1
|
Saeed A, Batra N, Rezgui R, Alshaghdali K, Alkhalaf I, Yadav DK, Dey P. Gut microbiota-centered risk factors and altered immunometabolism in the pathogenesis and prophylaxis of Clostridium difficile infection. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2024; 36:103374. [DOI: 10.1016/j.jksus.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2025]
|
2
|
Song WX, Yu ZH, Ren XF, Chen JH, Chen X. Role of micronutrients in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:711-731. [DOI: 10.11569/wcjd.v31.i17.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune intestinal disease that includes ulcerative colitis, Crohn's disease, and indeterminate colitis. Patients with IBD are often at risk for malnutrition, including micronutrient deficiencies, due to dietary restrictions and poor intestinal absorption. Micronutrients, including vitamins and minerals, play an important role in the human body's metabolism and maintenance of tissue functions. This article reviews the role of micronutrients in IBD. Micronutrients can affect the occurrence and progression of IBD by regulating immunity, intestinal flora, oxidative stress, intestinal barrier function, and other aspects. Monitoring and timely supplementation of micronutrients are important to delay progression and improve clinical symptoms in IBD patients.
Collapse
Affiliation(s)
- Wen-Xuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zi-Han Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang-Feng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ji-Hua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Ok MT, Liu J, Bliton RJ, Hinesley CM, San Pedro EET, Breau KA, Gomez-Martinez I, Burclaff J, Magness ST. A leaky human colon model reveals uncoupled apical/basal cytotoxicity in early Clostridioides difficile toxin exposure. Am J Physiol Gastrointest Liver Physiol 2023; 324:G262-G280. [PMID: 36749911 PMCID: PMC10010926 DOI: 10.1152/ajpgi.00251.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Clostridioides difficile (C. difficile) toxins A (TcdA) and B (TcdB) cause antibiotic-associated colitis in part by disrupting epithelial barrier function. Accurate in vitro models are necessary to detect early toxicity kinetics, investigate disease etiology, and develop preclinical models for new therapies. Properties of cancer cell lines and organoids inherently limit these efforts. We developed adult stem cell-derived monolayers of differentiated human colonic epithelium (hCE) with barrier function, investigated the impact of toxins on apical/basal aspects of monolayers, and evaluated whether a leaky epithelial barrier enhances toxicity. Single-cell RNA-sequencing (scRNAseq) mapped C. difficile-relevant genes to human lineages. Transcriptomics compared hCE to Caco-2, informed timing of in vitro stem cell differentiation, and revealed transcriptional responses to TcdA. Transepithelial electrical resistance (TEER) and fluorescent permeability assays measured cytotoxicity. Contribution of TcdB toxicity was evaluated in a diclofenac-induced leaky gut model. scRNAseq demonstrated broad and variable toxin receptor expression. Absorptive colonocytes in vivo displayed increased toxin receptor, Rho GTPase, and cell junction gene expression. Advanced TcdA toxicity generally decreased cytokine/chemokine and increased tight junction and death receptor genes. Differentiated Caco-2 cells remained immature whereas hCE monolayers were similar to mature colonocytes in vivo. Basal exposure of TcdA/B caused greater toxicity and apoptosis than apical exposure. Apical exposure to toxins was enhanced by diclofenac. Apical/basal toxicities are uncoupled with more rapid onset and increased magnitude postbasal toxin exposure. Leaky junctions enhance toxicity of apical TcdB exposure. hCE monolayers represent a physiologically relevant and sensitive system to evaluate the impact of microbial toxins on gut epithelium.NEW & NOTEWORTHY Novel human colonocyte monolayer cultures, benchmarked by transcriptomics for physiological relevance, detect early cytopathic impacts of Clostridioides difficile toxins TcdA and TcdB. A fluorescent ZO-1 reporter in primary human colonocytes is used to track epithelial barrier disruption in response to TcdA. Basal TcdA/B exposure generally caused more rapid onset and cytotoxicity than apical exposure. Transcriptomics demonstrate changes in tight junction, chemokine, and cytokine receptor gene expression post-TcdA exposure. Diclofenac-induced leaky epithelium enhanced apical exposure toxicity.
