1
|
Sadeghirad M, Soleimanzadeh A, Shalizar-Jalali A, Behfar M. Synergistic protective effects of 3,4-dihydroxyphenylglycol and hydroxytyrosol in male rats against induced heat stress-induced reproduction damage. Food Chem Toxicol 2024; 190:114818. [PMID: 38880467 DOI: 10.1016/j.fct.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Testicular heat stress disrupts spermiogenesis and damages testicular tissue. The study aims to assess 3,4-dihydroxyphenylglycol (DHPG) and hydroxytyrosol (HT) from olive oil as antioxidants to reduce heat-induced testicular damage. Seven groups of 35 male rats were used. Group I got normal saline. Group 2 had HS (43 °C for 20 min/day) and normal saline for 60 days. Groups 3-7 had HS and DHPG/HT doses (0.5 mg/kg DHPG, 1 mg/kg DHPG, 5 mg/kg HT, 0.5 mg/kg DHPG + 5 mg/kg HT, and 1 mg/kg DHPG + 5 mg/kg HT). The evaluation included tests on testicular tissue, sperm quality, oxidative status, gene activity, and fertility after 60 days. After DHPG and HT treatment, sperm motility, viability, and plasma membrane functionality, as well as levels of total antioxidant capacity (TAC), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT), and Bcl-2 gene expression, and in vivo fertility indexes increased. Meanwhile, abnormal morphology and DNA damage decreased, along with levels of glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA), and Bax, caspase-3, and caspase-9 gene expression, compared to the HS group. The study found that DHPG and HT have a more substantial synergistic effect when used together, improving reproductive health.
Collapse
Affiliation(s)
- Milad Sadeghirad
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Ali Shalizar-Jalali
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Behfar
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Xue W, Tianrun W, Jiaqi Y, Xin L, Ruxue D, Peng Z. Bta-miR-149-3p suppresses inflammatory response in bovine Sertoli cells exposed to microcystin-leucine arginine (MC-LR) through TLR4/NF-kB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116636. [PMID: 38917588 DOI: 10.1016/j.ecoenv.2024.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
This study explored the regulatory role of bta-miR-149-3p in the inflammatory response induced by microcystin-leucine arginine (MC-LR) exposure in bovine Sertoli cells. The research endeavored to enhance the comprehension of the epigenetic mechanisms underlying MC-LR-induced cytotoxicity in Sertoli cells and establish a foundation for mitigating these effects in vitro. In this study, we elucidated the regulatory mechanism of bta-miR-149-3p in the MC-LR-induced inflammatory response by verifying the target gene of bta-miR-149-3p through luciferase assays and treating the cells with a bta-miR-149-3p inhibitor for 24 h. The results demonstrate that nuclear factor κB (NF-κB) acts as a downstream target gene of bta-miR-149-3p, which inhibits the MC-LR-induced inflammatory response in bovine Sertoli cells. This inhibition occurs by regulating the downregulation of tight junction constitutive proteins of the blood-testis barrier (BTB) through the suppression of the TLR-4/NF-κB signaling pathway (p < 0.05) and the up-regulation of the adhesion junction protein β-catenin (p < 0.05). Notably, MC-LR exposure resulted in the up-regulation (p < 0.05) of inflammatory cytokines (IL-6, IL-1β, and NLRP3) and the down-regulation (p < 0.05) of BTB tight junction constitutive proteins (ZO-1, Occludin) in Sertoli cells. Furthermore, the BTB constitutive protein ZO-1 exhibited significant down-regulation in Sertoli cells pretreated with the bta-miR-149-3p inhibitor compared to controls (p < 0.05), while Occludin showed no significant difference from CTNNB1 (p > 0.05). In summary, our findings suggest that bta-miR-149-3p suppresses the MC-LR-induced inflammatory response and alterations in the expression of BTB proteins in bovine Sertoli cells by inhibiting the TLR-4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wang Xue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China.
| | - Wang Tianrun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China
| | - Yao Jiaqi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China
| | - Li Xin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China
| | - Deng Ruxue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China
| | - Zheng Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, China.
| |
Collapse
|
3
|
Du X, Liu H, Liu X, Chen X, Yuan L, Ma Y, Huang H, Wang Y, Wang R, Zhang S, Tian Z, Shi L, Zhang H. Microcystin-LR induces ovarian injury and apoptosis in mice via activating apoptosis signal-regulating kinase 1-mediated P38/JNK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112066. [PMID: 33610944 DOI: 10.1016/j.ecoenv.2021.112066] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
As an emerging pollutant in the aquatic environment, microcystin-LR (MC-LR) can enter the body through multiple pathways, and then induce apoptosis and gonadal damage, affecting reproductive function. Previous studies focused on male reproductive toxicity induced by MC-LR neglecting its effects on females. The apoptotic signal-regulated kinase 1 (ASK1) is an upstream protein of P38/JNK pathway, closely associated with apoptosis and organ damage. However, the role of ASK1 in MC-LR-induced reproductive toxicity is unclear. Therefore, this study investigated the role of ASK1 in mouse ovarian injury and apoptosis induced by MC-LR. After MC-LR exposure, ASK1 expression in mouse ovarian granulosa cells was increased at the protein and mRNA levels, and decreased following pretreatment by antioxidant N-acetylcysteine, suggesting that MC-LR-induced oxidative stress has a regulatory role in ASK1 expression. Inhibition of ASK1 expression with siASK1 and NQDI-1 could effectively alleviate MC-LR-induced mitochondrial membrane potential damage and apoptosis in ovarian granulosa cells, as well as pathological damage, apoptosis and the decreased gonadal index in ovaries of C57BL/6 mice. Moreover, the P38/JNK pathway and downstream apoptosis-related proteins (P-P38, P-JNK, P-P53, Fas) and genes (MKK4, MKK3, Ddit3, Mef2c) were activated in vivo and vitro, but their activation was restrained after ASK1 inhibition. Data presented herein suggest that the ASK1-mediated P38/JNK pathway is involved in ovarian injury and apoptosis induced by MC-LR in mice. It is confirmed that ASK1 has an important role in MC-LR-induced ovarian injury, which provides new insights for preventing MCs-induced reproductive toxicity in females.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX 78228, USA
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Xu D, Wang J, Ma Y, Ding J, Han X, Chen Y. Microcystin-leucine-arginine induces apical ectoplasmic specialization disassembly. CHEMOSPHERE 2021; 264:128440. [PMID: 33002802 DOI: 10.1016/j.chemosphere.2020.128440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) has been identified to be a hazardous material to cause hepatotoxicity. In this study, mice were exposed to MC-LR dissolved in drinking water at doses of 1, 10, 20 and 30 μg/L for 90 and 180 days, respectively. We validated MC-LR accelerated spermatid exfoliation and caused large vacuoles in testes, reducing sperm count and increasing percentage of morphologically abnormal sperm. Furthermore, we found MC-LR induced the apical ectoplasmic specialization (ES) disassembly by disrupting F-actin organization. Further studies identified that downregulation of Palladin, the actin crosslinking protein, might be associated with disassembly of the apical ES in mice testis following MC-LR exposure. We also confirmed that MC-LR disrupted the interaction between Palladin and other actin-related proteins and thus impeded the F-actin organization. Additionally, we found that autophagy initiated by AMPK/ULK1 signaling pathway mediated the degradation of Palladin in Sertoli cells challenged with MC-LR. Following exposure to MC-LR, reduced PP2A activity and upregulated expression of LKB1 and CAMKK2 could activate AMPK. In conclusion, these results revealed MC-LR induced the degradation of Palladin via AMPK/ULK1-mediated autophagy, which might result in the apical ES disorder and spermatid exfoliation from spermatogenic epithelium. Our work may provide a new perspective to understand MC-LR-induced male infertility.
