1
|
Vidal JFD, Schwartz MF, Garay AV, Valadares NF, Bueno RV, Monteiro ACL, de Freitas SM, Barbosa JARG. Exploring the Diversity and Function of Serine Proteases in Toxicofera Reptile Venoms: A Comprehensive Overview. Toxins (Basel) 2024; 16:428. [PMID: 39453204 PMCID: PMC11511063 DOI: 10.3390/toxins16100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 10/26/2024] Open
Abstract
Toxicofera reptile venoms are composed of several toxins, including serine proteases. These proteases are glycosylated enzymes that affect the prey's hemostatic system. Their actions extend across the coagulation cascade, the kallikrein-kinin system, and platelet activation. Despite their specificity for different substrates, these enzymes are homologous across all toxicoferans and display high sequence similarity. The aim of this review is to compile decades of knowledge about venom serine proteases, showing the diversity of biochemically and biophysically characterized enzymes, their structural characteristics, advances in understanding their origin and evolution, as well as methods of obtaining enzymes and their biotechnological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - João Alexandre R. G. Barbosa
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, Darcy Ribeiro Campus, University of Brasília, Asa Norte, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
2
|
Radouani F, Jalta P, Rapon C, Lezin C, Branford C, Florentin J, Gutierrez JM, Resiere D, Neviere R, Pierre-Louis O. The Contrasting Effects of Bothrops lanceolatus and Bothrops atrox Venom on Procoagulant Activity and Thrombus Stability under Blood Flow Conditions. Toxins (Basel) 2024; 16:400. [PMID: 39330858 PMCID: PMC11435654 DOI: 10.3390/toxins16090400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Consumption coagulopathy and hemorrhagic syndrome are the typical features of Bothrops sp. snake envenoming. In contrast, B. lanceolatus envenoming can induce thrombotic complications. Our aim was to test whether crude B. lanceolatus and B. atrox venoms would display procoagulant activity and induce thrombus formation under flow conditions. METHODS AND PRINCIPAL FINDINGS Fibrin formation in human plasma was observed for B. lanceolatus venom at 250-1000 ng/mL concentrations, which also induced clot formation in purified human fibrinogen, indicating thrombin-like activity. The degradation of fibrinogen confirmed the fibrinogenolytic activity of B. lanceolatus venom. B. lanceolatus venom displayed consistent thrombin-like and kallikrein-like activity increases in plasma conditions. The well-known procoagulant B. atrox venom activated plasmatic coagulation factors in vitro and induced firm thrombus formation under high shear rate conditions. In contrast, B. lanceolatus venom induced the formation of fragile thrombi that could not resist shear stress. CONCLUSIONS Our results suggest that crude B. lanceolatus venom displays amidolytic activity and can activate the coagulation cascade, leading to prothrombin activation. B. lanceolatus venom induces the formation of an unstable thrombus under flow conditions, which can be prevented by the specific monovalent antivenom Bothrofav®.
Collapse
Affiliation(s)
- Fatima Radouani
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Research, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Prisca Jalta
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Research, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Caroline Rapon
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
| | - Chloe Lezin
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Biology, Faculté des Sciences Exactes et Naturelles (SEN), Campus Fouillole, 97157 Pointe-à-Pitre, France
| | - Chelsea Branford
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
| | - Jonathan Florentin
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Research, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Jose Maria Gutierrez
- Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - Dabor Resiere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Remi Neviere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
- Department of Clinical Physiology, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Olivier Pierre-Louis
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort-de-France, France; (F.R.); (P.J.); (C.R.); (C.L.); (J.F.); (D.R.); (O.P.-L.)
| |
Collapse
|
3
|
Production of a murine mAb against Bothrops alternatus and B. neuwiedi snake venoms and its use to isolate a thrombin-like serine protease fraction. Int J Biol Macromol 2022; 214:530-541. [PMID: 35753516 DOI: 10.1016/j.ijbiomac.2022.06.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
Abstract
Accidents with snakes from the genus Bothrops represent ~90 % of all snakebites in Brazil. Monoclonal antibodies (mAbs) targeting venom components can be important assets for treating envenoming syndromes, for developing diagnostic tests and for research purposes. Therefore, in this study, we aimed to generate murine mAbs against the antigenic mixture of Bothropic venoms traditionally used as immunogen to produce Bothropic antivenoms in Brazil. ELISA showed that one of the produced mAbs recognizes B. alternatus and B. neuwiedi venoms (mAb anti-Ba/Bn) specifically and Western Blot revealed that this mAb binds to a single protein band of molecular mass of ≈50 kDa. MAb anti-Ba/Bn inhibited the coagulant activity but was unable to neutralize hemorrhagic and phospholipase A2 activities caused by the B. neuwiedi venom. MAb anti-Ba/Bn was immobilized to Sepharose beads and used for immunoaffinity chromatography of B. neuwiedi venom. Proteolytic activity assays indicated that the immunoaffinity-purified fraction (BnF-Bothrops neuwiedi fraction) has a serine protease thrombin-like profile, which was supported by coagulability assays in mice. Bottom-up proteomic analysis confirmed the prevalence of serine proteases in BnF using label-free quantification. In conclusion, this work characterized a mAb with neutralizing properties against B. neuwiedi coagulant activity and demonstrates that immunoaffinity chromatography using mAbs can be a useful technique for purification of bioactive toxic proteins from Bothrops spp. snake venoms.
Collapse
|
4
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
5
|
Chérifi F, Laraba-Djebari F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein J 2021; 40:799-841. [PMID: 34499333 PMCID: PMC8427918 DOI: 10.1007/s10930-021-10019-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus Disease of 2019 (COVID-19) pandemic. Currently, there is no specific developed drug against COVID-19 and the challenge of developing effective antiviral strategies based on natural agents with different mechanisms of action becomes an urgent need and requires identification of genetic differences among variants. Such data is used to improve therapeutics to combat SARS-CoV-2 variants. Nature is known to offer many biotherapeutics from animal venoms, algae and plant that have been historically used in traditional medicine. Among these bioresources, snake venom displays many bioactivities of interest such as antiviral, antiplatelet, antithrombotic, anti-inflammatory, antimicrobial and antitumoral. COVID-19 is a viral respiratory sickness due to SARS-CoV-2 which induces thrombotic disorders due to cytokine storm, platelet hyperactivation and endothelial dysfunction. This review aims to: (1) present an overview on the infection, the developed thrombo-inflammatory responses and mechanisms of induced thrombosis of COVID-19 compared to other similar pathogenesis; (2) underline the role of natural compounds such as anticoagulant, antiplatelet and thrombolytic agents; (3) investigate the management of coagulopathy related to COVID-19 and provide insight on therapeutic such as venom compounds. We also summarize the updated advances on antiviral proteins and peptides derived from snake venoms that could weaken coagulopathy characterizing COVID-19.
