1
|
Ashwood LM, Elnahriry KA, Stewart ZK, Shafee T, Naseem MU, Szanto TG, van der Burg CA, Smith HL, Surm JM, Undheim EAB, Madio B, Hamilton BR, Guo S, Wai DCC, Coyne VL, Phillips MJ, Dudley KJ, Hurwood DA, Panyi G, King GF, Pavasovic A, Norton RS, Prentis PJ. Genomic, functional and structural analyses elucidate evolutionary innovation within the sea anemone 8 toxin family. BMC Biol 2023; 21:121. [PMID: 37226201 DOI: 10.1186/s12915-023-01617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Zachary K Stewart
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thomas Shafee
- Department of Animal Plant & Soil Sciences, La Trobe University, Melbourne, Australia
- Swinburne University of Technology, Melbourne, VIC, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Chloé A van der Burg
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Hayden L Smith
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Eivind A B Undheim
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Victoria L Coyne
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Matthew J Phillips
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
2
|
Stannard HJ, Miller RD, Old JM. Marsupial and monotreme milk-a review of its nutrient and immune properties. PeerJ 2020; 8:e9335. [PMID: 32612884 PMCID: PMC7319036 DOI: 10.7717/peerj.9335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023] Open
Abstract
All mammals are characterized by the ability of females to produce milk. Marsupial (metatherian) and monotreme (prototherian) young are born in a highly altricial state and rely on their mother’s milk for the first part of their life. Here we review the role and importance of milk in marsupial and monotreme development. Milk is the primary source of sustenance for young marsupials and monotremes and its composition varies at different stages of development. We applied nutritional geometry techniques to a limited number of species with values available to analyze changes in macronutrient composition of milk at different stages. Macronutrient energy composition of marsupial milk varies between species and changes concentration during the course of lactation. As well as nourishment, marsupial and monotreme milk supplies growth and immune factors. Neonates are unable to mount a specific immune response shortly after birth and therefore rely on immunoglobulins, immunological cells and other immunologically important molecules transferred through milk. Milk is also essential to the development of the maternal-young bond and is achieved through feedback systems and odor preferences in eutherian mammals. However, we have much to learn about the role of milk in marsupial and monotreme mother-young bonding. Further research is warranted in gaining a better understanding of the role of milk as a source of nutrition, developmental factors and immunity, in a broader range of marsupial species, and monotremes.
Collapse
Affiliation(s)
- Hayley J Stannard
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Julie M Old
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
3
|
Structure, function, and evolution of Gga-AvBD11, the archetype of the structural avian-double-β-defensin family. Proc Natl Acad Sci U S A 2019; 117:337-345. [PMID: 31871151 DOI: 10.1073/pnas.1912941117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Out of the 14 avian β-defensins identified in the Gallus gallus genome, only 3 are present in the chicken egg, including the egg-specific avian β-defensin 11 (Gga-AvBD11). Given its specific localization and its established antibacterial activity, Gga-AvBD11 appears to play a protective role in embryonic development. Gga-AvBD11 is an atypical double-sized defensin, predicted to possess 2 motifs related to β-defensins and 6 disulfide bridges. The 3-dimensional NMR structure of the purified Gga-AvBD11 is a compact fold composed of 2 packed β-defensin domains. This fold is the archetype of a structural family, dubbed herein as avian-double-β-defensins (Av-DBD). We speculate that AvBD11 emanated from a monodomain gene ancestor and that similar events might have occurred in arthropods, leading to another structural family of less compact DBDs. We show that Gga-AvBD11 displays antimicrobial activities against gram-positive and gram-negative bacterial pathogens, the avian protozoan Eimeria tenella, and avian influenza virus. Gga-AvBD11 also shows cytotoxic and antiinvasive activities, suggesting that it may not only be involved in innate protection of the chicken embryo, but also in the (re)modeling of embryonic tissues. Finally, the contribution of either of the 2 Gga-AvBD11 domains to these biological activities was assessed, using chemically synthesized peptides. Our results point to a critical importance of the cationic N-terminal domain in mediating antibacterial, antiparasitic, and antiinvasive activities, with the C-terminal domain potentiating the 2 latter activities. Strikingly, antiviral activity in infected chicken cells, accompanied by marked cytotoxicity, requires the full-length protein.