Collapse
Affiliation(s)
- Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
5
|
Zhao S, Yuan C, Tuo X, Zhou C, Zhao Q, Shen T. MCLR induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in apoptosis in Sertoli cells. CHEMOSPHERE 2021; 263:127868. [PMID: 32828052 DOI: 10.1016/j.chemosphere.2020.127868] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Microcystins-LR (MCLR) is a potent reproductive system toxin. We have previously shown that MCLR induced endoplasmic reticulum (ER) stress and apoptosis in testis. ER is the main calcium storage site in cells, and its calcium homeostasis plays an important role in the regulation of apoptosis. Hence, in the present study, we have investigated the role of calcium (Ca2+) in inducing apoptosis and how it affect the mitochondria and endoplasmic reticulum in TM4 cells. Our study found that MCLR induced an increase in Ca2+ concentration in TM4 cells. Compared to the controls, MCLR induced phosphorylation of calmodulin-dependent protein kinase II (CaMKII) which was involved in MAPKs activation, resulting in the induction of mitochondrial apoptosis pathways. Ca2+ chelator Bapta-AM partially reversed MCLR-induced apoptosis, confirming the possible involvement of calcium homeostasis disruption after MCLR exposure. Meanwhile, MCLR activated unfolded protein response and activated the ER apoptotic pathway by activating caspase-12. In addition, exposure to MCLR causes mitochondrial defects and increased apoptosis by up-regulating caspase 3 and cytosol cytochrome c expression. Collectively, these results demonstrated that MCLR disturbed calcium homeostasis, which caused ER-mitochondria dysfunction, ultimately promoted cell apoptosis in Sertoli cells.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, China
| | - Chunyang Yuan
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Chengfan Zhou
- School of Public Health, Anhui Medical University, Hefei, China
| | - Qihong Zhao
- School of Public Health, Anhui Medical University, Hefei, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Adegoke EO, Xue W, Machebe NS, Adeniran SO, Hao W, Chen W, Han Z, Guixue Z, Peng Z. Sodium Selenite inhibits mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB and mitochondrial signaling pathways blockage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:165-175. [PMID: 30267989 DOI: 10.1016/j.ecoenv.2018.09.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
This study was conducted to investigate the ameliorative effect of selenium on microcystin-LR induced toxicity in bovine Sertoli cells. Bovine Sertoli cells were pretreated with selenium (Na2SeO3) for 24 h after which selenium pretreated and non-pretreated Sertoli cells were cultured in medium containing 10% heat activated fetal bovine serum FBS+ 80 µg/L MC-LR to assess its ameliorative effect on MC-LR toxicity. The results show that selenium pretreatment inhibited the MC-LR induced mitophagy, downregulation and mislocalization of blood-testis barrier constituent proteins in bovine Sertoli cells via NF-kB and cytochrome c release blockage. The observed downregulation of electron transport chain (ETC) related genes (mt-ND2, COX-1, COX-2) and upregulation of inflammatory cytokines (IL-6, TNF-α, IL-1β, IFN-γ, IL-4, IL-10, 1 L-13, TGFβ1) in non-pretreated cells exposed to MC-LR were ameliorated in selenium pretreated cells. There was no significant difference (P > 0.05) in the protein levels of blood-testis barrier constituent proteins (ZO-1, occludin, connexin-43, CTNNB1, N-cadherin) and mitochondria related genes (mt-ND2, COX-1, COX-2, ACAT1, mtTFA) of selenium pretreated Sertoli cell compared to the control. Taken together, we conclude that selenium inhibits MC-LR caused Mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell via mitochondrial and TLR4/NF-kB signaling pathways blockage.
Collapse
Affiliation(s)
- E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Xue
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - N S Machebe
- Department of Animal Science, University of Nigeria, Nsukka, Nigeria
| | - S O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Hao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Zhang Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Zhang Guixue
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China.
| | - Zheng Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China.
| |
Collapse
|
7
|
Adegoke EO, Wang C, Machebe NS, Wang X, Wang H, Adeniran SO, Zhang H, Zheng P, Zhang G. Microcystin-leucine arginine (MC-LR) induced inflammatory response in bovine sertoli cell via TLR4/NF-kB signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:115-126. [PMID: 30212741 DOI: 10.1016/j.etap.2018.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Sertoli cells were treated with 0, 20, 40, 60 and 80 μg/L of MC-LR to investigate its toxic effects, mechanism of action and immune response of the cells. Our results revealed that treatment containing 20 μg/L of MC-LR was non-toxic to the cells. Treatments containing 40, 60 and 80 μg/L of MC-LR reduced the cell viability, induced nuclear morphological changes and downregulated the blood-testis barrier constituent proteins within 48 h after treatment. The toll-like receptor 4 (TLR4) and nuclear factor-kappaB (NF-kB) were activated and significantly (P < 0.05) upregulated in cells treated with 40, 60 and 80 μg/L of MC-LR compared to the control. The pro-inflammatory cytokines were upregulated within 48 h after treatment. However commencing from 72 h, upregulation of anti-inflammatory cytokines and expression of blood-testis barrier constituent proteins was observed. This study indicates that MC-LR induced inflammatory response in bovine Sertoli cell via activation of TLR4/NF-kB signaling pathway.