Collapse
Affiliation(s)
- Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
6
|
Pinheiro-Junior EL, Boldrini-França J, Takeda AAS, Costa TR, Peigneur S, Cardoso IA, Oliveira ISD, Sampaio SV, de Mattos Fontes MR, Tytgat J, Arantes EC. Towards toxin PEGylation: The example of rCollinein-1, a snake venom thrombin-like enzyme, as a PEGylated biopharmaceutical prototype. Int J Biol Macromol 2021; 190:564-573. [PMID: 34506860 DOI: 10.1016/j.ijbiomac.2021.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
PEGylation was firstly described around 50 years ago and has been used for more than 30 years as a strategy to improve the drugability of biopharmaceuticals. However, it remains poorly employed in toxinology, even though it may be a promising strategy to empower these compounds in therapeutics. This work reports the PEGylation of rCollinein-1, a recombinant snake venom serine protease (SVSP), able to degrade fibrinogen and inhibit the hEAG1 potassium channel. We compared the functional, structural, and immunogenic properties of the non-PEGylated (rCollinein-1) and PEGylated (PEG-rCollinein-1) forms. PEG-rCollinein-1 shares similar kinetic parameters with rCollinein-1, maintaining its capability of degrading fibrinogen, but with reduced activity on hEAG1 channel. CD analysis revealed the maintenance of protein conformation after PEGylation, and thermal shift assays demonstrated similar thermostability. Both forms of the enzyme showed to be non-toxic to peripheral blood mononuclear cells (PBMC). In silico epitope prediction indicated three putative immunogenic peptides. However, immune response on mice showed PEG-rCollinein-1 was devoid of immunogenicity. PEGylation directed rCollinein-1 activity towards hemostasis control, broadening its possibilities to be employed as a defibrinogenant agent.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil; Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Johara Boldrini-França
- University of Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920 Vila Velha, ES, Brazil
| | | | - Tássia Rafaella Costa
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Iara Aimê Cardoso
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
De-Simone SG, Lechuga GC, Napoleão-Pêgo P, Gomes LR, Provance DW, Nirello VD, Sodero ACR, Guedes HLDM. Small Angle X-ray Scattering, Molecular Modeling, and Chemometric Studies from a Thrombin-Like (Lmr-47) Enzyme of Lachesis m. rhombeata Venom. Molecules 2021; 26:3930. [PMID: 34203140 PMCID: PMC8271572 DOI: 10.3390/molecules26133930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Snakebite envenomation is considered a neglected tropical disease, and SVTLEs critical elements are involved in serious coagulopathies that occur on envenoming. Although some enzymes of this group have been structurally investigated, it is essential to characterize other proteins to better understand their unique properties such as the Lachesis muta rhombeata 47 kDa (Lmr-47) venom serine protease. METHODS The structure of Lmr-47 was studied in solution, using SAXS, DLS, CD, and in silico by homology modeling. Molecular docking experiments simulated 21 competitive inhibitors. RESULTS At pH 8.0, Lmr-47 has an Rg of 34.5 ± 0.6 Å, Dmax of 130 Å, and SR of 50 Å, according to DLS data. Kratky plot analysis indicates a rigid shape at pH 8.0. Conversely, the pH variation does not change the center of mass's intrinsic fluorescence, possibly indicating the absence of fluorescent amino acids in the regions affected by pH variation. CD experiments show a substantially random coiled secondary structure not affected by pH. The low-resolution model of Lmr-47 presented a prolate elongated shape at pH 8.0. Using the 3D structure obtained by molecular modeling, docking experiments identified five good and three suitable competitive inhibitors. CONCLUSION Together, our work provided insights into the structure of the Lmr-47 and identified inhibitors that may enhance our understanding of thrombin-like family proteins.
Collapse
Affiliation(s)
- Salvatore Giovanni De-Simone
- FIOCRUZ, Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases Population (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (D.W.P.J.)
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Guilherme Curty Lechuga
- FIOCRUZ, Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases Population (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (D.W.P.J.)
| | - Paloma Napoleão-Pêgo
- FIOCRUZ, Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases Population (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (D.W.P.J.)
| | - Larissa Rodrigues Gomes
- FIOCRUZ, Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases Population (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (D.W.P.J.)
| | - David William Provance
- FIOCRUZ, Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases Population (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (G.C.L.); (P.N.-P.); (L.R.G.); (D.W.P.J.)
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
| | - Vinícius Dias Nirello
- Faculty of Pharmacy, Federal of Rio de Janeiro University, Rio de Janeiro 21949-900, Brazil; (V.D.N.); (A.C.R.S.)
| | - Ana Carolina Rennó Sodero
- Faculty of Pharmacy, Federal of Rio de Janeiro University, Rio de Janeiro 21949-900, Brazil; (V.D.N.); (A.C.R.S.)
| | - Herbert Leonel de Mattos Guedes
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Laboratory of Immunopharmacology, Federal of Rio de Janeiro University, Duque de Caxias 25245-390, Brazil
| |
Collapse
|
8
|
Vivas-Ruiz DE, Sandoval GA, Gonzalez-Kozlova E, Zarria-Romero J, Lazo F, Rodríguez E, Magalhães HPB, Chávez-Olortegui C, Oliveira LS, Alvarenga VG, Urra FA, Toledo J, Yarlequé A, Eble JA, Sanchez EF. Fibrinogen-clotting enzyme, pictobin, from Bothrops pictus snake venom. Structural and functional characterization. Int J Biol Macromol 2020; 153:779-795. [PMID: 32169454 DOI: 10.1016/j.ijbiomac.2020.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
A thrombin-like enzyme, pictobin, was purified from Bothrops pictus snake venom. It is a 41-kDa monomeric glycoprotein as showed by mass spectrometry and contains approx. 45% carbohydrate by mass which could be removed with N-glycosidase. Pictobin coagulates plasma and fibrinogen, releasing fibrinopeptide A and induces the formation of a friable/porous fibrin network as visualized by SEM. The enzyme promoted platelet aggregation in human PRP and defibrination in mouse model and showed catalytic activity on chromogenic substrates S-2266, S-2366, S-2160 and S-2238. Pictobin interacts with the plasma inhibitor α2-macroglobulin, which blocks its interaction with fibrinogen but not with the small substrate BApNA. Heparin does not affect its enzymatic activity. Pictobin cross reacted with polyvalent bothropic antivenom, and its deglycosylated form reduced its catalytic action and antivenom reaction. In breast and lung cancer cells, pictobin inhibits the fibronectin-stimulated migration. Moreover, it produces strong NADH oxidation, mitochondrial depolarization, ATP decrease and fragmentation of mitochondrial network. These results suggest by first time that a snake venom serinprotease produces mitochondrial dysfunction by affecting mitochondrial dynamics and bioenergetics. Structural model of pictobin reveals a conserved chymotrypsin fold β/β hydrolase. These data indicate that pictobin has therapeutic potential in the treatment of cardiovascular disorders and metastatic disease.
