1
|
Díaz JJAR, Garay AFG, Kayano AM, Holanda R, Francisco AF, Kuehn CC, Soares AM, Vega C, Calderon LDA. Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain. J Venom Anim Toxins Incl Trop Dis 2025; 31:e20240055. [PMID: 39963262 PMCID: PMC11832194 DOI: 10.1590/1678-9199-jvatitd-2024-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
Background Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately seven million individuals worldwide, with the highest number of cases in Latin America. CD has two phases, of which the chronic phase is characterized by reduced efficacy in drug therapies. This and other factors make developing new strategies that aim to identify molecules capable of becoming alternatives to or complement current chemotherapy vitally important. Methods Cruzain and AsCystatin were obtained recombinantly through expression in E. coli. Bioinformatic assays were conducted with both molecules, followed by in vitro enzyme inhibition assays. Subsequently, in silico studies allowed for the design of peptides, which were then assessed for molecular interactions with cruzain. The designed peptides were synthesized, and their inhibitory potential on cruzain and their trypanocidal and cytotoxic effects in vitro were finally assessed. Results AsCystatin, a potential inhibitor of cysteine proteases, was identified from previously published scientific literature. In silico assays suggested that AsCystatin interacts with key regions of cruzain, and was subsequently produced through heterologous expression, obtaining a protein with a high degree of purity. Next, the inhibition of AsCystatin on the activity of cruzain was assessed, observing that approximately 20 µM of cystatin could inhibit 50% of the catalytic activity of the recombinant enzyme. Based on the in-silico analysis performed previously, original, and modified peptides were designed and tested, which allowed for identifying four peptides with inhibitory capacity on the enzymatic activity of cruzain. Finally, three of these peptides showed trypanocidal activity on epimastigote forms of T. cruzi in in vitro models. Conclusion It was possible to identify AsCystatin and four peptides derived from this protein with inhibitory activity on cruzain, highlighting the trypanocidal effect of these peptides observed in in vitro assays.
Collapse
Affiliation(s)
- Jorge Javier Alfonso Ruiz Díaz
- Center for the Development of Scientific Research (CEDIC), Asunción, Paraguay
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
| | - Ana Fidelina Gómez Garay
- Center for the Development of Scientific Research (CEDIC), Asunción, Paraguay
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- International Network for Research and Excellence Knowledge of Western/Eastern Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- International Network for Research and Excellence Knowledge of Western/Eastern Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Center for Research in Tropical Medicine (CEPEM/SESAU-RO), Porto Velho, RO, Brazil
| | | | - Aleff Ferreira Francisco
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- International Network for Research and Excellence Knowledge of Western/Eastern Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | | | - Andreimar Martins Soares
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- International Network for Research and Excellence Knowledge of Western/Eastern Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- National Institute of Science and Technology in Epidemiology of the Western Amazonia (INCT-EpiAmO), Porto Velho, RO, Brazil
- São Lucas Porto Velho University Center, Porto Velho, RO, Brazi
| | - Celeste Vega
- Center for the Development of Scientific Research (CEDIC), Asunción, Paraguay
| | - Leonardo de Azevedo Calderon
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- Department of Medicine, Federal University of Rondônia, Porto Velho, RO, Brazil
| |
Collapse
|
2
|