Collapse
Affiliation(s)
- E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chen Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - N S Machebe
- Department of Animal Science, University of Nigeria, Nsukka, Nigeria
| | - Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Hao Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - S O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
8
|
Zhao S, Liu Y, Wang F, Xu D, Xie P. N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. CHEMOSPHERE 2018; 204:463-473. [PMID: 29679867 DOI: 10.1016/j.chemosphere.2018.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have shown that microcystin-LR (MCLR) is a reproductive toxicant that induces germ cell apoptosis in the testes, but the underlying mechanisms have not been well understood. In this study, we investigated that MCLR induces germ cell apoptosis is through activation of endoplasmic reticulum (ER) stress and N-acetylcysteine (NAC), an antioxidant could protect against germ cell apoptosis by inhibiting the ER stress. Healthy male zebrafish were intraperitoneally injected with NAC (500 nM), beginning at 2 h before different doses of MCLR (0, 50, 100, 200 μg/kg). As expected, acute MCLR exposure resulted in oxidative stress and germ cell apoptosis in zebrafish testes. Further analysis showed that NAC significantly alleviated MCLR-induced testicular germ cell apoptosis and inhibited the caspase-dependent apoptotic proteins. Meanwhile H&E staining showed that NAC could rescue testicular damage induced by MCLR. Moreover, MCLR induced activation of ER stress which consequently triggered apoptosis in zebrafish testes. Interestingly, NAC was effective in improving the total antioxidant capacity (T-AOC) level and activity of antioxidant enzymes in NAC pretreated groups. NAC significantly attenuated MCLR-induced upregulation of GRP78 in testes. In addition, NAC significantly attenuated MCLR-triggered testicular eIF2s1 and MAPK8 activation, indicating that NAC counteracts MCLR-induced unfolded protein response (UPR) in testes. Taken together, the results observed in this study suggested that ER stress plays a critical role in germ cell apoptosis exposed to MCLR and NAC could protect against apoptosis via inhibiting ER stress in zebrafish testes.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ying Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Fang Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
Wang M, Su P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update. Syst Biol Reprod Med 2018; 64:93-102. [DOI: 10.1080/19396368.2017.1422046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mei Wang
- Family Planning Research Institute of Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Ping Su
- Family Planning Research Institute of Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| |
Collapse
|
10
|
Miller TR, Beversdorf LJ, Weirich CA, Bartlett SL. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Mar Drugs 2017; 15:E160. [PMID: 28574457 PMCID: PMC5484110 DOI: 10.3390/md15060160] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are ubiquitous phototrophic bacteria that inhabit diverse environments across the planet. Seasonally, they dominate many eutrophic lakes impacted by excess nitrogen (N) and phosphorus (P) forming dense accumulations of biomass known as cyanobacterial harmful algal blooms or cyanoHABs. Their dominance in eutrophic lakes is attributed to a variety of unique adaptations including N and P concentrating mechanisms, N₂ fixation, colony formation that inhibits predation, vertical movement via gas vesicles, and the production of toxic or otherwise bioactive molecules. While some of these molecules have been explored for their medicinal benefits, others are potent toxins harmful to humans, animals, and other wildlife known as cyanotoxins. In humans these cyanotoxins affect various tissues, including the liver, central and peripheral nervous system, kidneys, and reproductive organs among others. They induce acute effects at low doses in the parts-per-billion range and some are tumor promoters linked to chronic diseases such as liver and colorectal cancer. The occurrence of cyanoHABs and cyanotoxins in lakes presents challenges for maintaining safe recreational aquatic environments and the production of potable drinking water. CyanoHABs are a growing problem in the North American (Laurentian) Great Lakes basin. This review summarizes information on the occurrence of cyanoHABs in the Great Lakes, toxicological effects of cyanotoxins, and appropriate numerical limits on cyanotoxins in finished drinking water.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Lucas J Beversdorf
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
11
|
Li Y, Li J, Huang H, Yang M, Zhuang D, Cheng X, Zhang H, Fu X. Microcystin-LR induces mitochondria-mediated apoptosis in human bronchial epithelial cells. Exp Ther Med 2016; 12:633-640. [PMID: 27446254 PMCID: PMC4950845 DOI: 10.3892/etm.2016.3423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the toxicity of microcystin-LR (MC-LR) and to explore the mechanism of MC-LR-induced apoptosis in human bronchial epithelial (HBE) cells. HBE cells were treated with MC-LR (1, 10, 20, 30 and 40 µg/ml) alone or with MC-LR (0, 2.5, 5 and 10 µg/ml) and Z-VAD-FMK (0, 10, 20, 40, 60, 80, 100, 120 and 140 µM), which is a caspase inhibitor, for 24 and 48 h. Cell viability was assessed via an MTT assay and the half maximal effective concentration of MC-LR was determined. The optimal concentration of Z-VAD-FMK was established as 50 µm, which was then used in the subsequent experiments. MC-LR significantly inhibited cell viability and induced apoptosis of HBE cells in a dose-dependent manner, as detected by an Annexin V/propidium iodide assay. MC-LR induced cell apoptosis, excess reactive oxygen species production and mitochondrial membrane potential collapse, upregulated Bax expression and downregulated B-cell lymphoma-2 expression in HBE cells. Moreover, western blot analysis demonstrated that MC-LR increased the activity levels of caspase-3 and caspase-9 and induced cytochrome c release into the cytoplasm, suggesting that MC-LR-induced apoptosis is associated with the mitochondrial pathway. Furthermore, pretreatment with Z-VAD-FMK reduced MC-LR-induced apoptosis by blocking caspase activation in HBE cells. Therefore, the results of the present study suggested that MC-LR is capable of significantly inhibiting the viability of HBE cells by inducing apoptosis in a mitochondria-dependent manner. The present study provides a foundation for further understanding the mechanism underlying the toxicity of MC-LR in the respiratory system.
Collapse
Affiliation(s)
- Yang Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jinhui Li
- Henan Science and Technology Exchange Center with Foreign Countries, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Mingfeng Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
12
|
Chen L, Chen J, Zhang X, Xie P. A review of reproductive toxicity of microcystins. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:381-99. [PMID: 26521084 DOI: 10.1016/j.jhazmat.2015.08.041] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 05/25/2023]
Abstract
Animal studies provide strong evidence of positive associations between microcystins (MCs) exposure and reproductive toxicity, representing a threat to human reproductive health and the biodiversity of wild life. This paper reviews current knowledge of the reproductive toxicity of MCs, with regard to mammals, fishes, amphibians, and birds, mostly in males. Toxicity of MCs is primarily governed by the inhibition of protein phosphatases 1 and 2A (PP1 and PP2A) and disturbance of cellular phosphorylation balance. MCs exposure is related to excessive production of reactive oxygen species (ROS) and oxidative stress, leading to cytoskeleton disruption, mitochondria dysfunction, endoplasmic reticulum (ER) stress, and DNA damage. MCs induce cell apoptosis mediated by the mitochondrial and ROS and ER pathways. Through PP1/2A inhibition and oxidative stress, MCs lead to differential expression/activity of transcriptional factors and proteins involved in the pathways of cellular differentiation, proliferation, and tumor promotion. MC-induced DNA damage is also involved in carcinogenicity. Apart from a direct effect on testes and ovaries, MCs indirectly affect sex hormones by damaging the hypothalamic-pituitary-gonad (HPG) axis and liver. Parental exposure to MCs may result in hepatotoxicity and neurotoxicity of offspring. We also summarize the current research gaps which should be addressed by further studies.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
13
|
Yang C, Du YK, Wang J, Luan P, Yang QL, Huang WH, Yuan L. Transplanted Adipose-Derived Stem Cells Ameliorate Testicular Dysfunction In A D-Galactose-Induced Aging Rat Model. J Cell Physiol 2015; 230:2403-14. [PMID: 25728126 DOI: 10.1002/jcp.24970] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/20/2015] [Indexed: 01/03/2023]
Abstract
Glycation product accumulation during aging of slowly renewing tissues may be an important mechanism underlying aging of the testis. Adipose-derived stem cells (ADSCs) have shown promise in a novel tissue regenerative technique and may have utility in treating sexual dysfunction. ADSCs have also been found to be effective in antiaging therapy, although the mechanism underlying their effects remains unknown. This study was designed to investigate the anti-aging effect of ADSCs in a D-galactose (D-gal)-induced aging animal model and to clarify the underlying mechanism. Randomly selected 6-week-old male Sprague-Dawley rats were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, D-gal-induced aging rats were randomized to receive caudal vein injections of 3 × 10(6) 5-bromo 2'deoxy-uridine-labeled ADSCs or an equal volume of phosphate-buffered saline. Serum testosterone level, steroidogenic enzymes (3-β-hydroxysteroid dehydrogenase), and superoxide dismutase (SOD) activity decreased significantly in aging rats compared with the control group; serum lipid peroxidation, spermatogenic cell apoptosis, and methane dicarboxylic aldehyde (MDA) expression increased significantly. ADSCs increased the SOD level and reduced the MDA level in the aging animal model and restored levels of serum testosterone, steroidogenic enzymes, and spermatogenic cell apoptosis. These results demonstrate that ADSCs can contribute to testicular regeneration during aging. ADSCs also provide functional benefits through glycation suppression and antioxidant effects in a rat model of aging. Although some ADSCs differentiated into Leydig cells, the paracrine pathway seems to play a main role in this process, resulting in the reduction of apoptosis.