Collapse
Affiliation(s)
- Meryem T Ok
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Jintong Liu
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Ekaterina Ellyce T San Pedro
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ismael Gomez-Martinez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
4
|
Vitamin A Ameliorated Irinotecan-Induced Diarrhea in a Piglet Model Involving Enteric Glia Modulation and Immune Cells Infiltration. Nutrients 2022; 14:nu14235120. [PMID: 36501151 PMCID: PMC9739613 DOI: 10.3390/nu14235120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Vitamin A (VA) and its metabolite, retinoic acid (RA), play important roles in modulating intestinal mucosal immunity, yet little is known about their regulatory effects on enteric nervous system function. The study aims to explore the protective effects of dietary VA on diarrhea in a piglet model involving enteric glia and immune cell modulation. Twenty-eight weaned piglets were fed either the basal or VA (basal diet supplemented with 18,000 IU/kg VA) diet and with or without irinotecan (CPT-11) injection. CPT-11 induced increased diarrhea incidence, immune infiltration, and reactive enteric gliosis. A diet supplemented with 18,000 IU/kg VA ameliorated the adverse effects of CPT-11 on the gut barrier. VA reduced diarrhea incidence and attenuated enteric glial gliosis, immune cell infiltrations, and inflammatory responses of CPT-induced piglets. An in vitro experiment with 1 nmol/L RA showed direct protective effects on monocultures of enteric glial cells (EGCs) or macrophages in LPS-simulated inflammatory conditions. Furthermore, 1 ng/mL glial-derived neurotropic factors (GDNF) could inhibit M1-macrophage polarization and pro-inflammatory cytokines production. In summary, VA exerted protective effects on the intestinal barrier by modulating enteric glia and immune cells, perhaps enhancing epithelial recovery under CPT-11 challenge. Our study demonstrated that RA signaling might promote the roles of enteric glia in intestinal immunity and tissue repair, which provided a reference for the VA supplementation of patient diets.
Collapse
|
5
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
6
|
Acuña-Amador L, Quesada-Gómez C, Rodríguez C. Clostridioides difficile in Latin America: A comprehensive review of literature (1984-2021). Anaerobe 2022; 74:102547. [PMID: 35337973 DOI: 10.1016/j.anaerobe.2022.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
This narrative review summarizes literature on C. difficile and C. difficile infections (CDI) that emerged from Latin America (LA) between 1984 and 2021. The revised information includes papers in English, Spanish, or Portuguese that were retrieved from the databases Pubmed, Scopus, Web of Science, Google Scholar, Scielo, and Lilacs. Information is presented chronologically and segregated in subregions, focusing on clinical presentation, risk factors, detection and typing methods, prevalence and incidence rates, circulating strains, and, when available, phenotypic traits, such as antimicrobial susceptibility patterns. Studies dealing with cases, clinical aspects of CDI, and performance evaluations of diagnostic methods predominated. However, they showed substantial differences in case definitions, measuring units, populations, and experimental designs. Although a handful of autochthonous strains were identified, predominantly in Brazil and Costa Rica, the presentation and epidemiology of CDI in LA were highly comparable to what has been reported in other regions of the world. Few laboratories isolate and type this bacterium and even less generate whole genome sequences or perform basic science on C. difficile. Less than ten countries lead academic productivity on C. difficile or CDI-related topics, and information from various countries in Central America and the Caribbean is still lacking. The review ends with a global interpretation of the data and recommendations to further develop and consolidate this discipline in LA.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| | - Carlos Quesada-Gómez
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| | - César Rodríguez
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
7
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
8
|
de Freitas REM, Medeiros PHQS, Rodrigues FADP, Clementino MADF, Fernandes C, da Silva AVA, Prata MDMG, Cavalcante PA, Lima AÂM, Havt A. Retinoids delay cell cycle progression and promote differentiation of intestinal epithelial cells exposed to nutrient deprivation. Nutrition 2020; 85:111087. [PMID: 33545543 DOI: 10.1016/j.nut.2020.111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/10/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Vitamin A is commonly recommended as a treatment for diarrhea and undernutrition; however, little is known about the underlying cellular mechanisms. The aim of this study was to investigate the modulation of cell cycle by vitamin A derivatives (retinyl palmitate or retinol) in undernourished intestinal epithelial crypts (IEC-6). METHODS IEC-6 cells were exposed to nutrient deprivation (no serum and no glutamine) and supplemented with retinyl palmitate or retinol at a range of 2 to 20 μM. Proliferation, apoptosis/necrosis, cell cycle process, and gene transcription were assessed. RESULTS Nutrient deprivation for 6, 12, 24, or 48 h decreased cell proliferation, and retinyl palmitate further decreased it after 24 and 48 h. Apoptosis rates were reduced by undernourishment and further reduced by retinyl palmitate after 48 h; whereas necrosis rates were unaltered. Undernourishment induced overall cell quiescence, increased percentage of cells in G0/G1 phase and decreased percentage of cells in S phase after 12 h and in G2/M phases at 6, 12, and 24 h after treatment. Both retinoids also showed cell quiescence induction with less cells in G2/M phases after 48 h, whereas only retinol showed significant modulation of G0/G1 and S phases. Both retinoids also increased markers of cell differentiation Fabp and Iap gene transcriptions in about fivefold rates after 42 h. Furthermore, specific gene transcriptions related to MAP kinase signaling pathway regulation of cell differentiation and cell cycle regulation were triggered by retinoids in undernourished IEC-6, with higher levels of expression for Atf2 and C-jun genes. CONCLUSIONS These findings indicated that both vitamin A derivatives induce further survival mechanisms in undernourished intestinal epithelial crypt cells. These mechanisms include increased cell quiescence, decreased apoptosis, increased cell differentiation, and transcription of genes related to MAP kinase signaling pathway.
