1
|
Rajendiran P, Naidu R, Othman I, Zainal Abidin SA. Identification of antigenic proteins from the venom of Malaysian snakes using immunoprecipitation assay and tandem mass spectrometry (LC-MS/MS). Heliyon 2024; 10:e37243. [PMID: 39286227 PMCID: PMC11403504 DOI: 10.1016/j.heliyon.2024.e37243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Snake envenomation poses a significant risk to Malaysians and country visitors. Malaysia witnesses an estimated 650 snake bites per 100,000 population annually. The primary treatment for snake envenomation involves administering antivenom derived from horses, despite its drawbacks, such as anaphylactic reactions and serum sickness. Identifying the venom proteome is crucial for understanding and predicting the clinical implications of envenomation and developing effective treatments targeting specific venom proteins. In this study, we employ an immunoprecipitation assay followed by LC-MS/MS to identify antigenic proteins in five common venomous snakes in Malaysia compassing of two families which are pit vipers, (Calloselasma rhodostoma and Cryptelytrops purpureomaculatus) and cobras (Ophiophagus hannah, Naja kaouthia, and Naja sumatrana). The immunoprecipitation assay utilises a 2 % agarose gel, allowing antigenic proteins to diffuse and bind with antibodies in the antivenom. The antivenom utilised in this research was procured from the Queen Saovabha Memorial Institute (QSMI), Thailand, including king cobra antivenom (KCAV), cobra antivenom (CAV), Malayan pit viper antivenom (MPAV), Russell's viper antivenom (RPAV), hematopolyvalent antivenom (HPAV), neuropolyvalent antivenom (NPAV), banded krait antivenom (BKAV), and Malayan krait antivenom (MKAV). The protein identified through these interactions which are exclusive to the cobras are three-finger toxins (3FTXs) while snake C-type lectins (Snaclecs) are unique to the pit vipers. Common protein that are present in both families are L-amino acid oxidase (LAAO), Phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP). Identifying these proteins is vital for formulating a broad-spectrum antivenom applicable across multiple species.
Collapse
Affiliation(s)
- Preetha Rajendiran
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Tan CH, Bourges A, Tan KY. King Cobra and snakebite envenomation: on the natural history, human-snake relationship and medical importance of Ophiophagus hannah. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210051. [PMID: 35069710 PMCID: PMC8733962 DOI: 10.1590/1678-9199-jvatitd-2021-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 01/28/2023] Open
Abstract
King Cobra (Ophiophagus hannah) has a significant place in many
cultures, and is a medically important venomous snake in the world. Envenomation
by this snake is highly lethal, manifested mainly by neurotoxicity and local
tissue damage. King Cobra may be part of a larger species complex, and is widely
distributed across Southeast Asia, southern China, northern and eastern regions
as well as the Western Ghats of India, indicating potential geographical
variation in venom composition. There is, however, only one species-specific
King Cobra antivenom available worldwide that is produced in Thailand, using
venom from the snake of Thai origin. Issues relating to the management of King
Cobra envenomation (e.g., variation in the composition and
toxicity of the venom, limited availability and efficacy of antivenom), and
challenges faced in the research of venom (in particular proteomics), are rarely
addressed. This article reviews the natural history and sociocultural importance
of King Cobra, cases of snakebite envenomation caused by this species, current
practice of management (preclinical and clinical), and major toxinological
studies of the venom with a focus on venom proteomics, toxicity and
neutralization. Unfortunately, epidemiological data of King Cobra bite is
scarce, and venom proteomes reported in various studies revealed marked
discrepancies in details. Challenges, such as inconsistency in snake venom
sampling, varying methodology of proteomic analysis, lack of mechanistic and
antivenomic studies, and controversy surrounding antivenom use in treating King
Cobra envenomation are herein discussed. Future directions are proposed,
including the effort to establish a standard, comprehensive Pan-Asian proteomic
database of King Cobra venom, from which the venom variation can be determined.
Research should be undertaken to characterize the toxin antigenicity, and to
develop an antivenom with improved efficacy and wider geographical utility. The
endeavors are aligned with the WHO´s roadmap that aims to reduce the disease
burden of snakebite by 50% before 2030.
Collapse
Affiliation(s)
| | - Aymeric Bourges
- University of Malaya, Malaysia; Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
3
|
Nandish SKM, Kengaiah J, Ramachandraiah C, Chandramma, Shivaiah A, Santhosh SM, Thirunavukkarasu, Sannaningaiah D. Flaxseed Cysteine Protease Exhibits Strong Anticoagulant, Antiplatelet, and Clot-Dissolving Properties. BIOCHEMISTRY (MOSCOW) 2020; 85:1113-1126. [PMID: 33050855 DOI: 10.1134/s0006297920090102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we purified and characterized flaxseed cysteine protease (FSCP) with strong anticoagulant, antiplatelet, and clot-dissolving properties. The enzyme was purified to homogeneity by a combination of gel permeation and ion-exchange column chromatography techniques. The purity of the enzyme was evaluated by SDS-PAGE, RP-HPLC, and MALDI-TOF. FSCP was observed as a single band of approximately 160 kDa in SDS-PAGE under reducing and non-reducing conditions. The exact molecular mass of FSCP was found to be 168 kDa by MALDI-TOF spectrometry. The CD spectra of FSCP revealed the presence of 25.6% helices, 25.8% turns, and 48% random coils with no beta-sheet structures. FSCP hydrolyzed both casein and gelatin with a specific activity of 3.5 and 4.2 unit/mg min respectively. The proteolytic activity of FSCP was completely abolished by iodoacetic acid (IAA), suggesting FSCP is a cysteine protease. The pH optimum for the proteolytic activity of FSCP was pH 6.0; the temperature optimum was 30°C. FSCP exhibited strong anticoagulant effect in both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) by extending the clotting time from 222 to 1100 s and from 256 to 1210 s, respectively. FSCP degraded human fibrinogen and fibrin clots. The products of fibrinogen degradation by thrombin and FSCP were different. Furthermore, FSCP inhibited aggregation of washed platelets triggered by ADP, epinephrine, thrombin, collagen, arachidonic acid, and platelet activating factor (PAF). FSCP was found to be nontoxic as it did not damage the membrane of red blood cells (RBCs) and did not induce hemorrhage and edema in experimental mice.