Collapse
Affiliation(s)
- Chun Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Medicine, Shenzhen University, Shenzhen, China
| | - Yi-Kuan Du
- Department of Anatomy, Guangdong Provincial Key laboratory of Tissue Construction and Detection, Southern Medical University, Guangzhou, China
| | - Jun Wang
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Ping Luan
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Qin-Lao Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Wen-Hua Huang
- Department of Anatomy, Guangdong Provincial Key laboratory of Tissue Construction and Detection, Southern Medical University, Guangzhou, China
| | - Lin Yuan
- School of Medicine, Shenzhen University, Shenzhen, China.,Department of Anatomy, Guangdong Provincial Key laboratory of Tissue Construction and Detection, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Wang Y, Zhang JJ, Yang WR, Luo HY, Zhang JH, Wang XZ. Lipopolysaccharide-induced expression of FAS ligand in cultured immature boar sertoli cells through the regulation of pro-inflammatory cytokines andmiR-187. Mol Reprod Dev 2015; 82:880-91. [DOI: 10.1002/mrd.22534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/26/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Yi Wang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Wei-Rong Yang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Hong-Yan Luo
- College of Resource and Environment; Southwest University; Beibei Chongqing P. R. China
| | - Jia-Hua Zhang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| |
Collapse
|
15
|
Zhou Y, Wang H, Wang C, Qiu X, Benson M, Yin X, Xiang Z, Li D, Han X. Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity. Toxicol Appl Pharmacol 2015; 287:1-8. [DOI: 10.1016/j.taap.2015.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/17/2023]
|
16
|
Inoue T, Aoyama-Ishikawa M, Kamoshida S, Nishino S, Sasano M, Oka N, Yamashita H, Kai M, Nakao A, Kotani J, Usami M. Endogenous interleukin 18 regulates testicular germ cell apoptosis during endotoxemia. Reproduction 2015; 150:105-14. [PMID: 25934945 DOI: 10.1530/rep-14-0427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 05/01/2015] [Indexed: 01/26/2023]
Abstract
Orchitis (testicular swelling) often occurs during systemic inflammatory conditions, such as sepsis. Interleukin 18 (IL18) is a proinflammatory cytokine and is an apoptotic mediator during endotoxemia, but the role of IL18 in response to inflammation in the testes was unclear. WT and IL18 knockout (KO) mice were injected lipopolysaccharide (LPS) to induce endotoxemia and examined 12 and 48 h after LPS administration to model the acute and recovery phases of endotoxemia. Caspase activation was assessed using immunohistochemistry. Protein and mRNA expression were examined by western blot and quantitative real-time RT-PCR respectively. During the acute phase of endotoxemia, apoptosis (as indicated by caspase-3 cleavage) was increased in WT mice but not in IL18 KO mice. The death receptor-mediated and mitochondrial-mediated apoptotic pathways were both activated in the WT mice but not in the KO mice. During the recovery phase of endotoxemia, apoptosis was observed in the IL18 KO mice but not in the WT mice. Activation of the death-receptor mediated apoptotic pathway could be seen in the IL18 KO mice but not the WT mice. These results suggested that endogenous IL18 induces germ cell apoptosis via death receptor mediated- and mitochondrial-mediated pathways during the acute phase of endotoxemia and suppresses germ cell apoptosis via death-receptor mediated pathways during recovery from endotoxemia. Taken together, IL18 could be a new therapeutic target to prevent orchitis during endotoxemia.
Collapse
Affiliation(s)
- Taketo Inoue
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Michiko Aoyama-Ishikawa
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Shingo Kamoshida
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Satoshi Nishino
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Maki Sasano
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Nobuki Oka
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Hayato Yamashita
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Motoki Kai
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Atsunori Nakao
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Joji Kotani
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Makoto Usami
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| |
Collapse
|
17
|
Zhang Q, Cheng J, Xin Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:707-19. [PMID: 25588674 DOI: 10.1007/s10646-015-1417-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 05/25/2023]
Abstract
The extensive use of pharmaceuticals has resulted in the intensive contamination of water bodies. Tetracycline is a type of antibiotic and its potential toxicity is causing environmental concern. The effects of developmental toxicity and the mechanisms of tetracycline on fish embryos are not well understood. Zebrafish embryos are used in this study to investigate the developmental toxicity of this compound. Four hour post-fertilization (hpf) zebrafish embryos are exposed to different concentrations of tetracycline until 96 hpf. The larvae display developmental delay phenotypes, including hatching delay, shorter body length, increased yolk sac area and uninflated swim bladder upon exposure to tetracycline. Delayed yolk sac absorption and swim bladder deficiency at 96 hpf are observed in the zebrafish larvae upon exposure to 20 μg/L of tetracycline. To test whether tetracycline causes oxidative damage and the resulting oxidative stress-induced apoptosis, the generation of reactive oxygen species (ROS), Acridine Orange staining and real time polymerase chain reaction have been performed in this study. The results indicate that tetracycline exposure results in significant increases in ROS production and cell apoptosis, mainly in the tail areas at 96 hpf. The gene expression pattern demonstrates that tetracycline induces ROS which causes apoptosis in the zebrafish larvae, and the results also indicate that caspase-dependent apoptotic pathways may greatly contribute to tetracycline-induced apoptosis in the early-life stages of the zebrafish. In addition, we have investigated the effects of tetracycline on marker genes related to resistance mechanisms and gene regulating drug biotransformation. The results of these gene expression studies indicate that tetracycline could induce zebrafish to resist pharmaceuticals and Cytochrome P450s that are involved in the biotransformation of tetracycline in zebrafish larvae. The overall results indicate that tetracycline can produce oxidative stress and induce apoptosis, which brings about significant developmental delay in zebrafish embryos.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | | | | |
Collapse
|
18
|