Collapse
|
4
|
Genome-wide analysis of the ovodefensin gene family: Monophyletic origin, independent gene duplication and presence of different selection patterns. INFECTION GENETICS AND EVOLUTION 2019; 68:265-272. [DOI: 10.1016/j.meegid.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/28/2018] [Accepted: 01/02/2019] [Indexed: 11/15/2022]
|
5
|
|
6
|
Shafee TMA, Lay FT, Phan TK, Anderson MA, Hulett MD. Convergent evolution of defensin sequence, structure and function. Cell Mol Life Sci 2017; 74:663-682. [PMID: 27557668 PMCID: PMC11107677 DOI: 10.1007/s00018-016-2344-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
Defensins are a well-characterised group of small, disulphide-rich, cationic peptides that are produced by essentially all eukaryotes and are highly diverse in their sequences and structures. Most display broad range antimicrobial activity at low micromolar concentrations, whereas others have other diverse roles, including cell signalling (e.g. immune cell recruitment, self/non-self-recognition), ion channel perturbation, toxic functions, and enzyme inhibition. The defensins consist of two superfamilies, each derived from an independent evolutionary origin, which have subsequently undergone extensive divergent evolution in their sequence, structure and function. Referred to as the cis- and trans-defensin superfamilies, they are classified based on their secondary structure orientation, cysteine motifs and disulphide bond connectivities, tertiary structure similarities and precursor gene sequence. The utility of displaying loops on a stable, compact, disulphide-rich core has been exploited by evolution on multiple occasions. The defensin superfamilies represent a case where the ensuing convergent evolution of sequence, structure and function has been particularly extreme. Here, we discuss the extent, causes and significance of these convergent features, drawing examples from across the eukaryotes.
Collapse
Affiliation(s)
- Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
7
|
Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell NR, Mackessy SP, Castoe TA. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol 2014; 32:173-83. [PMID: 25338510 DOI: 10.1093/molbev/msu294] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression.
Collapse
Affiliation(s)
| | - Daren C Card
- Department of Biology, University of Texas at Arlington
| | | | - Kyle J Shaney
- Department of Biology, University of Texas at Arlington
| | | | | | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Todd A Castoe
- Department of Biology, University of Texas at Arlington
| |
Collapse
|
8
|
Abstract
Recent work in humans and mouse has confirmed the involvement of the host defence β-defensin peptides in male fertility. We discuss here the work that has implicated β-defensins in sperm function including the identification of the epididymis as the predominant site of expression of the peptides and the in vivo consequences of mutation and deletion. The potential dual role of these peptides in the regulation of infection and control of sperm maturation is compelling and may combine their antimicrobial activity with the ability of these molecules to interact with cell membrane receptors and modulate ion transport.
Collapse
Affiliation(s)
- Julia R Dorin
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, Medical School, University of Dundee, Ninewells Hospital, Dundee, UK
| |
Collapse
|
9
|
Whittington CM, Belov K. Tracing monotreme venom evolution in the genomics era. Toxins (Basel) 2014; 6:1260-73. [PMID: 24699339 PMCID: PMC4014732 DOI: 10.3390/toxins6041260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/17/2014] [Accepted: 03/27/2014] [Indexed: 01/07/2023] Open
Abstract
The monotremes (platypuses and echidnas) represent one of only four extant venomous mammalian lineages. Until recently, monotreme venom was poorly understood. However, the availability of the platypus genome and increasingly sophisticated genomic tools has allowed us to characterize platypus toxins, and provides a means of reconstructing the evolutionary history of monotreme venom. Here we review the physiology of platypus and echidna crural (venom) systems as well as pharmacological and genomic studies of monotreme toxins. Further, we synthesize current ideas about the evolution of the venom system, which in the platypus is likely to have been retained from a venomous ancestor, whilst being lost in the echidnas. We also outline several research directions and outstanding questions that would be productive to address in future research. An improved characterization of mammalian venoms will not only yield new toxins with potential therapeutic uses, but will also aid in our understanding of the way that this unusual trait evolves.