Collapse
Affiliation(s)
- S K M Nandish
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - J Kengaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - Ch Ramachandraiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - Chandramma
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - A Shivaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - S M Santhosh
- Department of Medicinal Biochemistry and Microbiology (IMBM), Uppsala Biomedical Centre, Uppsala, 75237, Sweden
| | - Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, Tamil Nadu, 605014, India
| | - D Sannaningaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India.
| |
Collapse
|
4
|
Olaoba OT, Karina dos Santos P, Selistre-de-Araujo HS, Ferreira de Souza DH. Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020; 7:100052. [PMID: 32776002 PMCID: PMC7399193 DOI: 10.1016/j.toxcx.2020.100052] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) represent a diverse group of multi-domain proteins with several biological activities such as the ability to induce hemorrhage, proteolytic degradation of fibrinogen and fibrin, induction of apoptosis and inhibition of platelet aggregation. Due to these activities, SVMPs are responsible for many of the well-known pathological phenotypes in snake envenomations caused particularly by species from the Viperidae family and the Crotalinae subfamily. These proteins have been classified based on their size and domain structure into P–I, P-II and P-III classes. Comparatively, members of the P–I SVMPs possess the simplest structures, formed by the catalytic metalloproteinase domain only; the P-II SVMPs are moderately more complex, having the canonical disintegrin domain in addition to the metalloproteinase domain; members of the P-III class are more structurally varied, comprising the metalloproteinase, disintegrin-like, and cysteine-rich domains. Proteolytic cleavage, repeated domain loss and presence of other ancillary domains are responsible for structural diversities in the P-III class. However, studies continue to unveil the relationship between the structure and function of these proteins. In this review, we recovered evidences from literature on the structural peculiarities and functional classification of Snake Venom Metalloproteinases. In addition, we reflect on diversities that exist among each class while taking into account specific and up-to-date class-based activities.
Collapse
Affiliation(s)
- Olamide Tosin Olaoba
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | - Patty Karina dos Santos
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | | | - Dulce Helena Ferreira de Souza
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
- Corresponding author.
| |
Collapse
|
5
|
Modahl CM, Roointan A, Rogers J, Currier K, Mackessy SP. Interspecific and intraspecific venom enzymatic variation among cobras (Naja sp. and Ophiophagus hannah). Comp Biochem Physiol C Toxicol Pharmacol 2020; 232:108743. [PMID: 32194156 DOI: 10.1016/j.cbpc.2020.108743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The genera Ophiophagus and Naja comprise part of a clade of snakes referred to as cobras, dangerously venomous front-fanged snakes in the family Elapidae responsible for significant human mortality and morbidity throughout Asia and Africa. We evaluated venom enzyme variation for eleven cobra species and three N. kaouthia populations using SDS-PAGE venom fingerprinting and numerous enzyme assays. Acetylcholinesterase and PLA2 activities were the most variable between species, and PLA2 activity was significantly different between Malaysian and Thailand N. kaouthia populations. Venom metalloproteinase activity was low and significantly different among most species, but levels were identical for N. kaouthia populations; minor variation in venom L-amino acid oxidase and phosphodiesterase activities were seen between cobra species. Naja siamensis venom lacked the α-fibrinogenolytic activity common to other cobra venoms. In addition, venom from N. siamensis had no detectable metalloproteinase activity and exhibited an SDS-PAGE profile with reduced abundance of higher mass proteins. Venom profiles from spitting cobras (N. siamensis, N. pallida, and N. mossambica) exhibited similar reductions in higher mass proteins, suggesting the evolution of venoms of reduced complexity and decreased enzymatic activity among spitting cobras. Generally, the venom proteomes of cobras show highly abundant three-finger toxin diversity, followed by large quantities of PLA2s. However, PLA2 bands and activity were very reduced for N. haje, N. annulifera and N. nivea. Venom compositionalenzy analysis provides insight into the evolution, diversification and distribution of different venom phenotypes that complements venomic data, and this information is critical for the development of effective antivenoms and snakebite treatment.
Collapse
Affiliation(s)
- Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Amir Roointan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jessica Rogers
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA
| | - Katelyn Currier
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA.
| |
Collapse
|
6
|
Hashmi SU, Alvi A, Munir I, Perveen M, Fazal A, Jackson TNW, Ali SA. Functional venomics of the Big-4 snakes of Pakistan. Toxicon 2020; 179:60-71. [PMID: 32173354 DOI: 10.1016/j.toxicon.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 11/19/2022]
Abstract
In South Asia, the "Big-4" venomous snakes Naja naja, Bungarus caeruleus, Daboia russelii, and Echis carinatus are so-called because they are the most medically important snakes in the region. Antivenom is the only effective treatment option for snakebite envenoming but antivenom is not produced domestically in Pakistan making the country reliant on polyvalent products imported from India and Saudi Arabia. The present study investigated the toxin composition and activity of the venoms of Pakistani specimens by means of proteomic and physio/pharmacological experiments. To evaluate the composition of venoms, 1D/2D-PAGE of crude venoms and RP-HPLC followed by SDS-PAGE were performed. Enzymatic, hemolytic, coagulant and platelet aggregating activities of crude venoms were assayed and were concordant with expectations based on the abundance of protein species in each. Neutralization assays were performed using Bharat polyvalent antivenom (BPAV), a product raised against venoms from Big-4 specimens from southern India. BPAV exhibited cross-reactivity against the Pakistani venoms, however, neutralization of clinically relevant activities was variable and rarely complete. Cumulatively, the presented data not only highlight geographical variations present in the venoms of the Big-4 snakes of South Asia, but also demonstrate the neutralization potential of Indian polyvalent against the venom of Pakistani specimens. Given the partial neutralization observed, it is clear that whilst BPAV is a life-saving product in Pakistan, in future it is hoped that a region-specific product might be manufactured domestically, using venoms of local snakes in the immunising mixture.