Diniz EADS, da Silva DP, Ferreira SDS, Fernandes-Pedrosa MDF, Vieira DS. Temperature effect in the inhibition of PLA 2 activity of Bothrops brazili venom by Rosmarinic and Chlorogenic acids, experimental and computational approaches. J Biomol Struct Dyn 2024; 42:5238-5252. [PMID: 37378497 DOI: 10.1080/07391102.2023.2226912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Myotoxicity caused by snakebite envenoming emerges as one of the main problems of ophidic accidents as it is not well neutralized by the current serum therapy. A promising alternative is to search for efficient small molecule inhibitors that can act against multiple venom components. Phospholipase A2 (PLA2) is frequently found in snake venom and is usually associated with myotoxicity. Thus it represents an excellent target for the search of new treatments. This work reports the effect of temperature in the inhibition of catalytic properties of PLA2 from Bothrops brazili venom by Rosmarinic (RSM) and Chlorogenic (CHL) acids through experimental and computational approaches. Three temperatures were evaluated (25, 37 and 50 °C). In the experimental section, enzymatic assays showed that RSM is a better inhibitor in all three temperatures. At 50 °C, the inhibition efficiency decayed significantly for both acids. Docking studies revealed that both ligands bind to the hydrophobic channel of the protein dimer where the phospholipid binds in the catalytic process, interacting with several functional residues. In this context, RSM presents better interaction energies due to stronger interactions with chain B of the dimer. Molecular dynamics simulations showed that RSM can establish selective interactions with ARG112B of PLA2, which is located next to residues of the putative Membrane Disruption Site in PLA2-like structures. The affinity of RSM and CHL acids towards PLA2 is mainly driven by electrostatic interactions, especially salt bridge interactions established with residues ARG33B (for CHL) and ARG112B (RSM) and hydrogen bonds with residue ASP89A. The inability of CHL to establish a stable interaction with ARG112B was identified as the reason for its lower inhibition efficiency compared to RSM at the three temperatures. Furthermore, extensive structural analysis was performed to explain the lower inhibition efficiency at 50 °C for both ligands. The analysis performed in this work provides important information for the future design of new inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Davi Serradella Vieira
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av Senador Salgado Filho, Natal-RN, Brazil
| |
Collapse
|
3
|
Nina-Cueva O, Olazabal-Chambilla D, Quispe-Arpasi J, Alzamora-Sánchez A, Gomes-Heleno M, Huancahuire-Vega S. Biochemical characterization of Bothrops roedingeri Mertens, 1942 snake venom and its edematogenic, hemorrhagic, and myotoxic activities. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2020; 40:682-692. [PMID: 33275347 PMCID: PMC7808785 DOI: 10.7705/biomedica.5228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Introduction: Snakebite envenoming is considered by the World Health Organization (WHO) as a neglected tropical disease. Currently, Bothrops snake venoms are being studied intensively, but there is little knowledge about Bothrops roedingeri venom. Objectives: To biochemically characterize B. roedingeri total venom and evaluate its myotoxic, edematogenic, and hemorrhagic activity. Materials and methods: We characterized B. roedingeri venom enzymatic activity by determining the phospholipase A2 and the proteolytic and fibrinogenolytic action using SDSPAGE electrophoresis while we characterized its venom toxicity by determining the minimum hemorrhagic dose, the minimum edema dose, and the local and systemic myotoxic effects. Results: Bothrops roedingeri venom showed a PLA2 activity of 3.45 ± 0.11 nmoles/min, proteolytic activity of 0.145 ± 0.009 nmoles/min, and a fibrinogen coagulation index of 6.67 ± 1.33 seconds. On the other hand, it produced an minimum hemorrhagic dose of 24.5 μg, an minimum edema dose of 15.6 μg, and a pronounced local myotoxic effect evidenced by the elevation of plasma creatine kinase levels after intramuscular inoculation. The venom showed no systemic myotoxicity. Conclusions: Bothrops roedingeri venom has local hemorrhagic, edematogenic, and myotoxic activity. Enzymatically, it has high PLA2 activity, which would be responsible for the myotoxic and edematogenic effects. It also has proteolytic activity, which could affect coagulation given its ability to degrade fibrinogen, and it causes bleeding through the metalloproteases.
Collapse
Affiliation(s)
- Oswaldo Nina-Cueva
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| | - Derly Olazabal-Chambilla
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| | - Jair Quispe-Arpasi
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| | - Adell Alzamora-Sánchez
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| | - Mauricio Gomes-Heleno
- Laboratorio de Química de Proteínas, Departamento de Bioquímica, Instituto de Biología, Universidad Estatal de Campinas, Sao Paulo, Brasil.
