic intractable cough. The present chapter covers these intriguing channels in great detail, highlighting their diverse mechanisms and broad potential for therapeutic utility.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
13
|
Chauhan AS, Sahoo GC, Dikhit MR, Das P. Acid-Sensing Ion Channels Structural Aspects, Pathophysiological Importance and Experimental Mutational Data Available Across Various Species to Target Human ASIC1. Curr Drug Targets 2018; 20:111-121. [DOI: 10.2174/1389450119666180820103316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 01/16/2023]
Abstract
The H+-gated (proton) currents are widely present in brain sensory neuronal system and
various studies identified the structural units and deciphered the physiological and pathological function
of ion channels. The normal neuron requires an optimal pH to carry out its functions. In acidosis,
the ASICs (Acid-sensing Ion Channels) are activated in both the CNS (central nervous system) and
PNS (peripheral nervous system). ASICs are related to degenerin channels (DEGs), epithelial sodium
cation channels (ENaCs), and FMRF-amide (Phe-Met-Arg-Phe-NH2)-gated channels (FaNaC). Its activation
leads physiologically to pain perception, synaptic plasticity, learning and memory, fear,
ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. It detects
the level of acid fluctuation in the extracellular environment and responds to acidic pH by increasing
the rate of membrane depolarization. It conducts cations like Na+ (Sodium) and Ca2+ (Calcium)
ions across the membrane upon protonation. The ASICs subtypes are characterized by differing
biophysical properties and pH sensitivities. The subtype ASIC1 is involved in various CNS diseases
and therefore focusing on its specific functional properties will guide in drug design methods. The review
highlights the cASIC1 (Chicken ASIC1) crystal structures, involvement in physiological environment
and limitations of currently available inhibitors. In addition, it details the mutational data
available to design an inhibitor against hASIC1 (Human ASIC1).
Collapse
Affiliation(s)
- Anurag Singh Chauhan
- Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna- 800 007, Bihar, India
| | - Ganesh Chandra Sahoo
- Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna- 800 007, Bihar, India
| | - Manas Ranjan Dikhit
- Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna- 800 007, Bihar, India
| | - Pradeep Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna- 800 007, Bihar, India
| |
Collapse
|
14
|
Mei J, Fu Y, Zhao J. Analysis and prediction of ion channel inhibitors by using feature selection and Chou's general pseudo amino acid composition. J Theor Biol 2018; 456:41-48. [DOI: 10.1016/j.jtbi.2018.07.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/20/2018] [Accepted: 07/29/2018] [Indexed: 12/23/2022]
|
15
|
Linial M, Rappoport N, Ofer D. Overlooked Short Toxin-Like Proteins: A Shortcut to Drug Design. Toxins (Basel) 2017; 9:E350. [PMID: 29109389 PMCID: PMC5705965 DOI: 10.3390/toxins9110350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022] Open
Abstract
Short stable peptides have huge potential for novel therapies and biosimilars. Cysteine-rich short proteins are characterized by multiple disulfide bridges in a compact structure. Many of these metazoan proteins are processed, folded, and secreted as soluble stable folds. These properties are shared by both marine and terrestrial animal toxins. These stable short proteins are promising sources for new drug development. We developed ClanTox (classifier of animal toxins) to identify toxin-like proteins (TOLIPs) using machine learning models trained on a large-scale proteomic database. Insects proteomes provide a rich source for protein innovations. Therefore, we seek overlooked toxin-like proteins from insects (coined iTOLIPs). Out of 4180 short (<75 amino acids) secreted proteins, 379 were predicted as iTOLIPs with high confidence, with as many as 30% of the genes marked as uncharacterized. Based on bioinformatics, structure modeling, and data-mining methods, we found that the most significant group of predicted iTOLIPs carry antimicrobial activity. Among the top predicted sequences were 120 termicin genes from termites with antifungal properties. Structural variations of insect antimicrobial peptides illustrate the similarity to a short version of the defensin fold with antifungal specificity. We also identified 9 proteins that strongly resemble ion channel inhibitors from scorpion and conus toxins. Furthermore, we assigned functional fold to numerous uncharacterized iTOLIPs. We conclude that a systematic approach for finding iTOLIPs provides a rich source of peptides for drug design and innovative therapeutic discoveries.
Collapse
Affiliation(s)
- Michal Linial
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Nadav Rappoport
- Institute for Computational Health Sciences, UCSF, San Francisco, CA 94158, USA.
| | - Dan Ofer
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
16
|
Fló M, Margenat M, Pellizza L, Graña M, Durán R, Báez A, Salceda E, Soto E, Alvarez B, Fernández C. Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels. PLoS Pathog 2017; 13:e1006169. [PMID: 28192542 PMCID: PMC5325619 DOI: 10.1371/journal.ppat.1006169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/24/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023] Open
Abstract
We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold.