Hou J, Li L, Xue T, Long M, Su Y, Wu N. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR. CHEMOSPHERE 2015; 120:729-736. [PMID: 25462319 DOI: 10.1016/j.chemosphere.2014.09.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Microcystin-LR (MC-LR) is the most toxic and common among microcystins. In order to understand the possible molecular mechanisms of hepatic antioxidation and detoxification, the activities and transcriptional levels of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferases (GST), and glutathione (GSH) contents as well as histopathological changes were studied in the liver of female zebrafish injected intraperitoneally (i.p.) at doses of 50 and 200 μg MC-LR kg(-1) body weight (BW) respectively. In the low dose group (50 μg MC-LR kg(-1)), zebrafish displayed a little unease at the initial 1h post-injection (hpi), slight hepatic injury and quick recovery, and enhanced enzymatic activities and up-regulated gene expression of antioxidant enzymes. In contrast, high dose of MC-LR (200 μg MC-LR kg(-1)) resulted in uneasiness and frantic swimming, severe hepatic injury, and suppressed enzymatic activities and down-regulated gene expression of antioxidant enzymes. GSH depletion in both dose groups may be explained by enhanced antioxidant reactions and higher rates of MC conjugation, suggesting the crucial roles of GSH in both cellular antioxidant protection and MC-LR detoxification. This study demonstrated that administration of MC-LR caused a positive response in the low dose group but a negative response in the high dose group. Hepatic positive/negative responses in the low/high dose group might result from an increased/decreased synthesis of antioxidant enzymes at the molecular level, respectively. These results illustrated that antioxidant status played an important role in zebrafish protection against MC-LR-caused oxidative stress through regulating antioxidant enzyme gene expression and activities.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Ting Xue
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Meng Long
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Ning Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| |
Collapse
|
19
|
Lone Y, Koiri RK, Bhide M. An overview of the toxic effect of potential human carcinogen Microcystin-LR on testis. Toxicol Rep 2015; 2:289-296. [PMID: 28962362 PMCID: PMC5598424 DOI: 10.1016/j.toxrep.2015.01.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/16/2022] Open
Abstract
The worldwide occurrence of cyanobacterial blooms due to water eutrophication evokes extreme concerns. These blooms produce cyanotoxins which are hazardous to living organisms. So far among these toxins, Microcystin-LR (MC-LR) is the most toxic and the most frequently encountered toxin produced by the cyanobacteria in the contaminated aquatic environment. Microcystin-LR is a potential carcinogen for animals and humans, and the International Agency for Research on Cancer has classified Microcystin-LR as a possible human carcinogen. After liver, testis has been considered as one of the most important target organs of Microcystin-LR toxicity. Microcystin-LR crosses the blood–testis barrier and interferes with DNA damage repair pathway and also increases expression of the proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis in testis. Toxicity of MC-LR disrupts the motility and morphology of sperm and also affects the hormone levels of male reproductive system. MC-LR treated mice exhibit oxidative stress in testis through the alteration of antioxidant enzyme activity and also affect the histopathology of male reproductive system. In the present review, an attempt has been made to comprehensively address the impact of MC-LR toxicity on testis.
Collapse
Affiliation(s)
- Yaqoob Lone
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Raj Kumar Koiri
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Mangla Bhide
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
20
|
Murphy CJ, Richburg JH. Implications of Sertoli cell induced germ cell apoptosis to testicular pathology. SPERMATOGENESIS 2015; 4:e979110. [PMID: 26413394 DOI: 10.4161/21565562.2014.979110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022]
Abstract
After exposure to toxicants, degenerating germ cells represents the most common testicular histopathological alteration, regardless of the mechanism of toxicity. Therefore, deciphering the primary toxicant cellular target and mechanism of action can be extremely difficult. However, most testicular toxicants display a cell-specific and a stage-specific pattern of damage, which is the best evidence for identifying the primary cellular target (i.e. germ cell, Sertoli cell, peritubular myoid cell, or Leydig cell). Some toxicant-induced Sertoli cell injury presents with germ cell apoptosis occurring primarily in spermatocytes in rats in stages XI-XIV, I and II. Although some toxicants result in spermatid degeneration and apoptosis, it is still unclear if spermatid apoptosis is a result of Sertoli cell-selective apoptosis or a direct effect of toxicants on spermatids, therefore if this is seen as the earliest change, one cannot infer the mechanism of apoptosis. This review summarizes some of the distinguishing features of Sertoli cell-induced germ cell apoptosis and the associated mechanisms of cell death to provide the toxicologist observing similar cell death, with evidence about a potential mode of action.
Collapse
Affiliation(s)
- Caitlin J Murphy
- Center for Molecular and Cellular Toxicology; College of Pharmacy; The University of Texas at Austin ; Austin, TX USA
| | - John H Richburg
- Center for Molecular and Cellular Toxicology; College of Pharmacy; The University of Texas at Austin ; Austin, TX USA
| |
Collapse
|
21
|
Li J, Hu Y, Zhang Q, Ma B, Wu Z, Wang Y, Sun J, Zhu J, Ying H, Ouyang P. Strontium fructose 1, 6-diphosphate alleviate cyclophosphamide-induced oligozoospermia by improving antioxidant and inhibiting testicular apoptosis via FAS/FASL pathway. Andrologia 2014; 47:995-1003. [DOI: 10.1111/and.12369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- J. Li
- School of Life Sciences and Pharmaceutical Engineering; Nanjing Tech University; Nanjing China
| | - Y. Hu
- School of Pharmaceutical Sciences; Nanjing Tech University; Nanjing China
| | - Q. Zhang
- School of Pharmaceutical Sciences; Nanjing Tech University; Nanjing China
| | - B. Ma
- School of Pharmaceutical Sciences; Nanjing Tech University; Nanjing China
| | - Z. Wu
- School of Pharmacy; FMHS; The University of Auckland; Auckland CA USA
| | - Y. Wang
- School of Pharmaceutical Sciences; Nanjing Tech University; Nanjing China
| | - J. Sun
- School of Pharmaceutical Sciences; Nanjing Tech University; Nanjing China
| | - J. Zhu
- School of Pharmaceutical Sciences; Nanjing Tech University; Nanjing China
| | - H. Ying
- School of Life Sciences and Pharmaceutical Engineering; Nanjing Tech University; Nanjing China
| | - P. Ouyang
- School of Life Sciences and Pharmaceutical Engineering; Nanjing Tech University; Nanjing China
| |
Collapse
|
22
|
Jia X, Cai C, Wang J, Gao N, Zhang H. Endocrine-disrupting effects and reproductive toxicity of low dose MCLR on male frogs (Rana nigromaculata) in vivo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:24-31. [PMID: 24971790 DOI: 10.1016/j.aquatox.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 06/03/2023]
Abstract
Toxic cyanobacterial blooms are potential global threats to aquatic ecosystems and human health. The World Health Organization has set a provisional guideline limit of 1 μg/L microcystin-LR (MCLR) in freshwater. However, MCLR concentrations in several water bodies have exceeded this level. Despite this recommended human safety standard, MCLR-induced endocrine-disrupting effects and reproductive toxicity on male frog (Rana nigromaculata) were demonstrated in this study. Results showed that sperm motility and sperm count were significantly and negatively correlated with exposure time and concentration. By contrast, abnormal sperm rate was positively correlated with both parameters. Ultrastructural observation results revealed abnormal sperm morphologies, vacuoles in spermatogenic cells, cell dispersion, incomplete cell structures, and deformed nucleoli. These results indicated that MCLR could induce toxic effects on the reproductive system of frogs, significantly decrease testosterone content, and rapidly increase estradiol content. Prolonged exposure and increased concentration enhanced the relative expression levels of P450 aromatase and steroidogenic factor 1; thus, endocrine function in frogs was disrupted. This study is the first to demonstrate in vivo MCLR toxicity in the reproductive system of male R. nigromaculata. This study provided a scientific basis of the global decline in amphibian populations.