Collapse
Affiliation(s)
- Rosa Elayne Marques de Freitas
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | | | | | - Camila Fernandes
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Antonio Vinicios Alves da Silva
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Mara de Moura Gondim Prata
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | | | - Alexandre Havt
- Institute of Biomedicine and Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
9
|
Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J 2020; 91:e13357. [PMID: 32219956 PMCID: PMC7187240 DOI: 10.1111/asj.13357] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Tight junctions (TJs) play an important role in intestinal barrier function. TJs in intestinal epithelial cells are composed of different junctional molecules, such as claudin and occludin, and regulate the paracellular permeability of water, ions, and macromolecules in adjacent cells. One of the most important roles of the TJ structure is to provide a physical barrier to luminal inflammatory molecules. Impaired integrity and structure of the TJ barrier result in a forcible activation of immune cells and chronic inflammation in different tissues. According to recent studies, the intestinal TJ barrier could be regulated, as a potential target, by dietary factors to prevent and reduce different inflammatory disorders, although the precise mechanisms underlying the dietary regulation remain unclear. This review summarizes currently available information on the regulation of the intestinal TJ barrier by food components.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
10
|
Wang Z, Li J, Wang Y, Wang L, Yin Y, Yin L, Yang H, Yin Y. Dietary vitamin A affects growth performance, intestinal development, and functions in weaned piglets by affecting intestinal stem cells. J Anim Sci 2020; 98:skaa020. [PMID: 31955210 PMCID: PMC7023621 DOI: 10.1093/jas/skaa020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin A (VA) is an important nutrient for weaning piglets. It plays a significant role in the normal formation, development, and maintenance of epithelial cells. Previous studies have shown that VA supplements could improve the host's intestinal barrier function. Therefore, we hypothesized that VA supplements can affect intestinal function in weaned piglets by regulating intestinal stem cells. Thirty-two 21-d-old weaned [(Yorkshire × Landrace) × Duroc] piglets with an average weight of 8.34 ± 0.13 kg were randomly divided into 4 treatment groups, with 1) 2 mg/kg (control), 2) 4 mg/kg, 3) 8 mg/kg, and 4) 16 mg/kg doses of VA, respectively. The experiment lasted for 14 d. Weaned piglets were given ad libitum access to food and water during the test. The ADG (linear, P = 0.020) and G:F (linear, P = 0.005) of the piglets were found to increase significantly from days 8 to 14. The Lgr5+ gene expression (P = 0.012) in the jejunum mucosa of the 16 mg/kg VA group was increased. The jejunum villus height (P = 0.027) and villi surface area (P = 0.035) were significantly increased in the 4 mg/kg VA treatment group. The crypt depth increased significantly in the 4 and 8 mg/kg VA treatment groups (quadratic, P = 0.043), and the ratios of villus height to crypt depth significantly increased in the 16 mg/kg VA group (quadratic, P = 0.015). The maltase (P = 0.032), sucrose (P = 0.041), and alkaline phosphatase activity (linear, P = 0.024) were significantly increased when further supplemented with 4 mg/kg VA. Slc2a2 mRNA abundance was significantly increased in the 2 mg/kg VA group (linear, P = 0.024). Moreover, the budding rates, buddings number per organoid, and Chromogranin A and Muc2 expression of piglet intestinal organoids were significantly reduced (P < 0.05) by VA and its metabolites (retinoic acid). Compared with the control group, the expression of Spp1 and Trop2 increased. These results indicated that VA may increase the stemness of intestinal stem cell in vitro. This study suggested that VA could affect growth performance and intestinal function by regulating intestinal stem cells in the jejunum of weaned piglets.