Collapse
Affiliation(s)
- Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru.
| | - Gustavo A Sandoval
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Edgar Gonzalez-Kozlova
- Department of Genetics and Genomic Sciences, Icahn School for Data Science and Genomic Technology, New York, NYC, USA
| | - Jacquelyne Zarria-Romero
- Laboratorio de Reproducción y Biología del Desarrollo, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela ra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Edith Rodríguez
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Henrique P B Magalhães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Carlos Chávez-Olortegui
- Departamento de Bioquímica-Inmunología, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Luciana S Oliveira
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Valeria G Alvarenga
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Félix A Urra
- Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7800003, Chile
| | - Jorge Toledo
- Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile; Facultad de Ciencias de la Salud, Universidad San Sebastián, Lota 2465, Providencia, Santiago 7510157, Chile
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Eladio F Sanchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Latinović Z, Leonardi A, Koh CY, Kini RM, Trampuš Bakija A, Pungerčar J, Križaj I. The Procoagulant Snake Venom Serine Protease Potentially Having a Dual, Blood Coagulation Factor V and X-Activating Activity. Toxins (Basel) 2020; 12:toxins12060358. [PMID: 32485989 PMCID: PMC7354534 DOI: 10.3390/toxins12060358] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
A procoagulant snake venom serine protease was isolated from the venom of the nose-horned viper (Vipera ammodytes ammodytes). This 34 kDa glycoprotein, termed VaaSP-VX, possesses five kDa N-linked carbohydrates. Amino acid sequencing showed VaaSP-VX to be a chymotrypsin-like serine protease. Structurally, it is highly homologous to VaaSP-6 from the same venom and to nikobin from the venom of Vipera nikolskii, neither of which have known functions. VaaSP-VX does not affect platelets. The specific proteolysis of blood coagulation factors X and V by VaaSP-VX suggests that its blood-coagulation-inducing effect is due to its ability to activate these two blood coagulation factors, which following activation, combine to form the prothrombinase complex. VaaSP-VX may thus represent the first example of a serine protease with such a dual activity, which makes it a highly suitable candidate to replace diluted Russell’s viper venom in lupus anticoagulant testing, thus achieving greater reliability of the analysis. As a blood-coagulation-promoting substance that is resistant to serpin inhibition, VaaSP-VX is also interesting from the therapeutic point of view for treating patients suffering from hemophilia.
Collapse
Affiliation(s)
- Zorica Latinović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.L.); (J.P.)
- Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.L.); (J.P.)
| | - Cho Yeow Koh
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (C.Y.K.); (R.M.K.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - R. Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (C.Y.K.); (R.M.K.)
| | - Alenka Trampuš Bakija
- Division of Pediatrics, University Medical Center, Bohoričeva 20, SI-1000 Ljubljana, Slovenia;
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.L.); (J.P.)
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; (Z.L.); (A.L.); (J.P.)
- Correspondence:
| |
Collapse
|
10
|
Purification and characterization of a thrombin-like enzyme isolated from Vipera lebetina venom: its interaction with platelet receptor. Blood Coagul Fibrinolysis 2019; 31:1-10. [PMID: 31764002 DOI: 10.1097/mbc.0000000000000856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
: Snake venoms contain various molecules that can be used as tools in the diagnosis and in the treatment of hemostatic disorders. This study reports the isolation and functional characterization of a new thrombin-like enzyme and its role in the modulation of platelet aggregation and coagulation. The molecule was purified by gel filtration, anion exchange chromatography and reverse-phase-HPLC on C8 column; its molecular weight was determined. Natural and synthetic substrates were used to evaluate its enzymatic activities. The fibrinogenolytic activity was tested electrophoretically and by reverse-phase-HPLC on C18 column. Otherwise, the effect on blood coagulation and deficient plasma factors were also evaluated. The mechanism by which a thrombin-like enzyme VLCV (thrombin-like enzyme)-induced platelet aggregation was explored in presence of ticlopidin, clopidogrel and aspirin. VLCV (45 kDa) isolated from Vipera lebetina as a thrombin-like enzyme seems to be able to modulate platelet function. This enzyme showed an amidolytic activity by hydrolyzing the chromogenic-specific substrate of thrombin and the α-chain of fibrinogen. It is also able to clot human plasma and the deficient human plasma in factor X, suggesting that it is involved in the intrinsic and common pathways. The aggregating effect of VLCV is more sensitive to ticlopidine than to the clopidogrel suggesting the involvement of ADP/P2Y12/PI3K pathway. VLCV seems to be able to promote human platelet aggregation suggesting an interaction between P2Y12 and PAR1. Due to its ability to replace the missing factor X and its proaggregating activity, VLCV could be used as molecular tool to better understand the hemostasis mechanism.
Collapse
|
11
|
Chérifi F, Saoud S, Laraba-Djebari F. Molecular modeling, biochemical characterization, and pharmacological properties of Cc 3 -SPase: A platelet-aggregating thrombin-like enzyme purified from Cerastes cerastes venom. J Biochem Mol Toxicol 2018; 32:e22165. [PMID: 29979475 DOI: 10.1002/jbt.22165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 01/25/2023]
Abstract
Cc3 -SPase (30 kDa-proteinase; pI 5.98) was isolated from Cerastes cerastes venom. Its sequence of 271 residues yielded from LC-MALDI-TOF showed high degrees of homology when aligned with other proteinases. Cc3 -SPase cleaved natural and synthetic proteins such as casein and fibrinogen leaving fibrin clots unaffected. Cc3 -SPase was fully abolished by ion chelators, whereas aprotinin, antithrombin III (Sigma Aldrich, Saint-Louis, Missouri, USA), and heparin were ineffective. Affinity of Cc3 -SPase to benzamidine indicated the presence of an aspartate residue in the catalytic site as confirmed by three-dimensional structure consisting of 14 β-strands and four α-helices. Molecular mechanisms revealed that Cc3 -SPase is capable of promoting dysfunctional platelet aggregation via two signaling pathways mediated by the G-coupled protein receptors and αIIbβ3 integrin. Cc3 -SPase is involved in both extrinsic/intrinsic coagulation pathways in deficient plasmas by replacing defective/lacking factors FII, FVII, and FVIII but not FX. Cc3 -SPase could substitute missing factors in blood diseases related to plasma factor deficiencies.