Collapse
Affiliation(s)
- Syeda U Hashmi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Areej Alvi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Iqra Munir
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Mehvish Perveen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Amaila Fazal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Australia
| | - Syed A Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
7
|
Bittenbinder MA, Dobson JS, Zdenek CN, op den Brouw B, Naude A, Vonk FJ, Fry BG. Differential destructive (non-clotting) fibrinogenolytic activity in Afro-Asian elapid snake venoms and the links to defensive hooding behavior. Toxicol In Vitro 2019; 60:330-335. [DOI: 10.1016/j.tiv.2019.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
|
8
|
Modahl CM, Mackessy SP. Venoms of Rear-Fanged Snakes: New Proteins and Novel Activities. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Modahl CM, Frietze S, Mackessy SP. Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. J Proteomics 2018; 187:223-234. [PMID: 30092380 DOI: 10.1016/j.jprot.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
High-throughput technologies were used to identify venom gland toxin expression and to characterize the venom proteomes of two rear-fanged snakes, Ahaetulla prasina (Asian Green Vine Snake) and Borikenophis portoricensis (Puerto Rican Racer). Sixty-nine complete toxin-coding transcripts from 12 venom protein superfamilies (A. prasina) and 50 complete coding transcripts from 11 venom protein superfamilies (B. portoricensis) were identified in the venom glands. However, only 18% (A. prasina) and 32% (B. portoricensis) of the translated protein isoforms were detected in the proteome of these venoms. Both venom gland transcriptomes and venom proteomes were dominated by P-III metalloproteinases. Three-finger toxins, cysteine-rich secretory proteins, and C-type lectins were present in moderate amounts, but other protein superfamilies showed very low abundances. Venoms contained metalloproteinase activity comparable to viperid snake venom levels, but other common venom enzymes were absent or present at negligible levels. Western blot analysis showed metalloproteinase and cysteine-rich secretory protein epitopes shared with the highly venomous Boomslang (Dispholidus typus). The abundance of metalloproteinases emphasizes the important trophic role of these toxins. Comprehensive, transcriptome-informed definition of proteomes and functional characterization of venom proteins in rear-fanged snake families help to elucidate toxin evolution and provide models for protein structure-function analyses.
Collapse
Affiliation(s)
- Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, 302 Rowell, Burlington, VT 05405, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA.
| |
Collapse
|
10
|
The habu genome reveals accelerated evolution of venom protein genes. Sci Rep 2018; 8:11300. [PMID: 30050104 PMCID: PMC6062510 DOI: 10.1038/s41598-018-28749-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/29/2018] [Indexed: 01/11/2023] Open
Abstract
Evolution of novel traits is a challenging subject in biological research. Several snake lineages developed elaborate venom systems to deliver complex protein mixtures for prey capture. To understand mechanisms involved in snake venom evolution, we decoded here the ~1.4-Gb genome of a habu, Protobothrops flavoviridis. We identified 60 snake venom protein genes (SV) and 224 non-venom paralogs (NV), belonging to 18 gene families. Molecular phylogeny reveals early divergence of SV and NV genes, suggesting that one of the four copies generated through two rounds of whole-genome duplication was modified for use as a toxin. Among them, both SV and NV genes in four major components were extensively duplicated after their diversification, but accelerated evolution is evident exclusively in the SV genes. Both venom-related SV and NV genes are significantly enriched in microchromosomes. The present study thus provides a genetic background for evolution of snake venom composition.
Collapse
|
11
|
Nguyen TTN, Ha TT, Nguyen TH, Vu TH, Truong NH, Chu HH, Van Quyen D. Peptide Fraction pOh2 Exerts Antiadipogenic Activity through Inhibition of C/EBP- α and PPAR- γ Expression in 3T3-L1 Adipocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4826595. [PMID: 28424783 PMCID: PMC5382294 DOI: 10.1155/2017/4826595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/15/2017] [Accepted: 03/15/2017] [Indexed: 01/14/2023]
Abstract
Many studies have comprehensively examined the venom of Ophiophagus hannah snake. Its venom comprises different compounds exhibiting a wide range of pharmacological activities. In this investigation, four peptide fractions (PFs), ranging from 3 kDa to 10 kDa, isolated from the Vietnamese snake venom of O. hannah were separated by HPLC and investigated for their inhibitory activity on adipogenesis in 3T3-L1 adipocytes. The most effective PF was then further purified, generating two peptides, pOh1 and pOh2. Upon investigation of these two peptides on 3T3-L1 adipocytes, it was revealed that, at 10 μg/mL, pOh2 was able to inhibit the lipid accumulation in 3T3-L1 adipocytes by up to 56%, without affecting cell viability. Furthermore, the pOh2 downregulated the gene expression of important transcription factors C/EBP-α and PPAR-γ. In addition, aP2 and GPDH adipocyte-specific markers were also significantly reduced compared to untreated differentiated cells. Taken together, pOh2 inhibited the expression of key transcription factors C/EBP-α and PPAR-γ and their target genes, aP2 and GPDH, thereby blocking the adipocyte differentiation. In conclusion, this novel class of peptide might have potential for in vivo antiobesity effects.
Collapse
Affiliation(s)
- Thi Tuyet Nhung Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Thi Thu Ha
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Thi Hoa Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Thi Hien Vu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Nam Hai Truong
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Dong Van Quyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Vietnam
| |
Collapse
|
12
|
Shan LL, Gao JF, Zhang YX, Shen SS, He Y, Wang J, Ma XM, Ji X. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J Proteomics 2016; 138:83-94. [PMID: 26924299 DOI: 10.1016/j.jprot.2016.02.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Bungarus multicinctus (many-banded krait) and Naja atra (Chinese cobra) are widely distributed and medically important venomous snakes in China; however, their venom proteomic profiles have not been fully compared. Here, we fractionated crude venoms and analyzed them using a combination of proteomic techniques. Three-finger toxins (3-FTx) and phospholipase A2 (PLA2) were most abundant in both species, respectively accounting for 32.6% and 66.4% of total B. multicinctus venom, and 84.3% and 12.2% of total N. atra venom. Venoms from these two species contained one common protein family and six less abundant species-specific protein families. The proteomic profiles of B. multicinctus and N. atra venoms and analysis of toxicological activity in mice suggested that 3-FTx and PLA2 are the major contributors to clinical symptoms caused by envenomation. The venoms differed in enzymatic activity, likely the result of inter-specific variation in the amount of related venom components. Antivenomics assessment revealed that a small number of venom components (3-FTxs and PLA2s in B. multicinctus, and 3-FTxs in N. atra) could not be immunocaptured completely, suggesting that we should pay attention to enhancing the immune response of these components in designing commercial antivenoms for B. multicinctus and N. atra. BIOLOGICAL SIGNIFICANCE The proteomic profiles of venoms from two medically important snake species - B. multicinctus and N. atra - have been explored. Quantitative and qualitative differences are evident in both venoms when proteomic profiles and transcriptomic results are compared; this is a reminder that combined approaches are needed to explore the precise composition of snake venom. Two protein families (3-FTx and PLA2) of high abundance in these snake venoms are major players in the biochemical and pharmacological effects of envenomation. Elucidation of the proteomic profiles of these snake venoms is helpful in understanding composition-function relationships and will facilitate the clinical application of antivenoms.