Collapse
Affiliation(s)
- Xiuying Jia
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Chenchen Cai
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Jia Wang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Nana Gao
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China.
| |
Collapse
|
23
|
Zeng C, Sun H, Xie P, Wang J, Zhang G, Chen N, Yan W, Li G. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:25-32. [PMID: 24555956 DOI: 10.1016/j.aquatox.2014.01.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
We previously demonstrated that cyanobacteria-derived microcystin-leucine-arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L(-1)) for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L(-1) MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53-Bax-Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.
Collapse
Affiliation(s)
- Cheng Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Sun
- Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guirong Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Nan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
24
|
Zhang H, Cai C, Fang W, Wang J, Zhang Y, Liu J, Jia X. Oxidative damage and apoptosis induced by microcystin-LR in the liver of Rana nigromaculata in vivo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:11-18. [PMID: 23747548 DOI: 10.1016/j.aquatox.2013.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Microcystins (MCs) are hepatotoxins with potent inhibitor activity of protein phosphatases PP1 and PP2A. The present study shows that MC-LR can induce severe oxidative damage and apoptosis in the livers of frogs (Rana nigromaculata) exposed to 1μg/L MC-LR for 7 and 14d in vivo. Ultrastructural observation showed the apoptotic morphology of perinuclear chromatin margination and swollen mitochondria, indicating that MC-LR can significantly damage frog liver. Reactive oxygen species (ROS) production and malondialdehyde (MDA) content were positively correlated with exposure time. Meanwhile, reduced glutathione (GSH) content and GSH peroxidase (GPx) activity rapidly decreased after prolonged exposure to 1μg/L MC-LR in a time-dependent manner. These results imply that the antioxidant defense systems of the liver were damaged. Enhanced apoptosis of cells in the livers of MC-treated frogs was detected by terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling (TUNEL) associated with up-regulation of the mitochondrial system. MC-LR significantly stimulated the livers to release cytochrome c, which improved the protein expressions of Bax, caspase-3, and caspase-9 (p<0.01) and inhibited the protein expression of Bcl-2 with prolonged exposure (p<0.01) via the mitochondrial pathway. These results imply that the mitochondrial pathway has a key function in toxin-induced liver cell apoptosis. The expression of caspase-8 was induced significantly (p<0.01), which illustrates the mechanism that the death receptor pathway is also involved in apoptosis. The present findings show that MC-LR can induce apoptosis in frog liver, which may be related with the decline of amphibian populations. The World Health Organization-recommended drinking water limit for MC-LR in water may be not safe for amphibians.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Roegner AF, Brena B, González-Sapienza G, Puschner B. Microcystins in potable surface waters: toxic effects and removal strategies. J Appl Toxicol 2013; 34:441-57. [PMID: 24038121 DOI: 10.1002/jat.2920] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/01/2023]
Abstract
In freshwater, harmful cyanobacterial blooms threaten to increase with global climate change and eutrophication of surface waters. In addition to the burden and necessity of removal of algal material during water treatment processes, bloom-forming cyanobacteria can produce a class of remarkably stable toxins, microcystins, difficult to remove from drinking water sources. A number of animal intoxications over the past 20 years have served as sentinels for widespread risk presented by microcystins. Cyanobacterial blooms have the potential to threaten severely both public health and the regional economy of affected communities, particularly those with limited infrastructure or resources. Our main objectives were to assess whether existing water treatment infrastructure provides sufficient protection against microcystin exposure, identify available options feasible to implement in resource-limited communities in bloom scenarios and to identify strategies for improved solutions. Finally, interventions at the watershed level aimed at bloom prevention and risk reduction for entry into potable water sources were outlined. We evaluated primary studies, reviews and reports for treatment options for microcystins in surface waters, potable water sources and treatment plants. Because of the difficulty of removal of microcystins, prevention is ideal; once in the public water supply, the coarse removal of cyanobacterial cells combined with secondary carbon filtration of dissolved toxins currently provides the greatest potential for protection of public health. Options for point of use filtration must be optimized to provide affordable and adequate protection for affected communities.