Collapse
Affiliation(s)
- Camilla M Whittington
- School of Biological Sciences, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Katherine Belov
- Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
10
|
Wong ESW, Nicol S, Warren WC, Belov K. Echidna venom gland transcriptome provides insights into the evolution of monotreme venom. PLoS One 2013; 8:e79092. [PMID: 24265746 PMCID: PMC3827146 DOI: 10.1371/journal.pone.0079092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
Monotremes (echidna and platypus) are egg-laying mammals. One of their most unique characteristic is that males have venom/crural glands that are seasonally active. Male platypuses produce venom during the breeding season, delivered via spurs, to aid in competition against other males. Echidnas are not able to erect their spurs, but a milky secretion is produced by the gland during the breeding season. The function and molecular composition of echidna venom is as yet unknown. Hence, we compared the deeply sequenced transcriptome of an in-season echidna crural gland to that of a platypus and searched for putative venom genes to provide clues into the function of echidna venom and the evolutionary history of monotreme venom. We found that the echidna venom gland transcriptome was markedly different from the platypus with no correlation between the top 50 most highly expressed genes. Four peptides found in the venom of the platypus were detected in the echidna transcriptome. However, these genes were not highly expressed in echidna, suggesting that they are the remnants of the evolutionary history of the ancestral venom gland. Gene ontology terms associated with the top 100 most highly expressed genes in echidna, showed functional terms associated with steroidal and fatty acid production, suggesting that echidna “venom” may play a role in scent communication during the breeding season. The loss of the ability to erect the spur and other unknown evolutionary forces acting in the echidna lineage resulted in the gradual decay of venom components and the evolution of a new role for the crural gland.
Collapse
Affiliation(s)
- Emily S. W. Wong
- Institute for Molecular Bioscience, University of Queensland, QLD, Australia
| | - Stewart Nicol
- School of Zoology, University of Tasmania, TAS, Australia
| | - Wesley C. Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Katherine Belov
- Faculty of Veterinary Science, The University of Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
11
|
Kita M. Bioorganic Studies on the Key Natural Products from Venomous Mammals and Marine Invertebrates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20120198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaki Kita
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
12
|
Montero-Alejo V, Acosta-Alba J, Perdomo-Morales R, Perera E, Hernández-Rodríguez EW, Estrada MP, Porto-Verdecia M. Defensin like peptide from Panulirus argus relates structurally with beta defensin from vertebrates. FISH & SHELLFISH IMMUNOLOGY 2012; 33:872-879. [PMID: 22885029 DOI: 10.1016/j.fsi.2012.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/08/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Naturally occurring antimicrobial peptides take place in the first line of host defense against pathogen as part of the humoral innate immune response. β-defensins are among the most abundant antimicrobial peptides in mammals, and thought to be solely found in vertebrates until a recent report describing the cloning and sequencing of defensin like peptides in the spiny lobster Panulirus japonicus. In the current study, we cloned and sequenced two genes from the hemocytes of the spiny lobster Panulirus argus encoding for two isoforms of defensin-like peptides, thus confirming the presence of this protein in the Panulirus genus. The 44 amino acids mature peptides showed the conservation of cysteine pattern characterizing the β-defensins, as well as known amino acids residues critical to exert their antimicrobial activity. They are also amphipathics, hydrophobics, and display an overall positive charge (+1) located at the C-terminus. The tertiary structure obtained by homology modeling indicated that likely conformations of lobster peptides are highly similar to β-defensins from vertebrates. The phylogenetic study carried out by probabilistic methods confirmed the relation with ancestral β-defensin from vertebrates. The finding of a putative defensin-like peptide in the expressed sequence tag (EST) of the lobster Homarus americanus with high homology with those of P. argus described in this study, would indicate the presence of this peptides in Palinuridae family. Taking into account all similarities between these peptides with β-defensins from vertebrates, it is conceivable to further support the finding of a new family of β-defensins in invertebrate.
Collapse
Affiliation(s)
- V Montero-Alejo
- Biochemistry Department, Center for Pharmaceuticals Research and Development, Ave. 26, No. 1605, CP 10 400 Habana, Cuba.
| | | | | | | | | | | | | |
Collapse
|
13
|
Weinstein SA, Keyler DE, White J. Replies to Fry et al. (Toxicon 2012, 60/4, 434-448). Part A. Analyses of squamate reptile oral glands and their products: A call for caution in formal assignment of terminology designating biological function. Toxicon 2012; 60:954-63. [PMID: 22687284 DOI: 10.1016/j.toxicon.2012.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/17/2012] [Indexed: 11/19/2022]
|
14
|
Semple F, Dorin JR. β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun 2012; 4:337-48. [PMID: 22441423 DOI: 10.1159/000336619] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/17/2012] [Indexed: 12/13/2022] Open
Abstract
Defensins comprise one of the largest groups of host defence peptides, present throughout evolution, in fungi and flowering plants as well as in invertebrates and vertebrates. These cysteine-rich, cationic peptides have a common ability to kill a broad range of microorganisms including bacteria, yeast and viruses. As such, they are a strong component of the arsenal that is an organism's innate immunity. It is becoming increasingly clear, however, that antimicrobial action is only one of the numerous roles of these multifunctional peptides. In recent years, the functions of defensins in immunomodulation have been widely investigated, and their involvement in other processes (such as fertility) is becoming evident. This review addresses recent advances in the immunomodulatory activity of β-defensins as well as the involvement of β-defensins in fertility, development, wound healing and cancer.