Collapse
Affiliation(s)
- Zhaobin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, People’s Republic of China
| | - Jia Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, People’s Republic of China
| | - Yu Wang
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, Hubei, People’s Republic of China
| | - Lei Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, People’s Republic of China
| | - Yuebang Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, People’s Republic of China
| | - Lanmei Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, People’s Republic of China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
11
|
Huda MN, Ahmad SM, Kalanetra KM, Taft DH, Alam MJ, Khanam A, Raqib R, Underwood MA, Mills DA, Stephensen CB. Neonatal Vitamin A Supplementation and Vitamin A Status Are Associated with Gut Microbiome Composition in Bangladeshi Infants in Early Infancy and at 2 Years of Age. J Nutr 2019; 149:1075-1088. [PMID: 31006815 PMCID: PMC6543205 DOI: 10.1093/jn/nxz034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Infancy is a crucial period for establishing the intestinal microbiome. This process may be influenced by vitamin A (VA) status because VA affects intestinal immunity and epithelial integrity, factors that can, in turn, modulate microbiome development. OBJECTIVES The aim of this study was to determine if neonatal VA supplementation (VAS) affected the abundance of Bifidobacterium, a beneficial commensal, or of Proteobacteria, a phylum containing enteric pathogens, in early (6-15 wk) or late (2 y) infancy. Secondary objectives were to determine if VAS affected the abundance of other bacterial taxa, and to determine if VA status assessed by measuring plasma retinol was associated with bacterial abundance. METHODS Three hundred and six Bangladeshi infants were randomized by sex and birthweight status (above/below median) to receive 1 VA dose (50,000 IU) or placebo within 48 h of birth. Relative abundance at the genus level and above was assessed by 16S rRNA gene sequencing. A terminal restriction fragment-length polymorphism assay was used to identify Bifidobacterium species and subspecies at 6 wk. RESULTS Linear regression showed that Bifidobacterium abundance in early infancy was lower in boys (median, 1st/3rd quartiles; 0.67, 0.52/0.78) than girls (0.73, 0.60/0.80; P = 0.003) but that boys receiving VAS (0.69, 0.55/0.78) had higher abundance than boys receiving placebo (0.65, 0.44/0.77; P = 0.039). However this difference was not seen in girls (VAS 0.71, 0.54/0.80; placebo 0.75, 0.63/0.81; P = 0.25). VAS did not affect Proteobacteria abundance. Sex-specific associations were also seen for VA status, including positive associations of plasma retinol with Actinobacteria (the phylum containing Bifidobacterium) and Akkermansia, another commensal with possible health benefits, for girls in late infancy. CONCLUSIONS Better VA status in infancy may influence health both in infancy and later in life by promoting the establishment of a healthy microbiota. This postulated effect of VA may differ between boys and girls. This trial was registered at clinicaltrials.gov as NCT02027610.
Collapse
Affiliation(s)
- M Nazmul Huda
- Nutrition Department
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- US Department of Agriculture, Western Human Nutrition Research Center, Davis, CA
| | - Shaikh M Ahmad
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | | | - Md J Alam
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Afsana Khanam
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Mark A Underwood
- Department of Pediatrics, University of California, Davis, Sacramento, CA
| | - David A Mills
- Department of Food Science and Technology
- Department of Viticulture and Enology, University of California, Davis, Davis, CA
| | - Charles B Stephensen
- Nutrition Department
- US Department of Agriculture, Western Human Nutrition Research Center, Davis, CA
| |
Collapse
|
12
|
de Medeiros PHQS, Pinto DV, de Almeida JZ, Rêgo JMC, Rodrigues FAP, Lima AÂM, Bolick DT, Guerrant RL, Oriá RB. Modulation of Intestinal Immune and Barrier Functions by Vitamin A: Implications for Current Understanding of Malnutrition and Enteric Infections in Children. Nutrients 2018; 10:nu10091128. [PMID: 30134532 PMCID: PMC6164597 DOI: 10.3390/nu10091128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022] Open
Abstract
The micronutrient vitamin A refers to a group of compounds with pleiotropic effects on human health. These molecules can modulate biological functions, including development, vision, and regulation of the intestinal barrier. The consequences of vitamin A deficiency and supplementation in children from developing countries have been explored for several years. These children live in an environment that is highly contaminated by enteropathogens, which can, in turn, influence vitamin A status. Vitamin A has been described to modulate gene expression, differentiation and function of diverse immune cells; however, the underlying mechanisms are not fully elucidated. This review aims to summarize the most updated advances on elucidating the vitamin A effects targeting intestinal immune and barrier functions, which may help in further understanding the burdens of malnutrition and enteric infections in children. Specifically, by covering both clinical and in vivo/in vitro data, we describe the effects of vitamin A related to gut immune tolerance/homeostasis, intestinal barrier integrity, and responses to enteropathogens in the context of the environmental enteric dysfunction. Some of the gaps in the literature that require further research are also highlighted.