Collapse
Affiliation(s)
- Amber F Roegner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | | | | |
Collapse
|
26
|
Zhang H, Cai C, Wu Y, Shao D, Ye B, Zhang Y, Liu J, Wang J, Jia X. Mitochondrial and endoplasmic reticulum pathways involved in microcystin-LR-induced apoptosis of the testes of male frog (Rana nigromaculata) in vivo. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:382-389. [PMID: 23548922 DOI: 10.1016/j.jhazmat.2013.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Previous studies have shown that toxins produced by toxic cyanobacterial blooms are hazardous materials. In the present study, 1 μg/L microcystin-LR (MC-LR) was observed to induce apoptosis in the testes of male Rana nigromaculata via the mitochondrial and endoplasmic reticulum (ER) pathways at exposure times ranging from 7 d to 14 d. The results showed that reactive oxygen species production and malondialdehyde content were positively correlated with exposure time. Antioxidant enzyme contents, such as reduced glutathione and glutathione peroxidase rapidly decreased, implying that the defense system of the testes induces oxidative damage. MC-LR significantly stimulated the release of cytochrome c in the testes, thereby improving the protein expressions of Bax and caspases-3, 8, and 9 (p<0.01) and inhibiting the protein expression of Bcl-2 with prolonged exposure (p<0.01). Ultrastructural observations showed distention of the mitochondria and endoplasmic reticulum and deformation of the nucleolus. Moreover, prolonged exposure times strengthened and weakened the relative expression levels of C/EBP homologous protein and GRP78, respectively. These results indicate that MC-LR-induced apoptosis of the testes in male frogs in vivo may occur through the mitochondrial and ER pathways. It also further proves our previous findings that MC-LR can induce toxicity in the male reproductive system of R. nigromaculata in vitro. The findings show that MC-LR is highly hazardous to frogs and that the accepted drinking water limit of 1 μg/L MC-LR exerts significant toxicity to amphibians.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou W, Zhang X, Xie P, Liang H, Zhang X. The suppression of hematopoiesis function in Balb/c mice induced by prolonged exposure of microcystin-LR. Toxicol Lett 2013; 219:194-201. [PMID: 23454832 DOI: 10.1016/j.toxlet.2013.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 02/08/2023]
Abstract
Microcystins (MCs) cause normocytic anemia in patients in a hemodialysis unit in Caruaru, Brazil in 1996, but the underlying mechanisms are still unclear. In the present study, Balb/c mice were intraperitoneally injected with microcystin-LR (MC-LR) at the doses of 0.5, 2 and 8 μg/kg body weight (bw) every 48 h for 30 d. After the prolonged exposure of MC-LR, significant decreases of red blood cell count (RBC), hemoglobin (Hb) and hematocrit (Ht) were observed in 2 and 8 μg/kg bw groups, but erythrocyte mean corpuscular volume (MCV) showed no significant changes. Significantly elevated micronucleus frequency was observed in bone marrow cells (BMCs) in all MC-LR treatments. The proliferation of BMCs significantly declined in both 2 and 8 μg/kg bw groups. Serum levels of some hematopoietic growth factors significantly changed in 8 μg/kg bw group, mainly including granulocyte-macrophage (GM-CSF), erythropoietin (EPO), interleukin-3 (IL-3) and TNF-α. The transcriptional levels of these 4 genes in BMCs were also significantly changed in 8 μg/kg bw group. MC-LR exposure significantly increased the apoptosis rates in all MC-LR treatments. The present study indicates prolonged exposure of MC-LR induces normocytic anemia, and the disturbed hematopoietic growth factors and BMCs apoptosis are responsible for this normocytic anemia.
Collapse
Affiliation(s)
- Wenshan Zhou
- Fisheries College of Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | | | | | | | | |
Collapse
|
28
|
Chen L, Zhang X, Zhou W, Qiao Q, Liang H, Li G, Wang J, Cai F. The interactive effects of cytoskeleton disruption and mitochondria dysfunction lead to reproductive toxicity induced by microcystin-LR. PLoS One 2013; 8:e53949. [PMID: 23342045 PMCID: PMC3547071 DOI: 10.1371/journal.pone.0053949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
The worldwide occurrence of cyanobacterial blooms evokes profound concerns. The presence of microcystins (MCs) in waters and aquatic food increases the risk to human health. Some recent studies have suggested that the gonad is the second most important target organ of MCs, however, the potential toxicity mechanisms are still unclear. For a better understanding of reproductive toxicity of MCs on animals, we conducted the present experimental investigation. Male rats were intraperitoneally injected with MC-LR for 50 d with the doses of 1 and 10 µg/kg body weight per day. After prolonged exposure to MC-LR, the testes index significantly decreased in 10 µg/kg group. Light microscope observation indicated that the space between the seminiferous tubules was increased. Ultrastructural observation showed some histopathological characteristics, including cytoplasmic shrinkage, cell membrane blebbing, swollen mitochondria and deformed nucleus. Using Q-PCR methods, the transcriptional levels of some cytoskeletal and mitochondrial genes were determined. MC-LR exposure affected the homeostasis of the expression of cytoskeletal genes, causing possible dysfunction of cytoskeleton assembly. In MC-LR treatments, all the 8 mitochondrial genes related with oxidative phosphorylation (OXPHOS) significantly increased. The reactive oxygen species (ROS) level significantly increased in 10 µg/kg group. The mitochondria swelling and DNA damage were also determined in 10 µg/kg group. Hormone levels of testis significantly changed. The present study verified that both cytoskeleton disruption possibly due to cytoskeletal reorganization or depolymerization and mitochondria dysfunction interact with each other through inducing of reactive oxygen species and oxidative phosphorylation, and jointly result in testis impairment after exposure to MC-LR.
Collapse
Affiliation(s)
- Liang Chen
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Xuezhen Zhang
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Wenshan Zhou
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Qin Qiao
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Hualei Liang
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Guangyu Li
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Jianghua Wang
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Fei Cai
- Department of pharmacology, Medical College, Xianning University, Xianning, China
| |
Collapse
|
29
|
Zhou Y, Chen Y, Yuan M, Xiang Z, Han X. In vivo study on the effects of microcystin—LR on the apoptosis, proliferation and differentiation of rat testicular spermatogenic cells of male rats injected i.p. with toxins. J Toxicol Sci 2013; 38:661-70. [DOI: 10.2131/jts.38.661] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yuan Zhou
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, China
| | - Yu Chen
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, China
| | - Mingming Yuan
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, China
| |
Collapse
|
30
|
Wang SC, Geng ZZ, Wang Y, Tong ZH, Yu HQ. Essential roles of p53 and MAPK cascades in microcystin-LR-induced germline apoptosis in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3442-3448. [PMID: 22353034 DOI: 10.1021/es203675y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hepatotoxin microcystin-LR (MC-LR) can induce apoptosis in a variety of cells. However, the underlying pathways of MC-LR-induced apoptosis have not been well elucidated yet. To find out the roles of underlying pathways in apoptosis signaling in response to MC-LR, germ cell corpses were scored in Caenorhabditis elegans N2 wild type and strains carrying mutated alleles homologous to their mammalian counterparts. We found that exposure to MC-LR at 1.0 μg/L significantly increased germline apoptosis in N2. Germline apoptosis was absent at all doses in ced-3 and ced-4 loss-of-function strains. MC-LR-induced apoptosis was blocked in Bcl-2 gain-of-function strain ced-9(n1950), whereas it showed a slight increase in BH3-only protein EGL-1 mutated strain. The null mutation of cep-1, which is the homologue of p53 tumor suppressor gene, significantly inhibited MC-LR-induced cell death, and checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects. Apoptosis in loss-of-function members of ERK, JNK, and p38 MAPK signaling pathways reduced significantly under MC-LR exposure, and members of MAPKK subgroup JKK-1, MEK-1, and SEK-1 worked cooperatively. Our results show that the caspase protein CED-3 and Apaf-1 protein CED-4 were absolutely required for the apoptotic processes, and that the p53/CEP-1 and MAPKs cascades played essential roles in modulating MC-LR-induced germline apoptosis in C. elegans.