Collapse
Affiliation(s)
- Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Bab Ezzouar, Algiers, Algeria
| | - Samah Saoud
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Bab Ezzouar, Algiers, Algeria
| |
Collapse
|
12
|
Ullah A, Masood R, Ali I, Ullah K, Ali H, Akbar H, Betzel C. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action. Int J Biol Macromol 2018; 114:788-811. [PMID: 29604354 DOI: 10.1016/j.ijbiomac.2018.03.164] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 01/15/2023]
Abstract
Snake venom thrombin-like enzymes (SVTLEs) constitute the major portion (10-24%) of snake venom and these are the second most abundant enzymes present in the crude venom. During envenomation, these enzymes had shown prominently the various pathological effects, such as disturbance in hemostatic system, fibrinogenolysis, fibrinolysis, platelet aggregation, thrombosis, neurologic disorders, activation of coagulation factors, coagulant, procoagulant etc. These enzymes also been used as a therapeutic agent for the treatment of various diseases such as congestive heart failure, ischemic stroke, thrombotic disorders etc. Although the crystal structures of five SVTLEs are available in the Protein Data Bank (PDB), there is no single article present in the literature that has described all of them. The current work describes the structural aspects, structure-based mechanism of action, processing and inhibition of these enzymes. The sequence analysis indicates that these enzymes show a high sequence identity (57-85%) with each other and low sequence identity with trypsin (36-43%), human alpha-thrombin (29-36%) and other snake venom serine proteinases (57-85%). Three-dimensional structural analysis indicates that the loops surrounding the active site are variable both in amino acids composition and length that may convey variable substrate specificity to these enzymes. The surface charge distributions also vary in these enzymes. Docking analysis with suramin shows that this inhibitor preferably binds to the C-terminal region of these enzymes and causes the destabilization of their three-dimensional structure.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan.
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Hamid Ali
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Haji Akbar
- Department of Biosciences, COMSATS Institute of Information Technology Park Road, Islamabad 45550, Pakistan
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
13
|
Influence of phospholipasic inhibition on neuromuscular activity of Bothrops fonsecai snake venom. Toxicon 2017; 130:35-43. [DOI: 10.1016/j.toxicon.2017.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/20/2022]
|
14
|
Boldrini-França J, Santos Rodrigues R, Santos-Silva LK, de Souza DLN, Gomes MSR, Cologna CT, de Pauw E, Quinton L, Henrique-Silva F, de Melo Rodrigues V, Arantes EC. Expression of a new serine protease from Crotalus durissus collilineatus venom in Pichia pastoris and functional comparison with the native enzyme. Appl Microbiol Biotechnol 2015; 99:9971-86. [PMID: 26227411 DOI: 10.1007/s00253-015-6836-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
Snake venom serine proteases (SVSPs) act primarily on plasma proteins related to blood clotting and are considered promising for the treatment of several hemostatic disorders. We report the heterologous expression of a serine protease from Crotalus durissus collilineatus, named collinein-1, in Pichia pastoris, as well as the enzymatic comparative characterization of the toxin in native and recombinant forms. The complementary DNA (cDNA) encoding collinein-1 was amplified from cDNA library of C. d. collilineatus venom gland and cloned into the pPICZαA vector. The recombinant plasmid was used to transform cells of KM71H P. pastoris. Heterologous expression was induced by methanol and yielded 56 mg of recombinant collinein-1 (rCollinein-1) per liter of culture. The native collinein-1 was purified from C. d. collilineatus venom, and its identity was confirmed by amino acid sequencing. The native and recombinant enzymes showed similar effects upon bovine fibrinogen by releasing preferentially fibrinopeptide A. Although both enzymes have induced plasma coagulation, native Colinein-1 has shown higher coagulant activity. The serine proteases were able to hydrolyze the chromogenic substrates S-2222, S-2238, and S2302. Both enzymes showed high stability on different pH and temperature, and their esterase activities were inhibited in the presence of Zn2+ and Cu2+. The serine proteases showed similar k cat/K m values in enzyme kinetics assays, suggesting no significant differences in efficiency of these proteins to hydrolyze the substrate. These results demonstrated that rCollinein-1 was expressed with functional integrity on the evaluated parameters. The success in producing a functionally active recombinant SVSP may generate perspectives to their future therapeutic applications.
Collapse
Affiliation(s)
- Johara Boldrini-França
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Física e Química, Universidade de São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Renata Santos Rodrigues
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil.,INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte, MG, Brazil
| | | | - Dayane Lorena Naves de Souza
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil.,INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte, MG, Brazil
| | - Mário Sérgio Rocha Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil.,INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte, MG, Brazil
| | | | - Edwin de Pauw
- Department of Chemistry, University of Liège, Liège, Belgium
| | - Loïc Quinton
- Department of Chemistry, University of Liège, Liège, Belgium
| | - Flávio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Veridiana de Melo Rodrigues
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil.,INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte, MG, Brazil
| | - Eliane Candiani Arantes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Física e Química, Universidade de São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
15
|
Tsai IH, Wang YM, Huang KF. Effects of single N-glycosylation site knockout on folding and defibrinogenating activities of acutobin recombinants from HEK293T. Toxicon 2014; 94:50-9. [PMID: 25533529 DOI: 10.1016/j.toxicon.2014.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022]
Abstract
Acutobin, the α-fibrinogenase from Deinagkistrodon acutus venom, contains four N-glycosylation sites with disialylated complex-typed glycans. Here, we explore the functional roles of each of the N-glycan by site-directed mutagenesis. The wild-type (ATB-wt) and single glycan-knockout mutants of recombinant acutobin were prepared from HEK293T, demonstrating that mutations at Asn(77), Asn(81) and Asn(100) impaired the folding while the S79A mutant and various Asn(229)-deglycosylated mutants were correctly folded. Based on homology modeling of acutobin and multiple sequence alignment with various venom thrombin-like enzymes, the importance of a hydrophilic environment at each glycosylation site to the enzyme folding could be rationalized. Remarkably, all the mutants showed similar catalytic activities for the chromogenic substrate and similar thermal stabilities as ATB-wt, suggesting that the glycan knockout did not affect the gross conformation and stability of the active sites. Although SDS-PAGE analyses revealed that ATB-wt and the D229-mutant degraded all human fibrinogen subunits faster but less specifically in vitro as compared with other mutants that cleaved only the α-subunit, ATB-wt and D229-mutant were not able to release fibrinogen-peptide A and thus coagulated human plasma slower than the other mutants did. In the mice model, the defibrinogenating effect of ATB-wt was stronger and lasting-longer than those of all the mutants. Taken together, all the glycans contribute to the pharmacokinetics of acutobin and ATB-wt in vivo, and the microenvironment around the Asn(229)-glycan appears to regulate the fibrinogen-chain specificity of acutobin while the N-glycans at positions 77, 81 and 100 are crucial for its folding.