Collapse
Affiliation(s)
- Pedro Henrique Q S de Medeiros
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Daniel V Pinto
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Juliana Zani de Almeida
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Juliana M C Rêgo
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
- Department of Nutrition, Christus University Center, Fortaleza 60190-060 CE, Brazil.
| | - Francisco A P Rodrigues
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - Aldo Ângelo M Lima
- Laboratory of Infectious Diseases, Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| | - David T Bolick
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Reinaldo B Oriá
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza 60430-270 CE, Brazil.
| |
Collapse
|
13
|
Xiao L, Cui T, Liu S, Chen B, Wang Y, Yang T, Li T, Chen J. Vitamin A supplementation improves the intestinal mucosal barrier and facilitates the expression of tight junction proteins in rats with diarrhea. Nutrition 2018; 57:97-108. [PMID: 30153586 DOI: 10.1016/j.nut.2018.06.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the specific effects of vitamin A (VA) on diarrhea in rats and its potential targets to protect the intestinal mucosa. METHODS Specific pathogen-free Sprague Dawley rats were fed a VA deficient (VAD) or VA normal (VAN) diet for 4 wk. Then, half of the VAN rats were treated with a VAN diet and the other half with a lactose VAN diet. VAD rats were randomly assigned to one of four groups and fed a VAD diet, lactose VAD diet, VAN diet with VA supplementation (VAS) via daily intragastric administration, or a lactose VAN diet with daily VAS. Rat weight and degree of diarrhea were evaluated daily. After 15 d, the serum retinol level was measured by high-performance liquid chromatography, and the serum diamine oxidase (DAO) and zonulin concentrations were analyzed by enzyme-linked immunosorbent assays. The small intestine mucosal pathology was observed by hematoxylin and eosin staining. Western blotting was performed to detect the protein expression levels of occludin and claudin-1 in the intestinal mucosa, and the zonula-occludens 1 expression was assessed using immunohistochemistry. RESULTS VAD limited weight gain in rats and increased the degree of diarrhea. The serum retinol levels and the level of tight junction (TJ) proteins claudin-1 and occludin and grip strength were affected by the interaction between lactose-induced diarrhea and the VA diet. Diarrhea, independent of VAD, significantly decreased rat weight, increased serum DAO levels, damaged small intestine villi, and impaired zonula-occludens 1 protein expression. VAD significantly increased the concentration of zonulin independently of diarrhea, but VAS increased the serum retinol level, reduced the severity of diarrhea, increased the expression levels of the TJ proteins, facilitated the restoration of the small intestine villi that were damaged by the diarrhea, and decreased the concentrations of serum DAO and zonulin. CONCLUSIONS VAD may aggravate the degree of diarrhea and intestinal mucosal damage during the duration of diarrhea, and VAS helps relieve diarrhea and improves intestinal damage likely by regulating the expression of TJ proteins. Therefore, VA plays a pivotal role in the protection of the intestinal mucosa during instances of diarrhea.
Collapse
Affiliation(s)
- Lu Xiao
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Ting Cui
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Shu Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Baolin Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Yuting Wang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China; Department of Digestive, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.
| |
Collapse
|
14
|
Seekatz AM, Young VB. Clostridium difficile Infection and the Tangled Web of Interactions Among Host, Pathogen, and Microbiota. Gastroenterology 2018; 154:1573-1576. [PMID: 29601830 DOI: 10.1053/j.gastro.2018.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Wang J, Ghali S, Xu C, Mussatto CC, Ortiz C, Lee EC, Tran DH, Jacobs JP, Lagishetty V, Faull KF, Moller T, Rossetti M, Chen X, Koon HW. Ceragenin CSA13 Reduces Clostridium difficile Infection in Mice by Modulating the Intestinal Microbiome and Metabolites. Gastroenterology 2018; 154:1737-1750. [PMID: 29360463 PMCID: PMC5927842 DOI: 10.1053/j.gastro.2018.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/21/2017] [Accepted: 01/15/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Clostridium difficile induces intestinal inflammation by releasing toxins A and B. The antimicrobial compound cationic steroid antimicrobial 13 (CSA13) has been developed for treating gastrointestinal infections. The CSA13-Eudragit formulation can be given orally and releases CSA13 in the terminal ileum and colon. We investigated whether this form of CSA13 reduces C difficile infection (CDI) in mice. METHODS C57BL/6J mice were infected with C difficile on day 0, followed by subcutaneous administration of pure CSA13 or oral administration of CSA13-Eudragit (10 mg/kg/d for 10 days). Some mice were given intraperitoneal vancomycin (50 mg/kg daily) on days 0-4 and relapse was measured after antibiotic withdrawal. The mice were monitored until day 20; colon and fecal samples were collected on day 3 for analysis. Blood samples were collected for flow cytometry analyses. Fecal pellets were collected each day from mice injected with CSA13 and analyzed by high-performance liquid chromatography or 16S sequencing; feces were also homogenized in phosphate-buffered saline and fed to mice with CDI via gavage. RESULTS CDI of mice caused 60% mortality, significant