| | - Salomón Huancahuire-Vega
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| |
Collapse
|
4
|
Rodrigues CR, Molina DAM, Silva de Assis TC, Liberato C, Melo-Braga MN, Ferreyra CB, Cárdenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Proteomic and toxinological characterization of Peruvian pitviper Bothrops brazili ("jergón shushupe"), venom. Toxicon 2020; 184:19-27. [PMID: 32479836 DOI: 10.1016/j.toxicon.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
Abstract
Bothrops brazili is a pitviper from Amazonian region, responsible for many accidents in Peru. Despite its relevance, its venom has not been extensively characterized. In the present work, Bothrops brazili venom (BbV) components were analyzed by RP-HPLC, SDS-PAGE and MALDI-TOF/TOF. Approximately 37 proteins were identified, belonging to 7 families. Snake venom metalloproteinases (SVMPs) were the most abundant proteins of the venom (33.05%), followed by snake venom serine proteinases (SVSPs, 26.11%), phospholipases A2 (PLA2, 25.57%), snake C-type lectins (CTLs, 9.61%), L-aminoacid oxidase (LAAO, 3.80%), cystein-rich secretory proteins (CRISP, 1.67%) and Bradykinin-potentiating peptide (BPP, 0.20%). In vitro enzymatic activities of BbV showed high levels of SVMP activity and reduced Hyal activity in comparison with other bothropic venoms. Furthermore, BbV reduced VERO cells viability. ELISA and Western Blotting showed that both Peruvian and Brazilian bothropic antivenoms were able to recognize BbV components. This work provides an overview of BbV venom content and indicates a potential efficiency of Peruvian and Brazilian antivenoms to treat accidents with this species.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis Alexis Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thamyres C Silva de Assis
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Liberato
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Sanz L, Pérez A, Quesada-Bernat S, Diniz-Sousa R, Calderón LA, Soares AM, Calvete JJ, Caldeira CAS. Venomics and antivenomics of the poorly studied Brazil's lancehead, Bothrops brazili (Hoge, 1954), from the Brazilian State of Pará. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190103. [PMID: 32362928 PMCID: PMC7179968 DOI: 10.1590/1678-9199-jvatitd-2019-0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/28/2020] [Indexed: 11/26/2022] Open
Abstract
Background: The Brazil’s lancehead, Bothrops brazili, is a poorly
studied pit viper distributed in lowlands of the equatorial rainforests of
southern Colombia, northeastern Peru, eastern Ecuador, southern and
southeastern Venezuela, Guyana, Suriname, French Guiana, Brazil, and
northern Bolivia. Few studies have been reported on toxins isolated from
venom of Ecuadorian and Brazilian B. brazili. The aim of
the present study was to elucidate the qualitative and quantitative protein
composition of B. brazili venom from Pará (Brazil), and to
carry out a comparative antivenomics assessment of the immunoreactivity of
the Brazilian antibothropic pentavalent antivenom [soro
antibotrópico (SAB) in Portuguese] against the venoms of
B. brazili and reference species, B.
jararaca. Methods: We have applied a quantitative snake venomics approach, including
reverse-phase and two-dimensional electrophoretic decomplexation of the
venom toxin arsenal, LC-ESI-MS mass profiling and peptide-centric MS/MS
proteomic analysis, to unveil the overall protein composition of B.
brazili venom from Pará (Brazil). Using third-generation
antivenomics, the specific and paraspecific immunoreactivity of the
Brazilian SAB against homologous (B. jararaca) and
heterologous (B. brazili) venoms was investigated. Results: The venom proteome of the Brazil’s lancehead (Pará) is predominantly composed
of two major and three minor acidic (19%) and two major and five minor basic
(14%) phospholipase A2 molecules; 7-11 snake venom
metalloproteinases of classes PI (21%) and PIII (6%); 10-12 serine
proteinases (14%), and 1-2 L-amino acid oxidases (6%). Other toxins,
including two cysteine-rich secretory proteins, one C-type lectin-like
molecule, one nerve growth factor, one 5'-nucleotidase, one
phosphodiesterase, one phospholipase B, and one glutaminyl cyclase molecule,
represent together less than 2.7% of the venom proteome. Third generation
antivenomics profile of the Brazilian pentabothropic antivenom showed
paraspecific immunoreactivity against all the toxin classes of B.
brazili venom, with maximal binding capacity of
132.2 mg venom/g antivenom. This figure indicates that 19% of antivenom's
F(ab')2 antibodies bind B. brazili venom
toxins. Conclusion: The proteomics outcome contribute to a deeper insight into the spectrum of
toxins present in the venom of the Brazil’s lancehead, and rationalize the
pathophysiology underlying this snake bite envenomings. The comparative
qualitative and quantitative immunorecognition profile of the Brazilian
pentabothropic antivenom toward the venom toxins of B.
brazili and B. jararaca (the reference venom
for assessing the bothropic antivenom's potency in Brazil), provides clues
about the proper use of the Brazilian antibothropic polyvalent antivenom in
the treatment of bites by the Brazil’s lancehead.