Collapse
Affiliation(s)
- Martín Fló
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mariana Margenat
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leonardo Pellizza
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Martín Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adriana Báez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Emilio Salceda
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Fernández
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
17
|
Reznikov LR, Meyerholz DK, Adam RJ, Abou Alaiwa M, Jaffer O, Michalski AS, Powers LS, Price MP, Stoltz DA, Welsh MJ. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice. PLoS One 2016; 11:e0166089. [PMID: 27820848 PMCID: PMC5098826 DOI: 10.1371/journal.pone.0166089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/22/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.
Collapse
Affiliation(s)
- Leah R. Reznikov
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Adam
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Omar Jaffer
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew S. Michalski
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda S. Powers
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Margaret P. Price
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David A. Stoltz
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
18
|
Resident Macrophages in Muscle Contribute to Development of Hyperalgesia in a Mouse Model of Noninflammatory Muscle Pain. THE JOURNAL OF PAIN 2016; 17:1081-1094. [PMID: 27377621 DOI: 10.1016/j.jpain.2016.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/04/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Macrophages play a role in innate immunity within the body, are located in muscle tissue, and can release inflammatory cytokines that sensitize local nociceptors. In this study we investigate the role of resident macrophages in the noninflammatory muscle pain model induced by 2 pH 4.0 preservative-free sterile saline (pH 4.0) injections 5 days apart in the gastrocnemius muscle. We showed that injecting 2 pH 4.0 injections into the gastrocnemius muscle increased the number of local muscle macrophages, and depleting muscle macrophages with clodronate liposomes before acid injections attenuated the hyperalgesia produced by this model. To further examine the contribution of local macrophages to this hyperalgesia, we injected mice intramuscularly with C34, a toll-like receptor 4 (TLR4) antagonist. When given before the first pH 4.0 injection, C34 attenuated the muscle and tactile hyperalgesia produced by the model. However, when given before the second injection C34 had no effect on the development of hyperalgesia. Then to test whether activation of local macrophages sensitizes nociceptors to normally non-nociceptive stimuli we replaced either the first or second acid injection with the immune cell activator lipopolysaccharide, or the inflammatory cytokine interleukin (IL)-6. Injecting LPS or IL-6 instead of the either the first or second pH 4.0 injection resulted in a dose-dependent increase in paw withdrawal responses and decrease in muscle withdrawal thresholds. The highest doses of LPS and IL-6 resulted in development of hyperalgesia bilaterally. The present study showed that resident macrophages in muscle are key to development of chronic muscle pain. PERSPECTIVE This article presents evidence for the role of macrophages in the development of chronic muscle pain using a mouse model. These data suggest that macrophages could be a potential therapeutic target to prevent transition of acute to chronic muscle pain particularly in tissue acidosis conditions.
Collapse
|
19
|
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132. [PMID: 26772908 PMCID: PMC4756657 DOI: 10.1016/j.gene.2015.12.061] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na(+) ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na(+) in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Gao M, Long H, Ma W, Liao L, Yang X, Zhou Y, Shan D, Huang R, Jian F, Wang Y, Lai W. The role of periodontal ASIC3 in orofacial pain induced by experimental tooth movement in rats. Eur J Orthod 2015; 38:577-583. [DOI: 10.1093/ejo/cjv082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Radu BM, Banciu A, Banciu DD, Radu M. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:137-67. [PMID: 26920689 DOI: 10.1016/bs.apcsb.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mihai Radu
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy; Department of Life and Environmental Physics, 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Magurele, Romania.
| |
Collapse
|
22
|
Abstract
Sensory nerve fibers innervating the ocular anterior surface detect external stimuli producing innocuous and painful sensations. Protons are among the first mediators released by damaged cells during inflammation, tissue injury, or other chronic ophthalmic conditions. We studied whether acid-sensing ion channels (ASICs) are expressed in corneal sensory neurons and their roles in the response to moderate acidifications of the ocular surface and in pathologies producing ocular surface inflammation. Moderate acidic pH (6.6) activated ASIC-like currents in corneal sensory neurons, which were blocked by ASIC1- or ASIC3-specific toxins. Acidic pH depolarizes corneal sensory neurons to fire action potentials, an effect blocked by the ASIC3 inhibitor APETx2. 2-Guanidino-4-methylquinazoline, an ASIC3 agonist, activated a population of corneal polymodal sensory nerve fibers and significantly increased the blinking and tearing rate. The nocifensive behaviors produced by application of either a moderate acidic stimulus or ophthalmic drugs formulated in acidic solution were abolished by ASIC blockers. In a model of allergic keratoconjunctivitis, nocifensive behavior was greatly reduced by ASIC3 blockade, presumably by reducing nociceptor sensitization during the inflammatory process. Our results show that, in addition to the established role of TRPV1, ASICs play a significant role in the detection of acidic insults at the ocular surface. The identification of ASICs in corneal neurons and their alterations during different diseases is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies.