bodyweight loss, and colonic damage 3 days after infection; these events were prevented by subcutaneous injection of CSA13 or oral administration CSA13-Eudragit. There was reduced relapse of CDI after administration of CSA13 was stopped. Levels of CSA13 in feces from mice given CSA13-Eudragit were significantly higher than those of mice given subcutaneous CSA13. Subcutaneous and oral CSA13 each significantly increased the abundance of Peptostreptococcaceae bacteria and reduced the abundance of C difficile in fecal samples of mice. When feces from mice with CDI and given CSA13 were fed to mice with CDI that had not received CSA13, the recipient mice had significantly increased rates of survival. CSA13 reduced fecal levels of inflammatory metabolites (endocannabinoids) and increased fecal levels of 4 protective metabolites (ie, citrulline, 3-aminoisobutyric acid, retinol, and ursodeoxycholic acid) in mice with CDI. Oral administration of these CSA13-dependent protective metabolites reduced the severity of CDI. CONCLUSIONS In studies of mice, we found the CSA13-Eudragit formulation to be effective in eradicating CDI by modulating the intestinal microbiota and metabolites.
Collapse
Affiliation(s)
- Jiani Wang
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Sally Ghali
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Chunlan Xu
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095,The Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xian, Shaanxi Province, China
| | - Caroline C. Mussatto
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Christina Ortiz
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Elaine C. Lee
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Diana H. Tran
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Jonathan P. Jacobs
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Venu Lagishetty
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Travis Moller
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Maura Rossetti
- Immunogenetics Center, Department of Pathology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Hon Wai Koon
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
16
|
Chen F, Jiang Z, Jiang S, Li L, Lin X, Gou Z, Fan Q. Dietary vitamin A supplementation improved reproductive performance by regulating ovarian expression of hormone receptors, caspase-3 and Fas in broiler breeders. Poult Sci 2016; 95:30-40. [DOI: 10.3382/ps/pev305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2015] [Indexed: 12/20/2022] Open
|
17
|
De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional Keys for Intestinal Barrier Modulation. Front Immunol 2015; 6:612. [PMID: 26697008 PMCID: PMC4670985 DOI: 10.3389/fimmu.2015.00612] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022] Open
Abstract
The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Stefania De Santis
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Elisabetta Cavalcanti
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Mauro Mastronardi
- Department of Gastroenterology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari , Bari , Italy
| | - Marcello Chieppa
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy ; Istituto Comprensivo Bregante-Volta , Monopoli , Italy
| |
Collapse
|
18
|
Kamal A, Balakrishna M, Loka Reddy V, Riyaz S, Bagul C, Satyanarayana BM, Venkateswar Rao J. Synthesis and Biological Evaluation of Benzo[d
][1,3]Dioxol-5-yl Chalcones as Antiproliferating Agents. Chem Biol Drug Des 2015; 86:1267-84. [DOI: 10.1111/cbdd.12597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/25/2015] [Accepted: 05/14/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed Kamal
- Medcinal Chemistry and Pharmacology; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Biomaterials Group; CSIR- Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Moku Balakrishna
- Medcinal Chemistry and Pharmacology; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Velatooru Loka Reddy
- Biology Division; CSIR- Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Syed Riyaz
- Medcinal Chemistry and Pharmacology; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Chandrakant Bagul
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Hyderabad 500037 India
| | | | | |
Collapse
|
19
|
Is obesity a risk factor for Clostridium difficile infection? Obes Res Clin Pract 2014; 9:50-4. [PMID: 25660175 DOI: 10.1016/j.orcp.2013.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND The epidemiology of Clostridium difficile infection (CDI) has become an important area of investigation, especially in light of the global increase in both hospital-acquired (HA) and community-acquired (CA) CDI. Recently, obesity was found to be associated with CDI and was suggested to represent an independent risk factor for it. OBJECTIVE We undertook a case-control study to examine obesity as an exposure for both HA and CA cases in adults (age ≥ 18 years) admitted to a tertiary, university-affiliated, acute care medical facility in the northeastern United States. METHODS During the period January 2012-July 2013, we examined cross-sectional BMI data on 189 cases of CDI and 189 contemporaneous age and gender-matched controls. RESULTS We were unable to detect a statistically significant difference between the two groups; in fact, the BMI values for both groups were substantially equivalent (cases: median=26.5 kg/m, IQR: 22.1-32.5; controls: median=26.0, IQR: 22.7-31.0; p=0.696). Odds ratios (and 95% confidence intervals), evaluated at BMI of 25, 30 and 35 kg/m(2), did not demonstrate statistical significance. CONCLUSION These data suggest that obesity, as described by BMI, may not be a risk factor for CDI in all populations.