Collapse
Affiliation(s)
- Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.
| | - Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
16
|
Cao W, Huang J, Cao J, Yang P. Global insight into N-glycome and N-glycoproteome of three most abundant snake venoms in Asia. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4148-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Rodrigues MA, Dias L, Rennó AL, Sousa NC, Smaal A, Silva DAD, Hyslop S. Rat atrial responses to Bothrops jararacussu (jararacuçu) snake venom. Toxicology 2014; 323:109-24. [DOI: 10.1016/j.tox.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
|
18
|
Wang YM, Tsai IH, Chen JM, Cheng AC, Khoo KH. Correlation between the glycan variations and defibrinogenating activities of acutobin and its recombinant glycoforms. PLoS One 2014; 9:e100354. [PMID: 24945257 PMCID: PMC4063753 DOI: 10.1371/journal.pone.0100354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/26/2014] [Indexed: 11/18/2022] Open
Abstract
Acutobin isolated from Deinagkistrodon acutus venom has been used to prevent or treat stroke in patients. This defibrinogenating serine protease is a 39 kDa glycoprotein containing terminal disialyl-capped N-glycans. After sialidase treatment, the enzyme showed similar catalytic activities toward chromogenic substrate, and cleaved the Aα chain of fibrinogen as efficiently as the native acutobin did. However, the level of fibrinogen degradation products in mice after i.p.-injection of desialylated-acutobin was significantly lower than the level after acutobin injection, suggesting that the disialyl moieties may improve or prolong the half-life of acutobin. Two recombinant enzymes with identical protein structures and similar amidolytic activities to those of native acutobin were expressed from HEK293T and SW1353 cells and designated as HKATB and SWATB, respectively. Mass spectrometric profiling showed that their glycans differed from those of acutobin. In contrast to acutobin, HKATB cleaved not only the Aα chain but also the Bβ and γ chains of human fibrinogens, while SWATB showed a reduced α-fibrinogenase activity. Non-denaturing deglycosylation of these proteases by peptide N-glycosidase F significantly reduced their fibrinogenolytic activities and thermal stabilities. The in vivo defibrinogenating effect of HKATB was inferior to that of acutobin in mice. Taken together, our results suggest that the conjugated glycans of acutobin are involved in its interaction with fibrinogen, and that the selection of cells optimally expressing efficient glycoforms and further glycosylation engineering are desirable before a recombinant product can replace the native enzyme for clinical use.
Collapse
Affiliation(s)
- Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Jin-Mei Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - An-Chun Cheng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Zhu J, Liu H, Zhang J, Wang P, Liu S, Liu G, Wu L. Effects of Asn-33 glycosylation on the thermostability of Thermomyces lanuginosus
lipase. J Appl Microbiol 2014; 117:151-9. [DOI: 10.1111/jam.12519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/05/2014] [Accepted: 04/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- J. Zhu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - H. Liu
- Beijing Protein Innovation; Beijing China
| | - J. Zhang
- Beijing Protein Innovation; Beijing China
| | - P. Wang
- Beijing Protein Innovation; Beijing China
| | - S. Liu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - G. Liu
- Beijing Protein Innovation; Beijing China
| | - L. Wu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
20
|
Torres-Huaco FD, Werneck CC, Vicente CP, Vassequi-Silva T, Nery-Diez ACC, Mendes CB, Antunes E, Marangoni S, Damico DCS. Rapid purification and procoagulant and platelet aggregating activities of Rhombeobin: a thrombin-like/gyroxin-like enzyme from Lachesis muta rhombeata snake venom. BIOMED RESEARCH INTERNATIONAL 2013; 2013:903292. [PMID: 24058917 PMCID: PMC3766598 DOI: 10.1155/2013/903292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/29/2013] [Indexed: 11/30/2022]
Abstract
We report a rapid purification method using one-step chromatography of SVSP Rhombeobin (LMR-47) from Lachesis muta rhombeata venom and its procoagulant activities and effects on platelet aggregation. The venom was fractionated by a single chromatographic step in RP-HPLC on a C8 Discovery BIO Wide Pore, showing high degree of molecular homogeneity with molecular mass of 47035.49 Da. Rhombeobin showed amidolytic activity upon BA ρ NA, with a broad optimum pH (7-10) and was stable in solution up to 60°C. The amidolytic activity was inhibited by serine proteinase inhibitors and reducing agents, but not chelating agents. Rhombeobin showed high coagulant activity on mice plasma and bovine fibrinogen. The deduced amino acid sequence of Rhombeobin showed homology with other SVSPs, especially with LM-TL (L. m. muta) and Gyroxin (C. d. terrificus). Rhombeobin acts, in vitro, as a strong procoagulant enzyme on mice citrated plasma, shortening the APTT and PT tests in adose-dependent manner. The protein showed, "ex vivo", a strong defibrinogenating effect with 1 µg/animal. Lower doses activated the intrinsic and extrinsic coagulation pathways and impaired the platelet aggregation induced by ADP. Thus, this is the first report of a venom component that produces a venom-induced consumptive coagulopathy (VICC).