Collapse
Affiliation(s)
- Libia Sanz
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Alicia Pérez
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Sarai Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,São Lucas University Center (UniSL), Porto Velho, RO, Brazil
| | - Leonardo A Calderón
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil.,Aparício Carvalho University Center (FIMCA), Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,São Lucas University Center (UniSL), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil.,National Institute of Science and Technology in Epidemiology of the Western Amazônia, (INCT-EpiAmO), Porto Velho, RO, Brazil
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Cleópatra A S Caldeira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil
| |
Collapse
|
6
|
Huancahuire-Vega S, Hollanda LM, Gomes-Heleno M, Newball-Noriega EE, Marangoni S. ACP-TX-I and ACP-TX-II, Two Novel Phospholipases A 2 Isolated from Trans-Pecos Copperhead Agkistrodon contortrix pictigaster Venom: Biochemical and Functional Characterization. Toxins (Basel) 2019; 11:toxins11110661. [PMID: 31739403 PMCID: PMC6891687 DOI: 10.3390/toxins11110661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023] Open
Abstract
This work reports the purification and biochemical and functional characterization of ACP-TX-I and ACP-TX-II, two phospholipases A2 (PLA2) from Agkistrodon contortrix pictigaster venom. Both PLA2s were highly purified by a single chromatographic step on a C18 reverse phase HPLC column. Various peptide sequences from these two toxins showed similarity to those of other PLA2 toxins from viperid snake venoms. ACP-TX-I belongs to the catalytically inactive K49 PLA2 class, while ACP-TX-II is a D49 PLA2, and is enzymatically active. ACP-TX-I PLA2 is monomeric, which results in markedly diminished myotoxic and inflammatory activities when compared with dimeric K49 PLA2s, confirming the hypothesis that dimeric structure contributes heavily to the profound myotoxicity of the most active viperid K49 PLA2s. ACP-TX-II exhibits the main pharmacological actions reported for this protein family, including in vivo local myotoxicity, edema-forming activity, and in vitro cytotoxicity. ACP-TX-I PLA2 is cytotoxic to A549 lung carcinoma cells, indicating that cytotoxicity to these tumor cells does not require enzymatic activity.
Collapse
Affiliation(s)
- Salomón Huancahuire-Vega
- Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Escuela de Medicina Humana, Universidad Peruana Unión (UPeU), Lima 15, Peru;
- Correspondence: ; Tel.: +51-9-9757-4011
| | - Luciana M. Hollanda
- Instituto de Tecnologia e Pesquisa, Universidade Tiradentes (UNIT), Aracaju 49032-490, SE, Brazil;
| | - Mauricio Gomes-Heleno
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, SP, Brazil; (M.G.-H.); (S.M.)
| | - Edda E. Newball-Noriega
- Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Escuela de Medicina Humana, Universidad Peruana Unión (UPeU), Lima 15, Peru;
| | - Sergio Marangoni
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, SP, Brazil; (M.G.-H.); (S.M.)
| |
Collapse
|
7
|
Sobrinho JC, Kayano AM, Simões-Silva R, Alfonso JJ, Gomez AF, Gomez MCV, Zanchi FB, Moura LA, Souza VR, Fuly AL, de Oliveira E, da Silva SL, Almeida JR, Zuliani JP, Soares AM. Anti-platelet aggregation activity of two novel acidic Asp49-phospholipases A2 from Bothrops brazili snake venom. Int J Biol Macromol 2018; 107:1014-1022. [DOI: 10.1016/j.ijbiomac.2017.09.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
8
|
BbrzSP-32, the first serine protease isolated from Bothrops brazili venom: Purification and characterization. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:15-25. [DOI: 10.1016/j.cbpa.2016.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/14/2015] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
|
9
|
Marques PP, Esteves A, Lancellotti M, Ponce-Soto LA, Marangoni S. Novel acidic phospholipase A 2 from Porthidium hyoprora causes inflammation with mast cell rich infiltrate. Biochem Biophys Rep 2015; 1:78-84. [PMID: 29124136 PMCID: PMC5668520 DOI: 10.1016/j.bbrep.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
Phospholipases A2 (PLA2) are a group of enzymes that hydrolyze phospholipids at the sn-2 position, being present in all nature. In venomous animals, these proteins assume a special role, being able to exert diverse pharmacological effects. In this work, authors identified a new isoform of PLA2 in the venom of Porthidium hyoprora, which was isolated through sequential chromatographic steps and named PhTX-III. The enzyme was characterized biochemically and structurally. Structural studies using mass spectrometry confirmed an acidic secretory PLA2, family IIA, with molecular mass of 13,620.9 Da and identification of 86% of its primary sequence. PhTX-III did not exhibit myotoxic, anticoagulant or antibacterial effects, often present in this class of enzymes. Although, it was capable of initiate inflammatory response, with local edema and release of cytokines IL-1α, IL-6 and TNF-α, probably due to mast cell degranulation.