Collapse
|
23
|
Orts-Del'Immagine A, Seddik R, Tell F, Airault C, Er-Raoui G, Najimi M, Trouslard J, Wanaverbecq N. A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem. Neuropharmacology 2015. [PMID: 26220314 DOI: 10.1016/j.neuropharm.2015.07.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerebrospinal fluid contacting neurons (CSF-cNs) are found around the central canal of all vertebrates. They present a typical morphology, with a single dendrite that projects into the cavity and ends in the CSF with a protuberance. These anatomical features have led to the suggestion that CSF-cNs might have sensory functions, either by sensing CSF movement or composition, but the physiological mechanisms for any such role are unknown. This hypothesis was recently supported by the demonstration that in several vertebrate species medullo-spinal CSF-cNs selectively express Polycystic Kidney Disease 2-Like 1 proteins (PKD2L1). PKD2L1 are members of the 'transient receptor potential (TRP)' superfamily, form non-selective cationic channels of high conductance, are regulated by various stimuli including protons and are therefore suggested to act as sensory receptors. Using patch-clamp whole-cell recordings of CSF-cNs in brainstem slices obtained from wild type and mutant PKD2L1 mice, we demonstrate that spontaneously active unitary currents in CSF-cNs are due to PKD2L1 channels that are capable, with a single opening, of triggering action potentials. Thus PKD2L1 might contribute to the setting of CSF-cN spiking activity. We also reveal that CSF-cNs have the capacity of discriminating between alkalinization and acidification following activation of specific conductances (PKD2L1 vs. ASIC) generating specific responses. Altogether, this study reinforces the idea that CSF-cNs represent sensory neurons intrinsic to the central nervous system and suggests a role for PKD2L1 channels as spike generators.
Collapse
Affiliation(s)
| | - Riad Seddik
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France
| | - Fabien Tell
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344, Marseille, France
| | - Coraline Airault
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France
| | - Ghizlane Er-Raoui
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France; Université Sultan Moulay Slimane, 23000, Béni Mellal, Morocco
| | - Mohamed Najimi
- Université Sultan Moulay Slimane, 23000, Béni Mellal, Morocco
| | - Jérôme Trouslard
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France.
| | | |
Collapse
|
24
|
Gao S, Yu Y, Ma ZY, Sun H, Zhang YL, Wang XT, Wang C, Fan WM, Zheng QY, Ma CL. NMDAR-Mediated Hippocampal Neuronal Death is Exacerbated by Activities of ASIC1a. Neurotox Res 2015; 28:122-37. [PMID: 25947342 DOI: 10.1007/s12640-015-9530-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 03/31/2015] [Accepted: 04/18/2015] [Indexed: 12/15/2022]
Abstract
NMDARs and ASIC1a both exist in central synapses and mediate important physiological and pathological conditions, but the functional relationship between them is unclear. Here we report several novel findings that may shed light on the functional relationship between these two ion channels in the excitatory postsynaptic membrane of mouse hippocampus. Firstly, NMDAR activation induced by either NMDA or OGD led to increased [Ca(2+)](i)and greater apoptotic and necrotic cell deaths in cultured hippocampal neurons; these cell deaths were prevented by application of NMDAR antagonists. Secondly, ASIC1a activation induced by pH 6.0 extracellular solution (ECS) showed similar increases in apoptotic and necrotic cell deaths; these cell deaths were prevented by ASIC1a antagonists, and also by NMDAR antagonists. Since increased [Ca(2+)](i)leads to increased cell deaths and since NMDAR exhibits much greater calcium permeability than ASIC1a, these data suggest that ASIC1a-induced neuronal death is mediated through activation of NMDARs. Thirdly, treatment of hippocampal cultures with both NMDA and acidic ECS induced greater degrees of cell deaths than either NMDA or acidic ECS treatment alone. These results suggest that ASIC1a activation up-regulates NMDAR function. Additional data supporting the functional relationship between ASIC1a and NMDAR are found in our electrophysiology experiments in hippocampal slices, where stimulation of ASIC1a induced a marked increase in NMDAR EPSC amplitude, and inhibition of ASIC1a resulted in a decrease in NMDAR EPSC amplitude. In summary, we present evidence that ASIC1a activity facilitates NMDAR function and exacerbates NMDAR-mediated neuronal death in pathological conditions. These findings are invaluable to the search for novel therapeutic targets in the treatment of brain ischemia.
Collapse
Affiliation(s)
- Su Gao
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, 264003, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tikhonova TB, Nagaeva EI, Barygin OI, Potapieva NN, Bolshakov KV, Tikhonov DB. Monoamine NMDA receptor channel blockers inhibit and potentiate native and recombinant proton-gated ion channels. Neuropharmacology 2014; 89:1-10. [PMID: 25196733 DOI: 10.1016/j.neuropharm.2014.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Acid-sensing ion channels (ASICs) are widely distributed in the peripheral and central nervous system. Although they are involved in many physiological functions, the actual processes that activate ASICs remain unclear. This is particularly true for brain ASICs, which produce only a transient response to a fast drop in pH and cannot mediate sustained current. Therefore, the search for ASIC inhibitors and, especially, potentiators/activators is important. We report that NMDA receptor channel blockers with a comparatively simple structure (9-aminoacridine, memantine, IEM-2117 and IEM-1921) potentiate and/or inhibit ASICs in submillimolar concentrations. The experiments were performed using the patch clamp technique on native ASICs from rat hippocampal interneurons and recombinant ASICs of different subunit compositions expressed in CHO cells. Native ASICs were potentiated by IEM-1921 and IEM-2117, and inhibited by memantine and 9-aminoacridine. Homomeric ASIC1a were inhibited by memantine, IEM-2117 and 9-aminoacridine while IEM-1921 was ineffective. In contrast, homomeric ASIC2a were potentiated by IEM-2117, memantine and IEM-1921, whereas 9-aminoacridine was inactive. The compounds caused a complex effect on ASIC3. 9-aminoacridine and IEM-1921 potentiated the steady-state response of ASIC3 and inhibited the peak component. IEM-2117 not only potentiated ASIC3-mediated currents caused by acidification but also evoked steady-state currents at neutral pH. Our results demonstrate that, depending on the subunit composition, ASICs can be activated or inhibited by simple compounds that possess only amino group and aromatic/hydrophobic moieties. This opens up the possibility to search for new ASIC modulators among a number of endogenous ligands.