Collapse
Affiliation(s)
- Lin-Lin Shan
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Jian-Fang Gao
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China.
| | - Yan-Xia Zhang
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Shan-Shan Shen
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Ying He
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Jin Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiao-Mei Ma
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
13
|
Chanda C, Sarkar A, Chakrabarty D. Thrombolytic protein from cobra venom with anti-adhesive properties. Arch Biochem Biophys 2016; 590:20-26. [DOI: 10.1016/j.abb.2015.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022]
|
14
|
Tan CH, Tan KY, Fung SY, Tan NH. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genomics 2015; 16:687. [PMID: 26358635 PMCID: PMC4566206 DOI: 10.1186/s12864-015-1828-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/07/2015] [Indexed: 02/01/2023] Open
Abstract
Background The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. Results Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5’-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5’-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey. Conclusion This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1828-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
15
|
McGivern JJ, Wray KP, Margres MJ, Couch ME, Mackessy SP, Rokyta DR. RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes. BMC Genomics 2014; 15:1061. [PMID: 25476704 PMCID: PMC4289226 DOI: 10.1186/1471-2164-15-1061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background Largely because of their direct, negative impacts on human health, the venoms of front-fanged snakes of the families Viperidae and Elapidae have been extensively characterized proteomically, transcriptomically, and pharmacologically. However, relatively little is known about the molecular complexity and evolution of the venoms of rear-fanged colubrid snakes, which are, with a few notable exceptions, regarded as harmless to humans. Many of these snakes have venoms with major effects on their preferred prey, and their venoms are probably as critical to their survival as those of front-fanged elapids and viperids. Results We sequenced the venom-gland transcriptomes from a specimen of Hypsiglena (Desert Night Snake; family Colubridae, subfamily Dipsadinae) and of Boiga irregularis (Brown Treesnake; family Colubridae, subfamily Colubrinae) and verified the transcriptomic results proteomically by means of high-definition mass spectrometry. We identified nearly 3,000 nontoxin genes for each species. For B. irregularis, we found 108 putative toxin transcripts in 46 clusters with <1% nucleotide divergence, and for Hypsiglena we identified 79 toxin sequences that were grouped into 33 clusters. Comparisons of the venoms revealed divergent venom types, with Hypsiglena possessing a viper-like venom dominated by metalloproteinases, and B. irregularis having a more elapid-like venom, consisting primarily of three-finger toxins. Conclusions Despite the difficulty of procuring venom from rear-fanged species, we were able to complete all analyses from a single specimen of each species without pooling venom samples or glands, demonstrating the power of high-definition transcriptomic and proteomic approaches. We found a high level of divergence in the venom types of two colubrids. These two venoms reflected the hemorrhagic/neurotoxic venom dichotomy that broadly characterizes the difference in venom strategies between elapids and viperids.
Collapse
Affiliation(s)
| | | | | | | | | | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
16
|
Rusmili MRA, Yee TT, Mustafa MR, Hodgson WC, Othman I. Proteomic characterization and comparison of Malaysian Bungarus candidus and Bungarus fasciatus venoms. J Proteomics 2014; 110:129-44. [PMID: 25154052 DOI: 10.1016/j.jprot.2014.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/25/2023]
Abstract
UNLABELLED Kraits (Bungarus spp.) are highly venomous elapids that are only found in Asia. In the current study, 103 and 86 different proteins were identified from Bungarus candidus and Bungarus fasciatus venoms, respectively. These proteins were classified into 18 different venom protein families. Both venoms were found to contain a high percentage of three finger toxins, phospholipase A2 enzymes and Kunitz-type inhibitors. Smaller number of high molecular weight enzymes such as L-amino acid oxidase, hyaluronidases, and acetylcholinesterase were also detected in the venoms. We also detected some unique proteins that were not known to be present in these venoms. The presence of a natriuretic peptide, vespryn, and serine protease families was detected in B. candidus venom. We also detected the presence of subunit A and B of β-bungarotoxin and α-bungarotoxin which had not been previously found in B. fasciatus venom. Understanding the proteome composition of Malaysian krait species will provide useful information on unique toxins and proteins which are present in the venoms. This knowledge will assist in the management of krait envenoming. In addition, these proteins may have potential use as research tools or as drug-design templates. BIOLOGICAL SIGNIFICANCE This study has revealed the proteome composition of Malaysian B. candidus and B. fasciatus venoms, two medically important snake species in Asia. Information on the venom proteome of these species will provide useful information for krait bite management and aid in antivenom selection. Venom proteome profiles of these venoms showed that there are significant differences in the venom protein family compositions. Detection of proteins and peptides that have not been documented in these species such as natriuretic peptides, vespryn and serine proteases provides new knowledge on the composition of these venoms. The roles of these new proteins and peptides in krait envenoming are still unknown. Discovery of these proteins and peptides may also be useful for future research tool and therapeutic development.
Collapse
Affiliation(s)
- Muhamad Rusdi Ahmad Rusmili
- Monash Venom Group, Department of Pharmacology, Faculty of Medicine, Nursing and Health Sciences, 3168 Clayton, Victoria, Australia; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150 Bandar Sunway, Malaysia; Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Tee Ting Yee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150 Bandar Sunway, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 59100 Kuala Lumpur, Malaysia
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Faculty of Medicine, Nursing and Health Sciences, 3168 Clayton, Victoria, Australia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 46150 Bandar Sunway, Malaysia.