Collapse
Affiliation(s)
- Frank Denis Torres-Huaco
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Cláudio C. Werneck
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-865 Campinas, SP, Brazil
| | - Talita Vassequi-Silva
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Ana Cláudia Coelho Nery-Diez
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Camila B. Mendes
- Department of Pharmacology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-887 Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-887 Campinas, SP, Brazil
| | - Sérgio Marangoni
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Daniela C. S. Damico
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
21
|
Mukherjee AK, Mackessy SP. Biochemical and pharmacological properties of a new thrombin-like serine protease (Russelobin) from the venom of Russell's Viper (Daboia russelii russelii) and assessment of its therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:3476-88. [PMID: 23416064 DOI: 10.1016/j.bbagen.2013.02.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Snake venoms are rich sources of bioactive molecules, and several venom-derived proteins have entered clinical trials for use in ischemic disorders; however, late-stage failure of a recent drug candidate due to low in vivo efficacy demonstrated the need for new sources of fibrinogenolytic drug candidates. METHODS A 51.3kDa thrombin-like serine protease (Russelobin) purified from the venom of Russell's Viper (Daboia russelii russelii) was subjected to extensive biochemical characterization, including N-terminal sequencing, substrate specificity, kinetic and inhibitor assays, glycosylation analysis and stability assays. Toxicity and pathology analyses were conducted in NSA mice. RESULTS Russelobin has extensive N-terminus identity with a beta-fibrinogenase-like serine proteinase precursor from Daboia russelii siamensis venom, a mass of 51.3kDa and contains extensive N-linked oligosaccharides. Serine protease inhibitors and heparin significantly decreased activity, with much lower inhibition by DTT, antithrombin-III and α2-macroglobulin. Russelobin preferentially released FPA and slowly released FPB from human fibrinogen, forming a labile fibrin clot readily hydrolyzed by plasmin. The partially deglycosylated enzyme showed significantly lower activity toward fibrinogen and less resistance against neutralization by plasma α2MG and antithrombin-III. Russelobin was non-cytotoxic, non-lethal and produced no histopathologies in mice, and it demonstrated in vivo dose-dependent defibrinogenating activity. CONCLUSIONS Russelobin is an A/B fibrinogenase with high specificity toward fibrinogen, both in vitro and in vivo. Extensive glycosylation appears to protect the molecule against endogenous protease inhibitors, prolonging its in vivo efficacy. GENERAL SIGNIFICANCE Due to its low toxicity, stability and activity as a defibrinogenating agent, Russelobin shows high potential for cardiovascular drug development.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639-0017, USA
| | | |
Collapse
|
22
|
Coagulant thrombin-like enzyme (barnettobin) from Bothrops barnetti venom: molecular sequence analysis of its cDNA and biochemical properties. Biochimie 2013; 95:1476-86. [PMID: 23578498 DOI: 10.1016/j.biochi.2013.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/27/2013] [Indexed: 11/21/2022]
Abstract
The thrombin-like enzyme from Bothrops barnetti named barnettobin was purified. We report some biochemical features of barnettobin including the complete amino acid sequence that was deduced from the cDNA. Snake venom serine proteases affect several steps of human hemostasis ranging from the blood coagulation cascade to platelet function. Barnettobin is a monomeric glycoprotein of 52 kDa as shown by reducing SDS-PAGE, and contains approx. 52% carbohydrate by mass which could be removed by N-glycosidase. The complete amino acid sequence was deduced from the cDNA sequence. Its sequence contains a single chain of 233 amino acid including three N-glycosylation sites. The sequence exhibits significant homology with those of mammalian serine proteases e.g. thrombin and with homologous TLEs. Its specific coagulant activity was 251.7 NIH thrombin units/mg, releasing fibrinopeptide A from human fibrinogen and showed defibrinogenating effect in mouse. Both coagulant and amidolytic activities were inhibited by PMSF. N-deglycosylation impaired its temperature and pH stability. Its cDNA sequence with 750 bp encodes a protein of 233 residues. Indications that carbohydrate moieties may play a role in the interaction with substrates are presented. Barnettobin is a new defibrinogenating agent which may provide an opportunity for the development of new types of anti-thrombotic drugs.
Collapse
|
23
|
TA-2, a thrombin-like enzyme from the Chinese white-lipped green pitviper (Trimeresurus albolabris): isolation, biochemical and biological characterization. Blood Coagul Fibrinolysis 2013; 23:445-53. [PMID: 22610139 DOI: 10.1097/mbc.0b013e32835496b2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Through three chromatographic steps, a new thrombin-like enzyme (TLE), named TA-2, from the venom of the Chinese white-lipped green pitviper (Trimeresurus albolabris) has been isolated and purified to homogeneity. TA-2 was a single-chain glycoprotein with about 6% sugar, pI 3.9 and a molecular weight of 38.8 kD. Its N-terminal sequence (VVGGDECNIN) showed high sequence conformity with many other TLEs. In vitro, it coagulated bovine fibrinogen (108.6 NIH units/mg) and cleaved the Aα and Bβ chains of bovine fibrinogen-releasing fibrinopeptide A and B, but did not degrade bovine fibrin; displayed high stability at different temperature, pH, and presence of several divalent cations and inhibitors; also exhibited strong activity towards casein (192.3 units/mg) and high esterase activity upon Nα-p-tosyl-L-arginine methyl ester (11 units/mg); and behaved as a promoter to platelet aggregation induced by ADP or collagen. In vivo, TA-2 caused dose-dependent prolongation of bleeding time in mice, but had no hemorrhagic and edema-inducing activities even at high concentrations.
Collapse
|
24
|
Strauch MA, Tomaz MA, Monteiro-Machado M, Ricardo HD, Cons BL, Fernandes FFA, El-Kik CZ, Azevedo MS, Melo PA. Antiophidic activity of the extract of the Amazon plant Humirianthera ampla and constituents. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:50-58. [PMID: 23123799 DOI: 10.1016/j.jep.2012.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although serotherapy against snakebite has been discovered more than one hundred years ago, antivenom is not available all over Brazil. The use of plants from folk medicine is common mainly in the Brazilian Amazon area. One of these plants is named Humirianthera ampla (HA). MATERIALS AND METHODS We have investigated HA extract and constituents' antiophidic activity in different experimental protocols against some Bothrops snake venoms (Bothrops jararacussu, Bothrops atrox and Bothrops jararaca). The protocols investigated include phospholipase, proteolytic, pro-coagulant, hemorrhagic, edematogenic and myotoxic activities induced by these venoms in Swiss mice. RESULTS All the venoms caused an increase in the rate of creatine kinase (CK) release from isolated muscles, indicating damage to the sarcolemma. The crude extract of HA decreased the myotoxic activity in a concentration-dependent fashion. The presence of HA 300 μg/mL decreased up to 96% of Bothrops jararacussu and 94% of Bothrops atrox myotoxicity after 90 min of exposure. In vivo myotoxicity of Bothrops atrox venom was decreased in 75% when the venom was preincubated with HA 500 mg/kg. Similar results were observed with lupeol against Bothrops jararacussu and Bothrops atrox venoms. The hemorrhagic activity was evaluated by intradermal injection of Bothrops atrox venom. Preincubation and oral pre- and posttreatment with HA decreased hemorrhage by 100%, 45% and 45%, respectively. Bothrops atrox venom also induced formation of edema, which was significantly inhibited by pre- and posttreatment with HA. All the venoms showed extensive pro-coagulating properties, and these activities were inhibited by up to 90% with HA, which presented concentration-dependent inhibition. Finally, proteolytic and phospholipase activities of the venoms were all inhibited by increasing concentrations of HA, lupeol and sitosterol. The inhibition of these activities might help explain the actions against in vivo myotoxicity and the in vivo effects observed, i.e., edema, myotoxicity, pro-coagulation and hemorrhage. CONCLUSIONS Altogether, our results give support for the popular use of HA extracts in cases of accidents with snakes, suggesting that it can be used as an adjunct in the management of venomous snakebites.