Collapse
Affiliation(s)
- Tatiana B Tikhonova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, 44 Thorez pr., St.Petersburg, Russia
| | - Elina I Nagaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, 44 Thorez pr., St.Petersburg, Russia
| | - Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, 44 Thorez pr., St.Petersburg, Russia
| | - Natalia N Potapieva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, 44 Thorez pr., St.Petersburg, Russia
| | - Konstantin V Bolshakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, 44 Thorez pr., St.Petersburg, Russia
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, 44 Thorez pr., St.Petersburg, Russia.
| |
Collapse
|
26
|
Sun X, Jin J, Zhang JG, Qi L, Braun FK, Zhang XD, Xu F. Expression of acid-sensing ion channels in nucleus pulposus cells of the human intervertebral disk is regulated by non-steroid anti-inflammatory drugs. Acta Biochim Biophys Sin (Shanghai) 2014; 46:774-81. [PMID: 25079679 DOI: 10.1093/abbs/gmu067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Non-steroid anti-inflammatory drugs (NSAIDs) are generally used in the treatment of inflammation and pain through cyclooxygenase (COX) inhibition. Mounting evidence has indicated additional COX-independent targets for NSAIDs including acid-sensing ion channels (ASICs) 1a and 3. However, detailed function and mechanism of ASICs still remain largely elusive. In this study, the impact of NSAIDs on ASICs in nucleus pulposus cells of the human intervertebral disk was investigated. Nucleus pulposus cells were isolated and cultured from protruded disk tissues of 40 patients. It was shown that ASIC1a and ASIC3 were expressed and functional in these cells by analyzing proton-gated currents after ASIC inhibition. We further investigated the neuroprotective capacity of ibuprofen (a COX inhibitor), psalmotoxin-1 (PcTX1, a tarantula toxin specific for homomeric ASIC1a), and amiloride (a classic inhibitor of the epithelial sodium channel ENaC/DEG family to which ASICs belong). PcTX1-containing venom has been shown to be comparable with amiloride in its neuroprotective features in rodent models of ischemia. Taken together, our data showed that amiloride, PcTX1, and ibuprofen decreased ASIC protein expression and thereby exerted protective effects from ASIC inhibition-mediated cell damage.
Collapse
Affiliation(s)
- Xue Sun
- Emergency Department, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jun Jin
- Emergency Department, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ji-Gang Zhang
- Emergency Department, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Texas Children's Cancer Center, Houston 77030, USA
| | - Frank Karl Braun
- Department of Lymphoma & Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston 77054, USA
| | - Xing-Ding Zhang
- Department of Lymphoma & Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston 77054, USA Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Feng Xu
- Emergency Department, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
27
|
Characterization of proton-induced currents in rat trigeminal mesencephalic nucleus neurons. Brain Res 2014; 1583:12-22. [PMID: 25128599 DOI: 10.1016/j.brainres.2014.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/15/2023]
Abstract
Acid-sensing ion channels (ASICs) are widely expressed in central as well as peripheral neurons. Here we have characterized the proton-induced currents in acutely isolated rat trigeminal mesencephalic nucleus (Vmes) neurons using a whole cell patch-clamp technique. In a voltage-clamp condition, the application of acid extracellular solution (≤ pH 6.5) induced the inward currents in a pH-dependent manner. The proton-induced currents disappeared in the Na(+)-free external solution, and were concentration-dependently blocked by amiloride, a general ASIC blocker. The reversal potential of proton-induced currents was similar to the theoretical Na(+) equilibrium potential, suggesting that the proton-induced currents are mainly mediated by the activation of ASICs, which are highly selective to Na(+). The modulation of proton-induced currents by divalent cations and the expression patterns of ASIC transcripts using by the multi-cell RT-PCR assay suggest that Vmes neurons express functional ASIC2a and ASIC1b subunits. In a current-clamp condition, acidic pH directly depolarized the membrane potential and generated a burst of action potentials at Vmes neurons, which innervate the masseter muscle spindles. Considering that cell bodies of Vmes neurons are located within the central nervous system, ASICs expressed on Vmes neurons, by sensing peripheral and/or central acidosis, might play pivotal roles in the transduction of proprioceptive information from the masseter muscles and periodontal ligaments.