Collapse
Affiliation(s)
- Fiona Semple
- MRC Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
15
|
Wong ES, Belov K. Venom evolution through gene duplications. Gene 2012; 496:1-7. [DOI: 10.1016/j.gene.2012.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 12/30/2022]
|
16
|
Abstract
Initially identified as broad-spectrum antimicrobial peptides, the members of the β-defensin family have increasingly been observed to exhibit numerous other activities, both in vitro and in vivo, that do not always relate directly to host defense. Much research has been carried out in the oral cavity, where the presence of commensal bacteria further complicates the definition of their role. In addition to direct antimicrobial activity, β-defensins exhibit potent chemotactic activity for a variety of innate immune cells, as well as stimulating other cells to secrete cytokines. They can also inhibit the inflammatory response, however, by the specific binding of microbe-associated molecular patterns. These patterns are also able to induce the expression of β-defensins in gingival epithelial cells, although significant differences are observed between different species of bacteria. Together these results suggest a complex model of a host-defense related function in maintenance of bacterial homeostasis and response to pathogens. This model is complicated, however, by numerous other observations of β-defensin involvement in cell proliferation, wound healing and cancer. Together, the in vitro, in vivo and human studies suggest that these peptides are important in the biology of the oral cavity; exactly how is still subject to speculation.
Collapse
Affiliation(s)
- G Diamond
- Department of Oral Biology, UMDNJ-New Jersey Dental School, Newark, NJ 07101, USA.
| | | |
Collapse
|
17
|
Shanahan MT, Tanabe H, Ouellette AJ. Strain-specific polymorphisms in Paneth cell α-defensins of C57BL/6 mice and evidence of vestigial myeloid α-defensin pseudogenes. Infect Immun 2011; 79:459-73. [PMID: 21041494 PMCID: PMC3019906 DOI: 10.1128/iai.00996-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/12/2010] [Accepted: 10/17/2010] [Indexed: 12/18/2022] Open
Abstract
Paneth cells at the base of small intestinal crypts secrete microbicidal α-defensins, termed cryptdins (Crps) in mice, as mediators of innate immunity. Proteomic studies show that five abundant Paneth cell α-defensins in C57BL/6 mice are strain specific in that they have not been identified in other inbred strains of mice. Two C57BL/6-specific peptides are coded for by the Defcr20 and -21 genes evident in the NIH C57BL/6 genome but absent from the Celera mixed-strain assembly, which excludes C57BL/6 data and differs from the NIH build with respect to the organization of the α-defensin gene locus. Conversely, C57BL/6 mice lack the Crp1, -2, -4, and -6 peptides and their corresponding Defcr1, -2, -4, and -6 genes, which are common to several mouse strains, including those of the Celera assembly. In C57BL/6 mice, α-defensin gene diversification appears to have occurred by tandem duplication of a multigene cassette that was not found in the mixed-strain assembly. Both mouse genome assemblies contain conserved α-defensin pseudogenes that are closely related to functional myeloid α-defensin genes in the rat, suggesting that the neutrophil α-defensin defect in mice resulted from progressive gene loss. Given the role of α-defensins in shaping the composition of the enteric microflora, such polymorphisms may influence outcomes in mouse models of disease or infection.