Collapse
Affiliation(s)
- Marcelo Abrahão Strauch
- Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Brigadeiro Trompowski, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zeng F, Shen B, Zhu Z, Zhang P, Ji Y, Niu L, Li X, Teng M. Crystal structure and activating effect on RyRs of AhV_TL-I, a glycosylated thrombin-like enzyme from Agkistrodon halys snake venom. Arch Toxicol 2012; 87:535-45. [PMID: 23052203 DOI: 10.1007/s00204-012-0957-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Abstract
A snake venom thrombin-like enzyme (SVTLE) from Agkistrodon halys pallas venom was isolated by means of a two-step chromatographic procedure. The purified enzyme, named AhV_TL-I, showed fibrinogenolytic activity against both the Aα and Bβ chains of bovine fibrinogen. Unlike the other SVTLEs, AhV_TL-I has poor esterolytic activity upon BAEE substrate. The N-terminal sequence of AhV_TL-I was determined to be IIGGDEXNINEHRFLVALYT, and the molecular mass was confirmed to 29389.533 Da by MALDI-TOF mass spectrometry. Its complete cDNA and derived amino acid sequence were obtained by RT-PCR. The crystal structure of AhV_TL-I was determined at a resolution of 1.75 Å. A disaccharide was clearly mapped in the structure, which involved in regulating the esterolytic activity of AhV_TL-I. The presence of the N-glycan deformed the 99-loop, and the resulting steric hindrances hindered the substrates to access the active site. Furthermore, with the carbohydrate moiety, AhV_TL-I could induce mouse thoracic aortic ring contraction with the EC(50) of 147 nmol/L. Besides, the vasoconstrictor effects of AhV_TL-I were also independent of the enzymatic activity. The results of [Ca(2+)](i) measurement showed that the vasoconstrictor effects of AhV_TL-I were attributed to Ca(2+) releasing from Ca(2+) store. Further studies showed that it was related to the activation of ryanodine receptors (RyRs). These offer new insights into the snake SVTLEs functions and provide a novel pathogenesis of A. halys pallas venom.
Collapse
Affiliation(s)
- Fuxing Zeng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Menaldo DL, Bernardes CP, Santos-Filho NA, Moura LDA, Fuly AL, Arantes EC, Sampaio SV. Biochemical characterization and comparative analysis of two distinct serine proteases from Bothrops pirajai snake venom. Biochimie 2012; 94:2545-58. [PMID: 22819993 DOI: 10.1016/j.biochi.2012.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/05/2012] [Indexed: 11/29/2022]
Abstract
This study reports the isolation and biochemical characterization of two different serine proteases from Bothrops pirajai snake venom, thus providing a comparative analysis of the enzymes. The isolation process consisted of three consecutive chromatographic steps (Sephacryl S-200, Benzamidine Sepharose and C2/C18), resulting in two serine proteases, named BpirSP27 and BpirSP41 after their molecular masses by mass spectrometry (27,121 and 40,639 Da, respectively). Estimation by SDS-PAGE under denaturing conditions showed that, when deglycosylated with PNGase F, BpirSP27 and BpirSP41 had their molecular masses reduced by approximately 15 and 42%, respectively. Both are acidic enzymes, with pI of approximately 4.7 for BpirSP27 and 3.7 for BpirSP41, and their N-terminal amino acid sequences showed 57% identity to each other, with high similarity to the sequences of other snake venom serine proteases (SVSPs). The enzymes showed different actions on bovine fibrinogen, with BpirSP27 acting preferentially on the Bβ chain and BpirSP41 on both Aα and Bβ chains. The two serine proteases were also able to degrade fibrin and blood clots in vitro depending on the doses and incubation periods, with higher results for BpirSP41. Both enzymes coagulated the human plasma in a dose-dependent manner, and BpirSP41 showed a higher coagulant potential, with minimum coagulant dose (MCD) of ∼3.5 μg versus 20 μg for BpirSP27. The enzymes were capable of hydrolyzing different chromogenic substrates, including S-2238 for thrombin-like enzymes, but only BpirSP27 acted on the substrate S-2251 for plasmin. They also showed high stability against variations of temperature and pH, but their activities were significantly reduced after preincubation with Cu(2+) ion and specific serine protease inhibitors. In addition, BpirSP27 induced aggregation of washed platelets to a greater extent than BpirSP41. The results showed significant structural and functional differences between B. pirajai serine proteases, providing interesting insights into the structure-function relationship of SVSPs.
Collapse
Affiliation(s)
- Danilo Luccas Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Av. do Café, s/n°, CEP 14040-903, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
27
|
Zelanis A, Serrano SM, Reinhold VN. N-glycome profiling of Bothrops jararaca newborn and adult venoms. J Proteomics 2012; 75:774-82. [DOI: 10.1016/j.jprot.2011.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/22/2011] [Indexed: 10/17/2022]
|
28
|
Sajevic T, Leonardi A, Križaj I. Haemostatically active proteins in snake venoms. Toxicon 2011; 57:627-45. [PMID: 21277886 DOI: 10.1016/j.toxicon.2011.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
Abstract
Snake venom proteins that affect the haemostatic system can cause (a) lowering of blood coagulability, (b) damage to blood vessels, resulting in bleeding, (c) secondary effects of bleeding, e.g. hypovolaemic shock and organ damage, and (d) thrombosis. These proteins may, or may not, be enzymes. We review the data on the most relevant haemostatically active proteinases, phospholipases A₂, L-amino acid oxidases and 5'-nucleotidases from snake venoms. We also survey the non-enzymatic effectors of haemostasis from snake venoms--disintegrins, C-type lectins and three-finger toxins. Medical applications have already been found for some of these snake venom proteins. We describe those that have already been approved as drugs to treat haemostatic disorders or are being used to diagnose such health problems. No clinical applications, however, currently exist for the majority of snake venom proteins acting on haemostasis. We conclude with the most promising potential uses in this respect.
Collapse
Affiliation(s)
- Tamara Sajevic
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
29
|
Costa JDO, Fonseca KC, Garrote-Filho MS, Cunha CC, de Freitas MV, Silva HS, Araújo RB, Penha-Silva N, de Oliveira F. Structural and functional comparison of proteolytic enzymes from plant latex and snake venoms. Biochimie 2010; 92:1760-5. [PMID: 20868725 DOI: 10.1016/j.biochi.2010.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
This work describes classification, functions, location, inhibition, activation, and therapeutic applications of proteases from snake venoms and vegetables. Snake venoms and vegetables can present toxins that unchain necrosis or proteolysis due to the direct cytotoxic action of venom proteases. These proteases are potential tools in the development of drugs for the prevention and treatment of several illnesses. We report herein mainly fibrinogenolytic metallo proteases and serine proteases ("thrombin-like"). These enzymes are extensively used in the treatment and prevention of thrombotic disorders, since they serve as defibrinogenating agents. The therapeutic uses of fibrin(ogen)olytic metallo proteases hold promise for clinical application due to potential in reversing the effects of thrombosis; this has been shown to be an alternative approach to the prevention and treatment of cardiovascular disorders, which are among the most prominent causes of mortality around the world. Plant proteases can be utilized for many cellular and molecular activities, in antibacterial and anticancer therapies, and in the treatment of snakebites, inhibiting snake venom activities such as blood-clotting, defibrinogenation, and fibrin(ogen)olytic and hemorrhagic actions. These toxins also display potential for clinical use in the treatment of hemostatic disorders.