Collapse
|
20
|
Proteomic analysis of intestinal mucosa responses to Salmonella enterica serovar typhimurium in naturally infected pig. Comp Immunol Microbiol Infect Dis 2013; 37:59-67. [PMID: 24268431 DOI: 10.1016/j.cimid.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is one of the most frequent Salmonella serotypes isolated from European pigs. Despite the advances in understanding the mechanisms involved in host-pathogen interactions and host cell responses to S. typhimurium, the global change that occurs in naturally exposed populations has been poorly characterized. Here, we present a proteomics study on intestinal mucosa of pigs naturally infected with S. typhimurium, in order to better understand the pathogenesis of salmonellosis and the pathways which might be affected after infection. Samples were analyzed by 2D-DIGE and 44 different proteins exhibited statistically significant differences. The data set was analyzed by employing the Ingenuity Pathway Analysis and the physiological function most significantly perturbed were immunological and infectious disease, cellular assembly and organization and metabolism. The pathways implicated in the porcine immune response to S. typhimurium were gluconeogenesis and Rho GDI/RhoA signaling, and our results suggest that keratins and the intermediate filaments could play an important role in the damage of the mucosa and in the success of infection. The role of these findings in salmonellosis has been discussed, as well as the importance of analyzing naturally infected animals to have a complete picture of the infection. Also, we compared the results found in this work with those obtained in a similar study using experimentally infected animals.
Collapse
|
21
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 949] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
22
|
Mitter SS, Oriá RB, Kvalsund MP, Pamplona P, Joventino ES, Mota RMS, Gonçalves DC, Patrick PD, Guerrant RL, Lima AAM. Apolipoprotein E4 influences growth and cognitive responses to micronutrient supplementation in shantytown children from northeast Brazil. Clinics (Sao Paulo) 2012; 67:11-8. [PMID: 22249475 PMCID: PMC3248595 DOI: 10.6061/clinics/2012(01)03] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/12/2011] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Apolipoprotein E4 may benefit children during early periods of life when the body is challenged by infection and nutritional decline. We examined whether apolipoprotein E4 affects intestinal barrier function, improving short-term growth and long-term cognitive outcomes in Brazilian shantytown children. METHODS A total of 213 Brazilian shantytown children with below-median height-for-age z-scores (HAZ) received 200,000 IU of retinol (every four months), zinc (40 mg twice weekly), or both for one year, with half of each group receiving glutamine supplementation for 10 days. Height-for-age z-scores, weight-for-age z-scores, weight-for-height z-scores, and lactulose:mannitol ratios were assessed during the initial four months of treatment. An average of four years (range 1.4-6.6) later, the children underwent cognitive testing to evaluate non-verbal intelligence, coding, verbal fluency, verbal learning, and delayed verbal learning. Apolipoprotein E4 carriage was determined by PCR analysis for 144 children. RESULTS Thirty-seven children were apolipoprotein E4(+), with an allele frequency of 13.9%. Significant associations were found for vitamin A and glutamine with intestinal barrier function. Apolipoprotein E4(+) children receiving glutamine presented significant positive Pearson correlations between the change in height-for-age z-scores over four months and delayed verbal learning, along with correlated changes over the same period in weight-for-age z-scores and weight-for-height z-scores associated with non-verbal intelligence quotients. There was a significant correlation between vitamin A supplementation of apolipoprotein E4(+) children and improved delta lactulose/mannitol. Apolipoprotein E4(-) children, regardless of intervention, exhibited negative Pearson correlations between the change in lactulose-to-mannitol ratio over four months and verbal learning and non-verbal intelligence. CONCLUSIONS During development, apolipoprotein E4 may function concomitantly with gut-tropic nutrients to benefit immediate nutritional status, which can translate into better long-term cognitive outcomes.
Collapse
Affiliation(s)
- Sumeet S Mitter
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Current Status of Nonantibiotic and Adjunct Therapies for Clostridium difficile Infection. Curr Infect Dis Rep 2011; 13:21-7. [PMID: 21308451 DOI: 10.1007/s11908-010-0155-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Clostridium difficile infection (CDI) is a leading cause of nosocomial infections and the most important cause of health care-associated diarrhea worldwide. Standard treatment of CDI consists of modifying underlying antibiotic exposure, aggressive supportive measures, and therapy with specific antibiotics, most commonly metronidazole or vancomycin. This general approach to CDI has remained largely unchanged for decades. In an effort to improve outcomes and reduce recurrences of CDI, interest has been renewed in the development of nonantibiotic and adjunct approaches to therapy. In this review, we highlight some of these recent, resurrected, and novel nonantibiotic treatments.