Collapse
Affiliation(s)
- Michael T. Shanahan
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Hiroki Tanabe
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Whittington CM, Papenfuss AT, Locke DP, Mardis ER, Wilson RK, Abubucker S, Mitreva M, Wong ESW, Hsu AL, Kuchel PW, Belov K, Warren WC. Novel venom gene discovery in the platypus. Genome Biol 2010; 11:R95. [PMID: 20920228 PMCID: PMC2965387 DOI: 10.1186/gb-2010-11-9-r95] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/05/2010] [Accepted: 09/29/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND To date, few peptides in the complex mixture of platypus venom have been identified and sequenced, in part due to the limited amounts of platypus venom available to study. We have constructed and sequenced a cDNA library from an active platypus venom gland to identify the remaining components. RESULTS We identified 83 novel putative platypus venom genes from 13 toxin families, which are homologous to known toxins from a wide range of vertebrates (fish, reptiles, insectivores) and invertebrates (spiders, sea anemones, starfish). A number of these are expressed in tissues other than the venom gland, and at least three of these families (those with homology to toxins from distant invertebrates) may play non-toxin roles. Thus, further functional testing is required to confirm venom activity. However, the presence of similar putative toxins in such widely divergent species provides further evidence for the hypothesis that there are certain protein families that are selected preferentially during evolution to become venom peptides. We have also used homology with known proteins to speculate on the contributions of each venom component to the symptoms of platypus envenomation. CONCLUSIONS This study represents a step towards fully characterizing the first mammal venom transcriptome. We have found similarities between putative platypus toxins and those of a number of unrelated species, providing insight into the evolution of mammalian venom.
Collapse
Affiliation(s)
- Camilla M Whittington
- Faculty of Veterinary Science, The University of Sydney, Regimental Crescent, Camperdown, NSW 2006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Whittington CM, Koh JM, Warren WC, Papenfuss AT, Torres AM, Kuchel PW, Belov K. Understanding and utilising mammalian venom via a platypus venom transcriptome. J Proteomics 2009; 72:155-64. [DOI: 10.1016/j.jprot.2008.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 01/10/2023]
|
20
|
Abstract
An anatomical feature of the platypus (Ornithorhynchus anatinus) that is seen in only one other mammal, the echidna, is that the male has a crural glandular system that produces venom that is used for defence and territorial–breeding functions; whether the echidna is similarly venomous is not yet established. Platypus venom contains many novel proteins and peptides that are different from those in reptilian venom. It also causes pain and symptoms that are not experienced by any other kind of envenomation. Five types of proteins and peptides have been isolated and identified from platypus venom, namely: defensin-like peptides (DLPs); Ornithorhynchus venom C-type natriuretic peptides (OvCNPs); Ornithorhynchus nerve growth factor; hyaluronidase; and l-to-d-peptide isomerase. The structures of DLPs and OvCNPs have already been studied and they are very similar to β-defensin-12 and mammalian C-type natriuretic peptides, respectively. A special mammalian l-to-d-peptide isomerase that is responsible for interconverting the l- and d-peptide isomers is also found in platypus venom. Isomerase activity has recently been discovered in platypus tissues other than the venom gland. It is possible that similar kinds of enzymes might exist in other mammals and play important, as yet unknown, biological roles. Considering the fact that some animal venoms have already been widely used in pharmaceutical applications, research into platypus venom may lead to the discovery of new molecules and potent drugs that are useful biomedical tools.
Collapse
|
21
|
Whittington CM, Sharp JA, Papenfuss A, Belov K. No evidence of expression of two classes of natural antibiotics (cathelicidins and defensins) in a sample of platypus milk. AUST J ZOOL 2009. [DOI: 10.1071/zo09047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Marsupial neonates are born without a fully functioning immune system, and are known to be protected in part by natural antimicrobial peptides present in their mother’s milk. Monotreme neonates hatch at a similar stage in development, and it has been hypothesised that their survival in a non-sterile burrow also relies on the presence of natural antibiotics in their mother’s milk. Here we review the field of monotreme lactation and the antimicrobial peptide complement of the platypus (Ornithorhynchus anatinus). Using reverse transcriptase–polymerase chain reaction of milk cell RNA from a sample of platypus milk, we found no evidence for the expression of cathelicidins or defensins in the milk. This was unexpected. We hypothesise that these natural antibiotics may instead be produced by the young platypuses themselves.
Collapse
|
22
|
Abstract
The venom of the platypus (Ornithorhynchus anatinus) has been poorly studied to date. The recent publication of the platypus genome heralds a new era for mammalian venom research and is a useful starting tool for functional studies of venom components. We report here the patterns of tissue expression of two venom genes, OvNGF and OvCNP, in order to provide some insight into the functions of the proteins they produce and to pave the way for further functional and pharmacological studies, which may lead to the development of novel therapeutic agents.
Collapse
|