Collapse
Affiliation(s)
- Shun-Chang Wang
- Department of Life Science, Huainan Normal University, Huainan 232001, China
| | | | | | | | | |
Collapse
|
31
|
Sharma S, Chaturvedi J, Chaudhari BP, Singh RL, Kakkar P. Probiotic Enterococcus lactis IITRHR1 protects against acetaminophen-induced hepatotoxicity. Nutrition 2012; 28:173-81. [DOI: 10.1016/j.nut.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/15/2011] [Accepted: 02/28/2011] [Indexed: 02/08/2023]
|
32
|
Zhao S, Xie P, Li G, Jun C, Cai Y, Xiong Q, Zhao Y. The proteomic study on cellular responses of the testes of zebrafish (Danio rerio
) exposed to microcystin-RR. Proteomics 2012; 12:300-12. [DOI: 10.1002/pmic.201100214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Koga S, Kojima S, Kishimoto T, Kuwabara S, Yamaguchi A. Over-expression of map kinase phosphatase-1 (MKP-1) suppresses neuronal death through regulating JNK signaling in hypoxia/re-oxygenation. Brain Res 2011; 1436:137-46. [PMID: 22197701 DOI: 10.1016/j.brainres.2011.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/23/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022]
Abstract
A pivotal role of c-jun N-terminal kinase (JNK) on neuronal apoptosis has been demonstrated in a rodent stroke model. MAP kinase phosphatase 1 (MKP-1) is an archetypal member of the dual-specificity protein phosphatase (DUSP) family, which inactivates mitogen-activated protein kinase (MAPK) including JNK through dephosphorylation. MKP-1, one of immediate early genes in stress conditions, was induced at transcriptional level in hypoxia/re-oxygenation (H/R) in neuroblastoma N1E115 cells, however the activation of JNK was not suppressed in the acute phase of re-oxygenation. Small interference RNA-mediated knock-down of MKP-1 enhanced phospho-JNK and neuronal death that is rescued by JNK inhibitor in H/R. Conversely, conditional over-expression of MKP-1 suppressed phospho-JNK, the expression of proapoptotic genes, and neuronal death in H/R. Further the immunoreactivity of MKP-1 was detected in the neurons and partially co-localized with that of phospho-JNK in the surrounding zone of ischemia in rat MCA-O (middle cerebral artery occlusion) reperfusion model. These findings indicate that over-expression of MKP-1 could suppress neuronal death possibly through regulating JNK signaling in vitro and be a prominent neuroprotective target for the treatment of acute cerebral infarction.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neurobiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | |
Collapse
|
34
|
Li GY, Xie P, Li HY, Hao L, Xiong Q, Qiu T. Involment of p53, Bax, and Bcl-2 pathway in microcystins-induced apoptosis in rat testis. ENVIRONMENTAL TOXICOLOGY 2011; 26:111-117. [PMID: 19760617 DOI: 10.1002/tox.20532] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
It has been reported that microcystins (MCs) could accumulate in the gonads of mammals and MCs exposure exerts obvious toxic effects on male reproductive system of mammals. We have comfirmedthat MCs could accumulate and induce apoptosis in rat testis. The p53, Bax, and Bcl-2 protein play important roles in mitochondria-dependent apoptotic pathway, and this study aimed to investigate whether the p53, Bax, and Bcl-2 pathway is involved in microcystins-induced apoptosis in rat testis and discussed the possible mechanisms. Our results show that MCs led to persistent increase of transcriptional and protein level of P53 and Bax expression but led to decrease of Bcl-2 expression, resulting in an increased ratio of Bax to Bcl-2, which might contribute to apoptotic cell death of rat testis following MCs treatment. The increased ratio of expression of Bax to that of Bcl-2 induced by MCs suggests their important role in MCs-induced apoptosis in rat testis tissue.
Collapse
Affiliation(s)
- Guang-Yu Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, The Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Chen Y, Xu J, Li Y, Han X. Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR. Reprod Toxicol 2011; 31:551-7. [PMID: 21338672 DOI: 10.1016/j.reprotox.2011.02.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/26/2011] [Accepted: 02/13/2011] [Indexed: 10/18/2022]
Abstract
The effects of chronic low-dose exposure to microcystins were preliminarily studied on sperm quality and testicular function in male mice. Microcystin-LR (MC-LR) was orally administered to male mice at 0, 1, 3.2, and 10 μg/L for 3 and 6 months. Our preliminary study found in three-month group, sperm quality declined at 3.2 and 10 μg/L doses, testosterone dropped at 10 μg/L, levels of LH and FSH increased, and Leydig cells exhibited apoptosis. Similar, but more pronounced, effects were observed in groups treated with MC-LR for 6 months. Compared to control (0 μg/L), the rate of sperm abnormality was higher and testosterone levels were lower following administration of 3.2 and 10 μg/L MC-LR and structural damage to the testis was observed with 10 μg/L dose. Thus, chronic low-dose treatment with MC-LR results in substantial toxicity to male reproduction, causing declines in sperm quality, decreased levels of serum testosterone, and injury to the testis.
Collapse
Affiliation(s)
- Yu Chen
- Medical School, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | | | | | | |
Collapse
|
36
|
Deng DF, Zheng K, Teh FC, Lehman PW, Teh SJ. Toxic threshold of dietary microcystin (-LR) for quart medaka. Toxicon 2010; 55:787-94. [DOI: 10.1016/j.toxicon.2009.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/06/2009] [Accepted: 11/12/2009] [Indexed: 01/17/2023]
|
37
|
Zhu XB, Tay TW, Andriana BB, Alam MS, Choi EK, Tsunekawa N, Kanai Y, Kurohmaru M. Effects of di-iso-butyl phthalate on testes of prepubertal rats and mice. Okajimas Folia Anat Jpn 2010; 86:129-136. [PMID: 20560449 DOI: 10.2535/ofaj.86.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Di-iso-butyl phthalate (DiBP), a special plasticizer, is used as a substitute for di(n-butyl) phthalate (DBP). The effects of DiBP on testes in prepubertal rodents still remain to be obscure. Testicular toxicity of DiBP was investigated in 21-day-old Sprague-Dawley rats and C57BL/6N mice, using with in situ TUNEL method. For an acute exposure experiment, animals were once given DiBP at various concentrations by oral gavage. For a subchronic exposure experiment, they were daily given DiBP at various concentrations for consecutive 7 days. Controls were treated with corn oil under the same condition. For a recovery experiment, rats were once given DiBP (1000 mg/kg), and were sacrificed at day 1 to 8 after administration. Furthermore, the disorder of vimentin filaments in Sertoli cells after daily administration of DiBP (500 mg/kg) for consecutive 7 days in rats also identified by immunohistochemistry using anti-vimentin antibody. As a result, the present study demonstrated that DiBP can induce testicular atrophy in rats due to the increase of TUNEL-positive spermatogenic cells in both acute and subchronic exposure experiments. At the same time, the disorder of vimentin filaments in Sertoli cells was recognized. However, no such damages could be found in mouse testis. For the recovery experiment, the testis weight and testicular morphology returned to normal at day 6 after administration. In conclusion, the present study indicates that DiBP causes the significant increase of TUNEL-positive spermatogenic cells and the disorder of vimentin filaments in Sertoli cells in rats and that DiBP shows a species-specific toxicity.
Collapse
Affiliation(s)
- Xiao Bo Zhu
- Department of Veterinary Anatomy, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ping XIE. A review on the studies related to the effects of microcystins on human health. ACTA ACUST UNITED AC 2009. [DOI: 10.18307/2009.0501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|