Collapse
|
28
|
Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F. From foe to friend: using animal toxins to investigate ion channel function. J Mol Biol 2014; 427:158-175. [PMID: 25088688 DOI: 10.1016/j.jmb.2014.07.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/19/2022]
Abstract
Ion channels are vital contributors to cellular communication in a wide range of organisms, a distinct feature that renders this ubiquitous family of membrane-spanning proteins a prime target for toxins found in animal venom. For many years, the unique properties of these naturally occurring molecules have enabled researchers to probe the structural and functional features of ion channels and to define their physiological roles in normal and diseased tissues. To illustrate their considerable impact on the ion channel field, this review will highlight fundamental insights into toxin-channel interactions and recently developed toxin screening methods and practical applications of engineered toxins.
Collapse
Affiliation(s)
- Jeet Kalia
- Indian Institute of Science Education and Research Pune; Pune, Maharashtra 411 008 India
| | - Mirela Milescu
- Division of Biological Sciences; University of Missouri, Columbia, MO 65211 USA
| | - Juan Salvatierra
- Department of Physiology; Johns Hopkins University, School of Medicine, Baltimore, MD 21205 USA
| | - Jordan Wagner
- Department of Physiology; Johns Hopkins University, School of Medicine, Baltimore, MD 21205 USA
| | - Julie K Klint
- Institute for Molecular Bioscience; The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Glenn F King
- Institute for Molecular Bioscience; The University of Queensland, St. Lucia, QLD 4072 Australia
| | | | - Frank Bosmans
- Department of Physiology; Johns Hopkins University, School of Medicine, Baltimore, MD 21205 USA.,Solomon H. Snyder Department of Neuroscience; Johns Hopkins University, School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
29
|
Abstract
The discovery of new drug targets represents a real opportunity for developing fresh strategies against pain. Ion channels are interesting targets because they are directly involved in the detection and the transmission of noxious stimuli by sensory fibres of the peripheral nervous system and by neurons of the spinal cord. Acid-Sensing Ion Channels (ASICs) have emerged as important players in the pain pathway. They are neuronal, voltage-independent depolarizing sodium channels activated by extracellular protons. The ASIC family comprises several subunits that need to associate into homo- or hetero-trimers to form a functional channel. The ASIC1 and ASIC3 isoforms are particularly important in sensory neurons, whereas ASIC1a, alone or in association with ASIC2, is essential in the central nervous system. The potent analgesic effects associated with their inhibition in animals (which can be comparable to those of morphine) and data suggesting a role in human pain illustrate the therapeutic potential of these channels.
Collapse
Affiliation(s)
- Eric Lingueglia
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France - Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France - LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France
| |
Collapse
|
30
|
Abstract
The discovery that even small changes in extracellular acidity can alter the excitability of neuronal networks via activation of acid-sensing ion channels (ASICs) could have therapeutic application in a host of neurological and psychiatric illnesses. Recent evidence suggests that activation of ASIC1a, a subtype of ASICs that is widely distributed in the brain, is necessary for the expression of fear and anxiety. Antagonists of ASIC1a, therefore, have been proposed as a potential treatment for anxiety. The basolateral amygdala (BLA) is central to fear generation, and anxiety disorders are characterized by BLA hyperexcitability. To better understand the role of ASIC1a in anxiety, we attempted to provide a direct assessment of whether ASIC1a activation increases BLA excitability. In rat BLA slices, activation of ASIC1a by low pH or ammonium elicited inward currents in both interneurons and principal neurons, and increased spontaneous IPSCs recorded from principal cells significantly more than spontaneous EPSCs. Epileptiform activity induced by high potassium and low magnesium was suppressed by ammonium. Antagonism of ASIC1a decreased spontaneous IPSCs more than EPSCs, and increased the excitability of the BLA network, as reflected by the pronounced increase of evoked field potentials, suggesting that ASIC1a channels are active in the basal state. In vivo activation or blockade of ASIC1a in the BLA suppressed or increased, respectively, anxiety-like behavior. Thus, in the rat BLA, ASIC1a has an inhibitory and anxiolytic function. The discovery of positive ASIC1a modulators may hold promise for the treatment of anxiety disorders.
Collapse
|
31
|
Mayeux C, Burk P. Evaluation of Alkali Metal Cation Affinities and Basicities Using Extrapolation to the Complete Basis Set Limit. J Phys Chem A 2014; 118:1906-17. [DOI: 10.1021/jp4090316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Charly Mayeux
- Institute
of Chemistry, University of Tartu, Ravila 14A, Tartu 50411, Estonia
| | - Peeter Burk
- Institute
of Chemistry, University of Tartu, Ravila 14A, Tartu 50411, Estonia
| |
Collapse
|
32
|
Noël J, Salinas M, Baron A, Diochot S, Deval E, Lingueglia E. Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol 2014; 3:331-46. [DOI: 10.1586/ecp.10.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 2013; 170:1607-51. [PMID: 24528239 PMCID: PMC3892289 DOI: 10.1111/bph.12447] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
- *
Author for correspondence;
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - William A Catterall
- University of Washington, School of Medicine, Department of PharmacologyBox 357280, Seattle, WA 98195-7280, USA
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
34
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
35
|
Waszkielewicz AM, Gunia A, Szkaradek N, Słoczyńska K, Krupińska S, Marona H. Ion channels as drug targets in central nervous system disorders. Curr Med Chem 2013; 20:1241-85. [PMID: 23409712 PMCID: PMC3706965 DOI: 10.2174/0929867311320100005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/27/2022]
Abstract
Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na(+) channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 - for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca(2+)s channels are not any more divided to T, L, N, P/Q, and R, but they are described as Ca(v)1.1-Ca(v)3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs.