Collapse
|
24
|
Chloroplast thylakoids reduce glucose uptake and decrease intestinal macromolecular permeability. Br J Nutr 2011; 106:836-44. [DOI: 10.1017/s0007114511001267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thylakoid membranes, derived from chloroplasts, have previously been shown to retard fat digestion and lower blood glucose levels after oral intake. The purpose of the present study was to investigate the effect of thylakoid membranes on the passage of methyl-glucose, dextran and ovalbumin over rat intestine in vitro using Ussing chambers. The results show that thylakoids retard the passage of each of the test molecules in a dose-dependent way. The thylakoids appear to be attached on the mucosal surface and a mechanism is suggested that the thylakoids delay the passage of the test molecules by sterical hindrance. The present results indicate that thylakoid membranes may be useful both to control intestinal absorption of glucose and to enhance the barrier function of the intestine.
Collapse
|
25
|
Petto C, Lesko S, Gäbel G, Böttner M, Wedel T, Kacza J, Pfannkuche H. Establishment and characterization of porcine colonic epithelial cells grown in primary culture. Cells Tissues Organs 2011; 194:457-68. [PMID: 21389677 DOI: 10.1159/000323916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Primary cultures of epithelial cells are suitable models for studying epithelial function and, in particular, the regulation of epithelial tightness in vitro. The aim of our study was to develop a protocol for the isolation and culture of porcine colonic epithelial cells and to establish transepithelial electrical resistance (TEER) as a functional parameter for epithelial tightness. METHODS Epithelial cells were obtained from the proximal colon of piglets by enzymatic dispase digestion. Cells were cultured on collagen-coated membrane supports for 21 days. The epithelial origin of the cells was shown by immunohistochemical detection of cytokeratin and zonula occludens protein 1 (ZO-1). Scanning electron microscopy, transmission electron microscopy and confocal microscopy were used for further morphological characterization. The integrity and tightness of the artificial epithelium were determined by measuring TEER. RESULTS The cultured epithelial cells were immunoreactive for cytokeratin and ZO-1. They showed dense microvilli on their apical membranes and expression of Na(+)/K(+)-ATPase on their basolateral membranes. Adjacent cells were connected by tight junctions. We observed TEER to continuously increase up to 870 ± 38 Ω·cm(2) during the culture period. TEER correlated with the amount of epithelial cells expressing ZO-1. CONCLUSIONS The properties of primary cultured epithelial cells resemble the structural properties of polarized colonic epithelium in vivo. Measurement of TEER seems to be suitable for studying epithelial tightness in vitro. We suggest that these primary epithelial cultures be used to investigate the regulation of the epithelial barrier function.
Collapse
Affiliation(s)
- Carola Petto
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Vidau C, Brunet JL, Badiou A, Belzunces LP. Phenylpyrazole insecticides induce cytotoxicity by altering mechanisms involved in cellular energy supply in the human epithelial cell model Caco-2. Toxicol In Vitro 2009; 23:589-97. [PMID: 19490841 DOI: 10.1016/j.tiv.2009.01.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 11/17/2022]
Abstract
Phenylpyrazoles are relatively new insecticides designed to manage problematic insect resistance and public health hazards encountered with older pesticide families. In vitro cytotoxicity induced by the phenylpyrazole insecticides, Ethiprol and Fipronil, and Fipronil metabolites, sulfone and sulfide, was studied in Caco-2 cells. This cellular model was chosen because it made possible to mimic the primary site of oral exposure to xenobiotics, the intestinal epithelium. Assessment of the barrier function of Caco-2 epithelium was assessed by TEER measurement and showed a major loss of barrier integrity after exposure to Fipronil and its metabolites, but not to Ethiprol. The disruption of the epithelial barrier was attributed to severe ATP depletion independent of cell viability, as revealed by LDH release. The origin of energetic metabolism failure was investigated and revealed a transient enhancement of tetrazolium salt reduction and an increase in lactate production by Caco-2 cells, suggesting an increase in glucose metabolism by pesticides. Cellular symptoms observed in these experiments lead us to hypothesize that phenylpyrazole insecticides interacted with mitochondria.
Collapse
Affiliation(s)
- Cyril Vidau
- INRA, UMR 406 A&E, Laboratoire de Toxicologie Environnementale, Site Agroparc, F-84000 Avignon, Cedex 9, France
| | | | | | | |
Collapse
|