Collapse
Affiliation(s)
- Júnia de O Costa
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Correa-Netto C, Teixeira-Araujo R, Aguiar AS, Melgarejo AR, De-Simone SG, Soares MR, Foguel D, Zingali RB. Immunome and venome of Bothrops jararacussu: A proteomic approach to study the molecular immunology of snake toxins. Toxicon 2010; 55:1222-35. [DOI: 10.1016/j.toxicon.2009.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 01/12/2023]
|
31
|
Costa JDO, Fonseca KC, Mamede CCN, Beletti ME, Santos-Filho NA, Soares AM, Arantes EC, Hirayama SNS, Selistre-de-Araújo HS, Fonseca F, Henrique-Silva F, Penha-Silva N, de Oliveira F. Bhalternin: Functional and structural characterization of a new thrombin-like enzyme from Bothrops alternatus snake venom. Toxicon 2010; 55:1365-77. [PMID: 20184912 DOI: 10.1016/j.toxicon.2010.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 02/07/2010] [Accepted: 02/16/2010] [Indexed: 11/17/2022]
Abstract
A serine protease from Bothrops alternatus snake venom was isolated using DEAE-Sephacel, Sephadex G-75 and Benzamidine-Sepharose column chromatography. The purified enzyme, named Bhalternin, ran as a single protein band on analytical polyacrylamide gel electrophoresis (SDS-PAGE) and showed molecular weights of 31,500 and 27,000 under reducing and non-reducing conditions, respectively. Its complete cDNA was obtained by RT-PCR and the 708bp codified for a mature protein of 236 amino acid residues. The multiple alignment of its deduced amino acid sequence showed a structural similarly with other serine proteases from snake venoms. Bhalternin was proteolytically active against bovine fibrinogen and albumin as substrates. When Bhalternin and bovine fibrinogen were incubated at 37 degrees C, at a ratio of 1:100 (w/w), the enzyme cleaved preferentially the Aalpha-chain, apparently not degrading the Bbeta and gamma-chains. Stability tests showed that the intervals of optimum temperature and pH for the fibrinogenolytic activity were 30-40 degrees C and 7.0-8.0, respectively. Also, the inhibitory effects of benzamidine on the fibrinogenolytic activity of Bhalternin indicate that it is a serine protease. This enzyme caused morphological alterations in heart, liver, lung and muscle of mice and it was found to cause blood clotting in vitro and defibrinogenation when intraperitoneally administered to mice, suggesting it to be a thrombin-like enzyme. Therefore, Bhaltenin may be of interest as a therapeutic agent in the treatment and prevention of thrombotic disorders.
Collapse
Affiliation(s)
- Júnia de O Costa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Structural characterization of N-linked oligosaccharides of Defibrase from Agikistrodon acutus by sequential exoglycosidase digestion and MALDI-TOF mass spectrometry. Toxicon 2010; 55:421-9. [DOI: 10.1016/j.toxicon.2009.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/01/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022]
|
33
|
Skropeta D. The effect of individual N-glycans on enzyme activity. Bioorg Med Chem 2009; 17:2645-53. [PMID: 19285412 DOI: 10.1016/j.bmc.2009.02.037] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 02/11/2009] [Accepted: 02/13/2009] [Indexed: 01/08/2023]
Abstract
In a series of investigations, N-glycosylation has proven to be a key determinant of enzyme secretion, activity, binding affinity and substrate specificity, enabling a protein to fine-tune its activity. In the majority of cases elimination of all putative N-glycosylation sites of an enzyme results in significantly reduced protein secretion levels, while removal of individual N-glycosylation sites often leads to the expression of active enzymes showing markedly reduced catalytic activity, with the decreased activity often commensurate with the number of glycosylation sites available, and the fully deglycosylated enzymes showing only minimal activity relative to their glycosylated counterparts. On the other hand, several cases have also recently emerged where deglycosylation of an enzyme results in significantly increased catalytic activity, binding affinity and altered substrate specificity, highlighting the very unique and diverse roles that individual N-glycans play in regulating enzyme function.
Collapse
Affiliation(s)
- Danielle Skropeta
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
34
|
Behavior of serine proteases thrombin, trypsin, and chymotrypsin under conditions of MALDI-TOF-Mass spectrometry. THEOR EXP CHEM+ 2008. [DOI: 10.1007/s11237-008-9016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Guedes HLM, Silva FP, Netto CC, de Salles CMC, Alexandre G, Oliveira CLP, Torriani I, De Simone SG. Structural characterization and low-resolution model of BJ-48, a thrombin-like enzyme from Bothrops jararacussu venom. Biophys Chem 2007; 132:159-64. [PMID: 18069115 DOI: 10.1016/j.bpc.2007.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/08/2007] [Accepted: 11/08/2007] [Indexed: 11/16/2022]
Abstract
Thrombin-like enzymes (TLEs) are important components of snake venoms due to their involvement in coagulopathies occurring on envenoming. Structural characterization of this group of serine proteases is of utmost importance for better understanding their unique properties. However, the high carbohydrate content of some members of this group prevents successful crystallization for structural determination. Circumventing this difficulty, the structure of BJ-48, a highly glycosylated TLE from Bothrops jararacussu venom, was studied in solution. At pH 8.0, where the enzyme displays maximum activity, BJ-48 has a radius of gyration (Rg) of 37 A and a maximum dimension (D(max)) of 130 A as measured by small-angle X-ray scattering (SAXS) and a Stokes radius (SR) of 50 A according to dynamic light scattering (DLS) data. At the naturally more acidic pH (6.0) of the B. jararacussu venom BJ-48 behaves as a more compact particle as evidenced by SAXS (R(g)=27.9 A and D(max)=82 A) and DLS (SR=30 A) data. In addition, Kratky plot analysis indicates a rigid shape at pH 8.0 and a flexible shape at pH 6.0. On the other hand, the center of mass of intrinsic fluorescence was not changed while varying pH, possibly indicating the absence of fluorescent amino acids in the regions affected by pH variation. Circular dichroism experiments carried out with BJ-48 indicate a substantially random coiled secondary structure that is not affected by pH. Low-resolution model of BJ-48 presented a prolate elongated shape at pH 8.0 and a U-shape at 6.0. BJ-48 tertiary structure at pH 6.0 was maintained on heating up to 52 degrees C and was completely lost at 75 degrees C. The possible existence of two pH-induced folding states for BJ-48 and its importance for the biological role and stability of this enzyme was discussed.
Collapse
Affiliation(s)
- Herbert L M Guedes
- Laboratório de Bioquímica de Proteínas e Peptídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|