Collapse
Affiliation(s)
- A M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
36
|
Moshourab RA, Wetzel C, Martinez-Salgado C, Lewin GR. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol 2013; 591:5555-74. [PMID: 23959680 PMCID: PMC3853495 DOI: 10.1113/jphysiol.2013.261180] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3−/−:stomatin−/−, asic3−/−:stoml3−/− and asic2−/−:stomatin−/− double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both Aδ- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3−/− mice in which ∼35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3−/−:stoml3−/− mutant mice. However, Aδ-nociceptors showed much reduced mechanosensitivity in asic3−/−:stoml3−/− mutant mice compared to asic3−/− controls. Interestingly, in asic2−/−:stomatin−/− mutant mice many Aδ-nociceptors completely lost their mechanosensitivity which was not observed in asic2−/− or stomatin−/− mice. Examination of stomatin−/−:stoml3−/− mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater Aδ-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3−/− or asic2−/− mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function.
Collapse
Affiliation(s)
- Rabih A Moshourab
- G. R. Lewin: Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| | | | | | | |
Collapse
|
37
|
|
38
|
Focant MC, Hermans E. Protein interacting with C kinase and neurological disorders. Synapse 2013; 67:532-40. [DOI: 10.1002/syn.21657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 02/16/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Marylène C. Focant
- Institute of Neuroscience, Université catholique de Louvain; Brussels; Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Université catholique de Louvain; Brussels; Belgium
| |
Collapse
|
39
|
AdE-1, a new inotropic Na+ channel toxin from Aiptasia diaphana, is similar to, yet distinct from, known anemone Na+ channel toxins. Biochem J 2013; 451:81-90. [DOI: 10.1042/bj20121623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heart failure is one of the most prevalent causes of death in the western world. Sea anemone contains a myriad of short peptide neurotoxins affecting many pharmacological targets, several of which possess cardiotonic activity. In the present study we describe the isolation and characterization of AdE-1 (ion channel modifier), a novel cardiotonic peptide from the sea anemone Aiptasia diaphana, which differs from other cnidarian toxins. Although AdE-1 has the same cysteine residue arrangement as sea anemone type 1 and 2 Na+ channel toxins, its sequence contains many substitutions in conserved and essential sites and its overall homology to other toxins identified to date is low (<36%). Physiologically, AdE-1 increases the amplitude of cardiomyocyte contraction and slows the late phase of the twitch relaxation velocity with no induction of spontaneous twitching. It increases action potential duration of cardiomyocytes with no effect on its threshold and on the cell's resting potential. Similar to other sea anemone Na+ channel toxins such as Av2 (Anemonia viridis toxin II), AdE-1 markedly inhibits Na+ current inactivation with no significant effect on current activation, suggesting a similar mechanism of action. However, its effects on twitch relaxation velocity, action potential amplitude and on the time to peak suggest that this novel toxin affects cardiomyocyte function via a more complex mechanism. Additionally, Av2's characteristic delayed and early after-depolarizations were not observed. Despite its structural differences, AdE-1 physiologic effectiveness is comparable with Av2 with a similar ED50 value to blowfly larvae. This finding raises questions regarding the extent of the universality of structure–function in sea anemone Na+ channel toxins.
Collapse
|
40
|
Abstract
Venoms and toxins are of significant interest due to their ability to cause a wide range of pathophysiological conditions that can potentially result in death. Despite their wide distribution among plants and animals, the biochemical pathways associated with these pathogenic agents remain largely unexplored. Impoverished and underdeveloped regions appear especially susceptible to increased incidence and severity due to poor socioeconomic conditions and lack of appropriate medical treatment infrastructure. To facilitate better management and treatment of envenomation victims, it is essential that the biochemical mechanisms of their action be elucidated. This review aims to characterize downstream envenomation mechanisms by addressing the major neuro-, cardio-, and hemotoxins as well as ion-channel toxins. Because of their use in folk and traditional medicine, the biochemistry behind venom therapy and possible implications on conventional medicine will also be addressed.
Collapse
|
41
|
Asic3 is a neuronal mechanosensor for pressure-induced vasodilation that protects against pressure ulcers. Nat Med 2012; 18:1205-7. [PMID: 22842475 DOI: 10.1038/nm.2844] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/22/2012] [Indexed: 01/27/2023]
Abstract
Pressure-induced vasodilation (PIV) delays the decrease in cutaneous blood flow produced by local application of low pressure to the skin, a physiologically appropriate adjustment of local vasomotor function. Individuals without a normal PIV response have a high risk of ulceration. Here we demonstrate that acid-sensing ion channel 3 (Asic3) is an essential neuronal sensor for the vasodilation response to direct pressure in both humans and rodents and for protecting against pressure ulcers in mice.