| |
Collapse
|
17
|
Danpaiboon W, Reamtong O, Sookrung N, Seesuay W, Sakolvaree Y, Thanongsaksrikul J, Dong-din-on F, Srimanote P, Thueng-in K, Chaicumpa W. Ophiophagus hannah venom: proteome, components bound by Naja kaouthia antivenin and neutralization by N. kaouthia neurotoxin-specific human ScFv. Toxins (Basel) 2014; 6:1526-58. [PMID: 24828754 PMCID: PMC4052251 DOI: 10.3390/toxins6051526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/20/2014] [Accepted: 05/05/2014] [Indexed: 12/27/2022] Open
Abstract
Venomous snakebites are an important health problem in tropical and subtropical countries. King cobra (Ophiophagushannah) is the largest venomous snake found in South and Southeast Asia. In this study, the O. hannah venom proteome and the venom components cross-reactive to N. kaouthia monospecific antivenin were studied. O. hannah venom consisted of 14 different protein families, including three finger toxins, phospholipases, cysteine-rich secretory proteins, cobra venom factor, muscarinic toxin, L-amino acid oxidase, hypothetical proteins, low cysteine protein, phosphodiesterase, proteases, vespryn toxin, Kunitz, growth factor activators and others (coagulation factor, endonuclease, 5’-nucleotidase). N. kaouthia antivenin recognized several functionally different O. hannah venom proteins and mediated paratherapeutic efficacy by rescuing the O. hannah envenomed mice from lethality. An engineered human ScFv specific to N. kaouthia long neurotoxin (NkLN-HuScFv) cross-neutralized the O. hannah venom and extricated the O. hannah envenomed mice from death in a dose escalation manner. Homology modeling and molecular docking revealed that NkLN-HuScFv interacted with residues in loops 2 and 3 of the neurotoxins of both snake species, which are important for neuronal acetylcholine receptor binding. The data of this study are useful for snakebite treatment when and where the polyspecific antivenin is not available. Because the supply of horse-derived antivenin is limited and the preparation may cause some adverse effects in recipients, a cocktail of recombinant human ScFvs for various toxic venom components shared by different venomous snakes, exemplified by the in vitro produced NkLN-HuScFv in this study, should contribute to a possible future route for an improved alternative to the antivenins.
Collapse
Affiliation(s)
- Witchuda Danpaiboon
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Nitat Sookrung
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Watee Seesuay
- Laboratory for Research and Technology Development, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Yuwaporn Sakolvaree
- Laboratory for Research and Technology Development, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Jeeraphong Thanongsaksrikul
- Laboratory for Research and Technology Development, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Fonthip Dong-din-on
- Center for Agriculture Biotechnology and Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kam-paeng-saen Campus, Nakhon-pathom 73140, Thailand.
| | - Potjanee Srimanote
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand.
| | - Kanyarat Thueng-in
- Laboratory for Research and Technology Development, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Wanpen Chaicumpa
- Laboratory for Research and Technology Development, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
18
|
Functional proteomic approach to discover geographic variations of king cobra venoms from Southeast Asia and China. J Proteomics 2013; 89:141-53. [PMID: 23796489 DOI: 10.1016/j.jprot.2013.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022]
Abstract
UNLABELLED This study deciphers the geographic variations of king cobra (Ophiophagus hannah) venom using functional proteomics. Pooled samples of king cobra venom (abbreviated as Ohv) were obtained from Indonesia, Malaysia, Thailand, and two provinces of China, namely Guangxi and Hainan. Using two animal models to test and compare the lethal effects, we found that the Chinese Ohvs were more fatal to mice, while the Southeast Asian Ohvs were more fatal to lizards (Eutropis multifasciata). Various phospholipases A2 (PLA2s), three-finger toxins (3FTxs) and Kunitz-type inhibitors were purified from these Ohvs and compared. Besides the two Chinese Ohv PLA2s with known sequences, eight novel PLA2s were identified from the five Ohv samples and their antiplatelet activities were compared. While two 3FTxs (namely oh-55 and oh-27) were common in all the Ohvs, different sets of 3FTx markers were present in the Chinese and Southeast Asian Ohvs. All the Ohvs contain the Kunitz inhibitor, OH-TCI, while only the Chinese Ohvs contain the inhibitor variant, Oh11-1. Relative to the Chinese Ohvs which contained more phospholipases, the Southeast Asian Ohvs had higher metalloproteinase, acetylcholine esterase, and alkaline phosphatase activities. BIOLOGICAL SIGNIFICANCE Remarkable variations in five king cobra geographic samples reveal fast evolution and dynamic translational regulation of the venom which probably adapted to different prey ecology as testified by the lethal tests on mice and lizards. Our results predict possible variations of the king cobra envenoming to human and the importance of using local antivenin for snakebite treatment.
Collapse
|
19
|
Wang H, Chen X, Wang L, Chen W, Zhou M, Chen T, Shaw C. Cloning and characterisation of three novel disintegrin precursors from the venoms of three Atheris species: Atheris chlorechis, Atheris nitschei and Atheris squamigera. Toxicon 2013; 71:31-40. [PMID: 23732124 DOI: 10.1016/j.toxicon.2013.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
Snake venom constitutes one of the most complex mixtures of naturally-occurring toxic proteins/polypeptides and a large number of these possess very profound biological activities. Disintegrins, that are commonly found in viper venoms, are low molecular weight proteins that usually contain an -Arg-Gly-Asp- (-RGD-) motif that is known to be involved in cell adhesion ligand recognition, binding specifically to cell surface integrin receptors and also exhibiting platelet anti-aggregation activity. Here, we report for the first time, the successful cloning of three cDNAs encoding disintegrin precursors from lyophilised venom-derived libraries of Atheris chlorechis, Atheris nitschei and Atheris squamigera, respectively. All of these disintegrins belong to the short-coding class and all exhibit high degrees of structural identity, both in their amino acid sequences and in the arrangement of their functional domains. Mass spectrometric analyses of the HPLC-separated/in-gel digested venom proteins was performed to characterise the mature disintegrins as expressed in the venom proteome. Studies on both the structures and conserved sites within these disintegrins are of considerable theoretical interest in the field of biological evolution and in the development of new research tools or novel templates for drug design.
Collapse
Affiliation(s)
- He Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Zeng L, Sun QY, Jin Y, Zhang Y, Lee WH, Zhang Y. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah. Toxicon 2012; 60:290-301. [PMID: 22561424 DOI: 10.1016/j.toxicon.2012.04.344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/15/2012] [Accepted: 04/18/2012] [Indexed: 11/25/2022]
Abstract
Cobra venom factor (CVF) is an anti-complement factor existing in cobra venom. CVF proteins have been purified from the venoms of Naja haje, Naja siamensis, Naja atra, Naja kaouthia, Naja naja, Naja melanoleuca and Austrelaps superbus, but only three full-length cDNA sequences of CVF are available. In the present work, a cobra venom factor termed OVF was purified from the crude venom of Ophiophagus hannah by successive gel filtration, ion-exchange and heparin affinity chromatography steps. The purified OVF was homogenous on the SDS-PAGE gel with an apparent molecular weight of 140 kDa under non-reducing conditions. Under reducing conditions, OVF was divided into three bands with apparent molecular weight of 72 kDa (α chain), 45 kDa (β chain) and 32 kDa (γ chain), respectively. OVF consumed complement components with anti-complement activity of 154 units per mg. By using Reverse transcription-PCR and 5'-RACE assay, the open reading frame of OVF was obtained. MALDI-TOF and protein sequencing assays confirmed the cloned cDNA coding for OVF protein. The cDNA sequence of OVF is conservative when aligned with that of other CVFs. Phylogenetic analysis revealed OVF is closer to CVF from N. kaouthia than to AVF-1 and AVF-2 from A. superbus. Our results demonstrated that OVF has its unique features as following: 1) The N-terminal amino acid sequence of OVF γ chain is different from that of other known CVFs, suggesting that the OVF γ chain might be further processed; 2) Unlike N. kaouthia CVF and A. superbus AVF-1, which have potential N-linked glycosylation sites located in both α and β chain, OVF only has N-linked glycosylation site in its α chain as revealed by Schiff's reagent staining and protein sequence analysis; 3) In addition to the 27 well conserved cysteine residues in all known CVFs, OVF have an additional cysteine residue in its γ chain. Understanding the importance of above mentioned specific characteristics might provide useful information on structure-function relationship between CVF and complement system.