Collapse
|
42
|
Structure of the Acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat Commun 2012; 3:936. [DOI: 10.1038/ncomms1917] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/18/2012] [Indexed: 01/13/2023] Open
|
43
|
Orts-Del'immagine A, Wanaverbecq N, Tardivel C, Tillement V, Dallaporta M, Trouslard J. Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem. J Physiol 2012; 590:3719-41. [PMID: 22570378 DOI: 10.1113/jphysiol.2012.227959] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cerebrospinal fluid (CSF) contacting neurones have been observed in various brain regions such as the hypothalamus, the dorsal nucleus of the raphe and around the central canal (cc) of the spinal cord but their functional role remains unclear. At the level of the spinal cord, subependymal cerebrospinal fluid contacting neurones (S-CSF-cNs) present a peculiar morphology with a soma close to the ependymal layer, a process projecting towards the cc and ending with a bud and a cilium. These neurones were recently shown to express polycystin kidney disease 2-like 1 (PKD2L1 or TRPP3) channels that are members of the polycystin subtype of the transient receptor potential (TRP) channel superfamily and that have been proposed as either chemo- or mechanoreceptors in several tissues. Using immunohistological techniques and whole-cell electrophysiological recordings in brain slices obtained from PKD2L1:EGFP transgenic adult mice, we looked for and determined the functional properties of S-CSF-cNs in the dorsal vagal complex (DVC), a hindbrain structure controlling autonomic functions such as blood pressure, energy balance and food intake. Here, we demonstrate that S-CSF-cNs received GABAergic and/or glycinergic synaptic entries and were also characterised by the presence of non-selective cationic channels of large conductance that could be detected even under whole-cell configuration. The channel activity was not affected by Psalmopoeus cambridgei toxin 1, a blocker of acid sensing ion channels (ASICs), but was blocked by amiloride and by a strong extracellular acidification. In contrast, extracellular alkalinisation and hypo-osmotic shocks increased channel activity. Based on these properties, we suggest that the single-channel activity recorded in medullar S-CSF-cNs is carried by PKD2L1 channels. Our study therefore reinforces the idea that PKD2L1 is a marker of S-CSF-cNs and points toward a role for S-CSF-cNs in the detection of circulating signals and of modifications in the extracellular environment.
Collapse
Affiliation(s)
- Adeline Orts-Del'immagine
- Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) EA 4674 Aix-Marseille Université (AMU), Faculté des Sciences et Techniques St. Jérôme, BP 352, Avenue Escadrille Normandie Niemen, F-13397 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|
44
|
Rodríguez AA, Cassoli JS, Sa F, Dong ZQ, de Freitas JC, Pimenta AMC, de Lima ME, Konno K, Lee SMY, Garateix A, Zaharenko AJ. Peptide fingerprinting of the neurotoxic fractions isolated from the secretions of sea anemones Stichodactyla helianthus and Bunodosoma granulifera. New members of the APETx-like family identified by a 454 pyrosequencing approach. Peptides 2012; 34:26-38. [PMID: 22015268 DOI: 10.1016/j.peptides.2011.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 10/05/2011] [Accepted: 10/05/2011] [Indexed: 11/20/2022]
Abstract
Sea anemones are known to contain a wide diversity of biologically active peptides, mostly unexplored according to recent peptidomic and transcriptomic studies. In the present work, the neurotoxic fractions from the exudates of Stichodactyla helianthus and Bunodosoma granulifera were analyzed by reversed-phase chromatography and mass spectrometry. The first peptide fingerprints of these sea anemones were assessed, revealing the largest number of peptide components (156) so far found in sea anemone species, as well as the richer peptide diversity of B. granulifera in relation to S. helianthus. The transcriptomic analysis of B. granulifera, performed by massive cDNA sequencing with 454 pyrosequencing approach allowed the discovery of five new APETx-like peptides (U-AITX-Bg1a-e - including the full sequences of their precursors for four of them), which together with type 1 sea anemone sodium channel toxins constitute a very distinguishable feature of studied sea anemone species belonging to genus Bunodosoma. The molecular modeling of these new APETx-like peptides showed a distribution of positively charged and aromatic residues in putative contact surfaces as observed in other animal toxins. On the other hand, they also showed variable electrostatic potentials, thus suggesting a docking onto their targeted channels in different spatial orientations. Moreover several crab paralyzing toxins (other than U-AITX-Bg1a-e), which induce a variety of symptoms in crabs, were isolated. Some of them presumably belong to new classes of crab-paralyzing peptide toxins, especially those with molecular masses below 2kDa, which represent the smallest peptide toxins found in sea anemones.