Collapse
Affiliation(s)
- Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | | | | | | | | | | |
Collapse
|
21
|
Moura-da-Silva AM, Furlan MS, Caporrino MC, Grego KF, Portes-Junior JA, Clissa PB, Valente RH, Magalhães GS. Diversity of metalloproteinases in Bothrops neuwiedi snake venom transcripts: evidences for recombination between different classes of SVMPs. BMC Genet 2011; 12:94. [PMID: 22044657 PMCID: PMC3217872 DOI: 10.1186/1471-2156-12-94] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/01/2011] [Indexed: 11/24/2022] Open
Abstract
Background Snake venom metalloproteinases (SVMPs) are widely distributed in snake venoms and are versatile toxins, targeting many important elements involved in hemostasis, such as basement membrane proteins, clotting proteins, platelets, endothelial and inflammatory cells. The functional diversity of SVMPs is in part due to the structural organization of different combinations of catalytic, disintegrin, disintegrin-like and cysteine-rich domains, which categorizes SVMPs in 3 classes of precursor molecules (PI, PII and PIII) further divided in 11 subclasses, 6 of them belonging to PII group. This heterogeneity is currently correlated to genetic accelerated evolution and post-translational modifications. Results Thirty-one SVMP cDNAs were full length cloned from a single specimen of Bothrops neuwiedi snake, sequenced and grouped in eleven distinct sequences and further analyzed by cladistic analysis. Class P-I and class P-III sequences presented the expected tree topology for fibrinolytic and hemorrhagic SVMPs, respectively. In opposition, three distinct segregations were observed for class P-II sequences. P-IIb showed the typical segregation of class P-II SVMPs. However, P-IIa grouped with class P-I cDNAs presenting a 100% identity in the 365 bp at their 5' ends, suggesting post-transcription events for interclass recombination. In addition, catalytic domain of P-IIx sequences segregated with non-hemorrhagic class P-III SVMPs while their disintegrin domain grouped with other class P-II disintegrin domains suggesting independent evolution of catalytic and disintegrin domains. Complementary regions within cDNA sequences were noted and may participate in recombination either at DNA or RNA levels. Proteins predicted by these cDNAs show the main features of the correspondent classes of SVMP, but P-IIb and P-IIx included two additional cysteines cysteines at the C-termini of the disintegrin domains in positions not yet described. Conclusions In B. neuwiedi venom gland, class P-II SVMPs were represented by three different types of transcripts that may have arisen by interclass recombination with P-I and P-III sequences after the divergence of the different classes of SVMPs. Our observations indicate that exon shuffling or post-transcriptional mechanisms may be driving these recombinations generating new functional possibilities for this complex group of snake toxins.
Collapse
|
22
|
Guerrero B, Arocha-Piñango CL, Salazar AM, Gil A, Sánchez EE, Rodríguez-Acosta A, Lucena S. The effects of Lonomin V, a toxin from the caterpillar (Lonomia achelous), on hemostasis parameters as measured by platelet function. Toxicon 2011; 58:293-303. [PMID: 21820001 DOI: 10.1016/j.toxicon.2011.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/15/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
Abstract
Platelets play a central role in hemostasis during vascular injury. Patients affected with the hemorrhagic syndrome caused by contact with Lonomia achelous caterpillars (Lac) Lepidoptera distributed in various South American countries, show digestive, pulmonary and intraperitoneal bleeding in combination with hematomas and echymosis. In the present study, we have evaluated the effects of Lonomin V (serine protease isolated from Lac hemolymph) on some functional properties of platelets, evaluating its importance in primary hemostasis. Platelet adhesion to fibrinogen was reduced by 19, 20, 36, and 37% after pre-treated with 0.2, 2, 20 and 40 nM of Lonomin V, respectively. Pre-incubation of the platelets with 408 nM of Lonomin V, for 4 min at 37 °C, resulted in complete inhibition of the collagen-induced platelet aggregation, in contrast to 56% inhibition of the ADP - induced platelet aggregation. Lonomin V also inhibited anti-α(IIb)β(3) integrin binding to platelets by 56, 57, 52 and 54% at concentrations of 0.2, 2, 20 and 40 nM respectively. Additionally, Lonomin V inhibited anti-P-selectin binding to platelets by 28, 37, 33 and 33% at the same concentrations. The platelets tested with Lonomin V did not modify their viability. In summary, Lonomin V inhibited platelet aggregation, probably caused by the degradation of collagen. The anti-platelet activity of Lonomin V has been shown to be unique and a potentially useful tool for investigating cell-matrix and cell-cell interactions and for the development of antithrombotic agents in terms of their anti-adhesive activities.
Collapse
Affiliation(s)
- Belsy Guerrero
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020A, Republic of Venezuela
| | | | | | | | | | | | | |
Collapse
|
23
|
Casewell NR, Wagstaff SC, Harrison RA, Renjifo C, Wüster W. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol Biol Evol 2011; 28:2637-49. [PMID: 21478373 DOI: 10.1093/molbev/msr091] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025] Open
Abstract
Gene duplication is a key mechanism for the adaptive evolution and neofunctionalization of gene families. Large multigene families often exhibit complex evolutionary histories as a result of frequent gene duplication acting in concordance with positive selection pressures. Alterations in the domain structure of genes, causing changes in the molecular scaffold of proteins, can also result in a complex evolutionary history and has been observed in functionally diverse multigene toxin families. Here, we investigate the role alterations in domain structure have on the tempo of evolution and neofunctionalization of multigene families using the snake venom metalloproteinases (SVMPs) as a model system. Our results reveal that the evolutionary history of viperid (Serpentes: Viperidae) SVMPs is repeatedly punctuated by domain loss, with the single loss of the cysteine-rich domain, facilitating the formation of P-II class SVMPs, occurring prior to the convergent loss of the disintegrin domain to form multiple P-I SVMP structures. Notably, the majority of phylogenetic branches where domain loss was inferred to have occurred exhibited highly significant evidence of positive selection in surface-exposed amino acid residues, resulting in the neofunctionalization of P-II and P-I SVMP classes. These results provide a valuable insight into the mechanisms by which complex gene families evolve and detail how the loss of domain structures can catalyze the accelerated evolution of novel gene paralogues. The ensuing generation of differing molecular scaffolds encoded by the same multigene family facilitates gene neofunctionalization while presenting an evolutionary advantage through the retention of multiple genes capable of encoding functionally distinct proteins.
Collapse
Affiliation(s)
- Nicholas R Casewell
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Lei W, Zhang Y, Yu G, Jiang P, He Y, Lee W, Zhang Y. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains. Toxicon 2011; 57:811-6. [PMID: 21334357 DOI: 10.1016/j.toxicon.2011.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 11/16/2022]
Abstract
The king cobra (Ophiophagus hannah) is the largest venomous snake. Despite the components are mainly neurotoxins, the venom contains several proteins affecting blood system. Natriuretic peptide (NP), one of the important components of snake venoms, could cause local vasodilatation and a promoted capillary permeability facilitating a rapid diffusion of other toxins into the prey tissues. Due to the low abundance, it is hard to purify the snake venom NPs. The cDNA cloning of the NPs become a useful approach. In this study, a 957 bp natriuretic peptide-encoding cDNA clone was isolated from an O. hannah venom gland cDNA library. The open-reading frame of the cDNA encodes a 210-amino acid residues precursor protein named Oh-NP. Oh-NP has a typical signal peptide sequence of 26 amino acid residues. Surprisingly, Oh-NP has two typical NP domains which consist of the typical sequence of 17-residue loop of CFGXXDRIGC, so it is an unusual NP precursor. These two NP domains share high amino acid sequence identity. In addition, there are two homologous peptides of unknown function within the Oh-NP precursor. To our knowledge, Oh-NP is the first protein precursor containing two NP domains. It might belong to another subclass of snake venom NPs.
Collapse
Affiliation(s)
- Weiwei Lei
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, Kunming 650223, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Petras D, Sanz L, Segura Á, Herrera M, Villalta M, Solano D, Vargas M, León G, Warrell DA, Theakston RDG, Harrison RA, Durfa N, Nasidi A, Gutiérrez JM, Calvete JJ. Snake Venomics of African Spitting Cobras: Toxin Composition and Assessment of Congeneric Cross-Reactivity of the Pan-African EchiTAb-Plus-ICP Antivenom by Antivenomics and Neutralization Approaches. J Proteome Res 2011; 10:1266-80. [DOI: 10.1021/pr101040f] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Petras
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
- Hochschule Darmstadt, Fachbereich Chemie und Biotechnologie, Darmstadt, Germany
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - David A. Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - R. David G. Theakston
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A. Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan J. Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| |
Collapse
|
26
|
Sajevic T, Leonardi A, Križaj I. Haemostatically active proteins in snake venoms. Toxicon 2011; 57:627-45. [PMID: 21277886 DOI: 10.1016/j.toxicon.2011.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
Abstract
Snake venom proteins that affect the haemostatic system can cause (a) lowering of blood coagulability, (b) damage to blood vessels, resulting in bleeding, (c) secondary effects of bleeding, e.g. hypovolaemic shock and organ damage, and (d) thrombosis. These proteins may, or may not, be enzymes. We review the data on the most relevant haemostatically active proteinases, phospholipases A₂, L-amino acid oxidases and 5'-nucleotidases from snake venoms. We also survey the non-enzymatic effectors of haemostasis from snake venoms--disintegrins, C-type lectins and three-finger toxins. Medical applications have already been found for some of these snake venom proteins. We describe those that have already been approved as drugs to treat haemostatic disorders or are being used to diagnose such health problems. No clinical applications, however, currently exist for the majority of snake venom proteins acting on haemostasis. We conclude with the most promising potential uses in this respect.
Collapse
Affiliation(s)
- Tamara Sajevic
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
27
|
Jiang Y, Li Y, Lee W, Xu X, Zhang Y, Zhao R, Zhang Y, Wang W. Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. BMC Genomics 2011; 12:1. [PMID: 21194499 PMCID: PMC3023746 DOI: 10.1186/1471-2164-12-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 01/03/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Kraits (genus Bungarus) and cobras (genus Naja) are two representative toxic genera of elapids in the old world. Although they are closely related genera and both of their venoms are very toxic, the compositions of their venoms are very different. To unveil their detailed venoms and their evolutionary patterns, we constructed venom gland cDNA libraries and genomic bacterial artificial chromosome (BAC) libraries for Bungarus multicinctus and Naja atra, respectively. We sequenced about 1500 cDNA clones for each of the venom cDNA libraries and screened BAC libraries of the two snakes by blot analysis using four kinds of toxin probes; i.e., three-finger toxin (3FTx), phospholipase A2 (PLA2), kunitz-type protease inhibitor (Kunitz), and natriuretic peptide (NP). RESULTS In total, 1092 valid expressed sequences tags (ESTs) for B. multicinctus and 1166 ESTs for N. atra were generated. About 70% of these ESTs can be annotated as snake toxin transcripts. 3FTx (64.5%) and β bungarotoxin (25.1%) comprise the main toxin classes in B. multicinctus, while 3FTx (95.8%) is the dominant toxin in N. atra. We also observed several less abundant venom families in B. multicinctus and N. atra, such as PLA2, C-type lectins, and Kunitz. Peculiarly a cluster of NP precursors with tandem NPs was detected in B. multicinctus. A total of 71 positive toxin BAC clones in B. multicinctus and N. atra were identified using four kinds of toxin probes (3FTx, PLA2, Kunitz, and NP), among which 39 3FTx-positive BACs were sequenced to reveal gene structures of 3FTx toxin genes. CONCLUSIONS Based on the toxin ESTs and 3FTx gene sequences, the major components of B. multicinctus venom transcriptome are neurotoxins, including long chain alpha neurotoxins (α-ntx) and the recently originated β bungarotoxin, whereas the N. atra venom transcriptome mainly contains 3FTxs with cytotoxicity and neurotoxicity (short chain α-ntx). The data also revealed that tandem duplications contributed the most to the expansion of toxin multigene families. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (dN/dS) indicates that not only multigene toxin families but also other less abundant toxins might have been under rapid diversifying evolution.