Collapse
|
45
|
Rőszer T, Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides 2012; 34:177-85. [PMID: 21524675 DOI: 10.1016/j.peptides.2011.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 01/10/2023]
Abstract
Members of the FMRFamide-related peptide (FaRP) family are neurotransmitters, hormone-like substances and tumor suppressor peptides. In mammals, FaRPs are considered as anti-opiate peptides due to their ability to inhibit opioid signaling. Some FaRPs are asserted to attenuate opiate tolerance. A recently developed chimeric FaRP (Met-enkephalin-FMRFa) mimics the analgesic effects of opiates without the development of opiate-dependence, displaying a future therapeutical potential in pain reduction. In this review we support the notion, that opiates and representative members of the FaRP family show overlapping effects on apoptosis. Binding of FaRPs to opioid receptors or to their own receptors (G-protein linked membrane receptors and acid-sensing ion channels) evokes or suppresses cell death, in a cell- and receptor-type manner. With the dramatically increasing incidence of opiate abuse and addiction, understanding of opioid-induced cell death, and in this context FaRPs will deserve growing attention.
Collapse
Affiliation(s)
- Tamás Rőszer
- Department of Microbial Biotechnology & Cell Biology, University of Debrecen, Debrecen, Hungary.
| | | |
Collapse
|
46
|
Wu WN, Wu PF, Chen XL, Zhang Z, Gu J, Yang YJ, Xiong QJ, Ni L, Wang F, Chen JG. Sinomenine protects against ischaemic brain injury: involvement of co-inhibition of acid-sensing ion channel 1a and L-type calcium channels. Br J Pharmacol 2012; 164:1445-59. [PMID: 21585344 DOI: 10.1111/j.1476-5381.2011.01487.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Sinomenine (SN), a bioactive alkaloid, has been utilized clinically to treat rheumatoid arthritis in China. Our preliminary experiments indicated that it could protect PC12 cells from oxygen-glucose deprivation-reperfusion (OGD-R), we thus investigated the possible effects of SN on cerebral ischaemia and the related mechanism. EXPERIMENTAL APPROACH Middle cerebral artery occlusion in rats was used as an animal model of ischaemic stroke in vivo. The mechanisms of the effects of SN were investigated in vitro using whole-cell patch-clamp recording, calcium imaging in PC12 cells and rat cortical neurons subjected to OGD-R. KEY RESULTS Pretreatment with SN (10 and 30 mg·kg(-1) , i.p.) significantly decreased brain infarction and the overactivation of calcium-mediated events in rats subjected to 2 h ischaemia followed by 24 h reperfusion. Extracellular application of SN inhibited the currents mediated by acid-sensing ion channel 1a and L-type voltage-gated calcium channels, in the rat cultured neurons, in a concentration-dependent manner. These inhibitory effects contribute to the neuroprotection of SN against OGD-R and extracellular acidosis-induced cytotoxicity. More importantly, administration of SN (30 mg·kg(-1) , i.p.) at 1 and 2 h after cerebral ischaemia also decreased brain infarction and improved functional recovery. CONCLUSION AND IMPLICATIONS SN exerts potent protective effects against ischaemic brain injury when administered before ischaemia or even after the injury. The inhibitory effects of SN on acid-sensing ion channel 1a and L-type calcium channels are involved in this neuroprotection.
Collapse
Affiliation(s)
- Wen-Ning Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
48
|
Abstract
Spiders are a source of intrigue and fear, and several myths exist about their medical effects. Many people believe that bites from various spider species cause necrotic ulceration, despite evidence that most suspected cases of necrotic arachnidism are caused by something other than a spider bite. Latrodectism and loxoscelism are the most important clinical syndromes resulting from spider bite. Latrodectism results from bites by widow spiders (Latrodectus spp) and causes local, regional, or generalised pain associated with non-specific symptoms and autonomic effects. Loxoscelism is caused by Loxosceles spp, and the cutaneous form manifests as pain and erythema that can develop into a necrotic ulcer. Systemic loxoscelism is characterised by intravascular haemolysis and renal failure on occasion. Other important spiders include the Australian funnel-web spider (Atrax spp and Hadronyche spp) and the armed spider (Phoneutria spp) from Brazil. Antivenoms are an important treatment for spider envenomation but have been less successful than have those for snake envenomation, with concerns about their effectiveness for both latrodectism and loxoscelism.
Collapse
Affiliation(s)
- Geoffrey K Isbister
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, NSW, Australia; Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, NSW, Australia.
| | - Hui Wen Fan
- Centro de Desenvolvimento Cultural, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
49
|
Ion channels in inflammation. Pflugers Arch 2011; 461:401-21. [PMID: 21279380 DOI: 10.1007/s00424-010-0917-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/19/2010] [Accepted: 12/19/2010] [Indexed: 12/12/2022]
Abstract
Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.
Collapse
|
50
|
Anangi R, Chen CC, Lin YW, Cheng YR, Cheng CH, Chen YC, Chu YP, Chuang WJ. Expression in Pichia pastoris and characterization of APETx2, a specific inhibitor of acid sensing ion channel 3. Toxicon 2010; 56:1388-97. [DOI: 10.1016/j.toxicon.2010.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|