Collapse
Affiliation(s)
- Yu Jiang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Graduate University of Chinese Academy Sciences, Beijing 100039, China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan 625014, China
| | - Wenhui Lee
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xun Xu
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yue Zhang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ruoping Zhao
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yun Zhang
- Biotoxin Units, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
28
|
Sun QY, Bao J. Purification, cloning and characterization of a metalloproteinase from Naja atra venom. Toxicon 2010; 56:1459-69. [DOI: 10.1016/j.toxicon.2010.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/28/2022]
|
29
|
Anti-coagulant activity of a metalloprotease: further characterization from the Indian cobra (Naja naja) venom. J Thromb Thrombolysis 2010; 29:340-8. [PMID: 19629641 DOI: 10.1007/s11239-009-0379-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A high molecular mass, non toxic metalloprotease the NN-PF3 with the bound Ca(2+) and Zn(2+) from the Naja naja venom has been studied further for its anticoagulant property. The molecular mass by MALDI-TOF mass spectrometry was 67.81 kDa. The NN-PF3 exhibited fibrin(ogen)olytic activity. In addition to fibrinogen, NN-PF3 hydrolyzed blood and plasma clot with the later hydrolyzed about one fold higher. The alpha polymer of fibrin was preferentially hydrolyzed over the alpha chain but the beta chain and gamma-gamma dimer remained untouched. It was devoid of plasminogen activation property. It prolonged the activated partial thromboplastin time, prothrombin time and the thrombin clotting time of citrated human plasma. It did not affect the thrombin activity. In mice, defibrinogentaion, prolonged bleeding time (P < 0.01) and reduced fibrinogen level were observed following intravenous injection. Human plasma or alpha2-macroglobulin did not, but the polyvalent anti-venom inhibited the NN-PF3 activity. In contrast to most snake venom metalloproteases, it did not degrade extra cellular matrix proteins.
Collapse
|
30
|
Peichoto ME, Paes Leme AF, Pauletti BA, Batista IC, Mackessy SP, Acosta O, Santoro ML. Autolysis at the disintegrin domain of patagonfibrase, a metalloproteinase from Philodryas patagoniensis (Patagonia Green Racer; Dipsadidae) venom. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1937-42. [PMID: 20538077 DOI: 10.1016/j.bbapap.2010.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Patagonfibrase is a 57.5-kDa hemorrhagic metalloproteinase isolated from the venom of Philodryas patagoniensis (Patagonia Green Racer), a South American rear-fanged snake. Herein we demonstrate that patagonfibrase undergoes autolysis at its pH optimum (7.5) and at 37 degrees C, primarily producing a approximately 32.6 kDa fragment composed of disintegrin-like and cysteine-rich domains, as identified by mass spectrometry and N-terminal sequencing. The autolysis site for production of this fragment is similar to that observed for metalloproteinases from front-fanged Viperidae snake venoms. In the presence of Ca(2+), patagonfibrase was only partially autolysed, giving rise mainly to one fragment of approximately 52.2 kDa. In addition, calcium markedly enhanced the azocaseinolytic activity of patagonfibrase. Our findings contribute to the understanding of the structural and mechanistic bases of this family of metalloenzymes that are widely distributed among snake venoms, demonstrating that important post-translational modifications such as proteolysis can also contribute to the diversity and complexity of proteins found in rear-fanged snake venoms.
Collapse
Affiliation(s)
- María E Peichoto
- Cátedra de Farmacología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Sargento Cabral 2139, 3400, Corrientes, Argentina.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lu QM, Lai R, Zhang Y. [Animal toxins and human disease: from single component to venomics, from biochemical characterization to disease mechanisms, from crude venom utilization to rational drug design]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2010; 31:2-16. [PMID: 20446448 DOI: 10.3724/sp.j.1141.2010.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many animals produced a diversity of venoms and secretions to adapt the changes of environments through the long history of evolution. The components including a large quantity of specific and highly active peptides and proteins have become good research models for protein structure-function and also served as tools and novel clues for illustration of human disease mechanisms. At the same time, they are rich natural resources for new drug development. Through the valuable venomous animal resources of China, researchers at the Kunming Institute of Zoology, CAS have carried out animal toxin research over 30 years. This paper reviews the main work conducted on snake venoms, amphibian and insect secretions, and the development from single component to venomics, from biochemical characterization to human disease mechanisms, from crude venom to rational drug design along with a short perspective on future studies.
Collapse
Affiliation(s)
- Qiu-Min Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
| | | | | |
Collapse
|
32
|
Tsai HY, Wang YM, Tsai IH. Cloning, characterization and phylogenetic analyses of members of three major venom families from a single specimen of Walterinnesia aegyptia. Toxicon 2008; 51:1245-54. [PMID: 18405934 DOI: 10.1016/j.toxicon.2008.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/14/2008] [Accepted: 02/20/2008] [Indexed: 11/18/2022]
Abstract
Walterinnesia aegyptia is a monotypic elapid snake inhabiting in Africa and Mideast. Although its envenoming is known to cause rapid deaths and paralysis, structural data of its venom proteins are rather limited. Using gel filtration and reverse-phase HPLC, phospholipases A(2) (PLAs), three-fingered toxins (3FTxs), and Kunitz-type protease inhibitors (KIns) were purified from the venom of a single specimen of this species caught in northern Egypt. In addition, specific primers were designed and PCR was carried out to amplify the cDNAs encoding members of the three venom families, respectively, using total cDNA prepared from its venom glands. Complete amino acid sequences of two acidic PLAs, three short chain 3FTxs, and four KIns of this venom species were thus deduced after their cDNAs were cloned and sequenced. They are all novel sequences and match the mass data of purified proteins. For members of each toxin family, protein sequences were aligned and subjected to molecular phylogenetic analyses. The results indicated that the PLAs and a Kunitz inhibitor of W. aegyptia are most similar to those of king cobra venom, and its 3FTxs belongs to either Type I alpha-neurotoxins or weak toxins of orphan-II subtype. It is remarkable that both king cobra and W. aegyptia cause rapid deaths of the victims, and a close evolutionary relationship between them is speculated.
Collapse
Affiliation(s)
- Hsin-Yu Tsai
- Institute of Biological Chemistry, Academia Sinica, P.O. Box 23-106, Taipei, Taiwan
| | | | | |
Collapse
|