Collapse
Affiliation(s)
- Petrus Pires Marques
- Department of Biochemistry and Tissue Biology, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Alessandra Esteves
- Department of Anatomy, Institute of Biomedical Sciences (ICB), Federal University of Alfenas (UNIFAL), Alfenas, MG, Brazil
| | - Marcelo Lancellotti
- Department of Biochemistry and Tissue Biology, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luis Alberto Ponce-Soto
- Department of Biochemistry and Tissue Biology, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sergio Marangoni
- Department of Biochemistry and Tissue Biology, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
10
|
Bp-13 PLA2: Purification and Neuromuscular Activity of a New Asp49 Toxin Isolated from Bothrops pauloensis Snake Venom. Biochem Res Int 2015; 2015:826059. [PMID: 25789175 PMCID: PMC4350628 DOI: 10.1155/2015/826059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 11/18/2022] Open
Abstract
A new PLA2 (Bp-13) was purified from Bothrops pauloensis snake venom after a single chromatographic step of RP-HPLC on μ-Bondapak C-18. Amino acid analysis showed a high content of hydrophobic and basic amino acids and 14 half-cysteine residues. The N-terminal sequence showed a high degree of homology with basic Asp49 PLA2 myotoxins from other Bothrops venoms. Bp-13 showed allosteric enzymatic behavior and maximal activity at pH 8.1, 36°–45°C. Full Bp-13 PLA2 activity required Ca2+; its PLA2 activity was inhibited by Mg2+, Mn2+, Sr2+, and Cd2+ in the presence and absence of 1 mM Ca2+. In the mouse phrenic nerve-diaphragm (PND) preparation, the time for 50% paralysis was concentration-dependent (P < 0.05). Both the replacement of Ca2+ by Sr2+ and temperature lowering (24°C) inhibited the Bp-13 PLA2-induced twitch-tension blockade. Bp-13 PLA2 inhibited the contractile response to direct electrical stimulation in curarized mouse PND preparation corroborating its contracture effect. In biventer cervicis preparations, Bp-13 induced irreversible twitch-tension blockade and the KCl evoked contracture was partially, but significantly, inhibited (P > 0.05). The main effect of this new Asp49 PLA2 of Bothrops pauloensis venom is on muscle fiber sarcolemma, with avian preparation being less responsive than rodent preparation. The study enhances biochemical and pharmacological characterization of B. pauloensis venom.
Collapse
|
11
|
Huancahuire-Vega S, Ponce-Soto LA, Marangoni S. PhTX-II a basic myotoxic phospholipase A₂ from Porthidium hyoprora snake venom, pharmacological characterization and amino acid sequence by mass spectrometry. Toxins (Basel) 2014; 6:3077-97. [PMID: 25365526 PMCID: PMC4247251 DOI: 10.3390/toxins6113077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/10/2023] Open
Abstract
A monomeric basic PLA₂ (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA₂ enzyme class and displays conserved domains as the catalytic network, Ca²⁺-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA₂ showed an allosteric behavior and its enzymatic activity was dependent on Ca²⁺. Examination of PhTX-II PLA₂ by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA₂ causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA₂ that contributes with toxic actions caused by P. hyoprora venom.
Collapse
Affiliation(s)
- Salomón Huancahuire-Vega
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil.
| | - Luis Alberto Ponce-Soto
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil.
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
12
|
Fernandes CA, Comparetti EJ, Borges RJ, Huancahuire-Vega S, Ponce-Soto LA, Marangoni S, Soares AM, Fontes MR. Structural bases for a complete myotoxic mechanism: Crystal structures of two non-catalytic phospholipases A2-like from Bothrops brazili venom. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2772-81. [DOI: 10.1016/j.bbapap.2013.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 11/16/2022]
|
13
|
Unmasking snake venom of Bothrops leucurus: purification and pharmacological and structural characterization of new PLA2 Bleu TX-III. BIOMED RESEARCH INTERNATIONAL 2013; 2013:941467. [PMID: 23509815 PMCID: PMC3581250 DOI: 10.1155/2013/941467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 11/18/2022]
Abstract
Bleu TX-III was isolated from Bothrops leucurus snake venom on one-step analytical chromatography reverse phase HPLC, was homogeneous on SDS-PAGE, and was confirmed by Q-Tof Ultima API ESI/MS (TOF MS mode) mass spectrometry in 14243.8 Da. Multiple alignments of Bleu TX-III show high degree of homology with basic PLA2 myotoxins from other Bothrops venoms. Our studies on local and systemic myotoxicity "in vivo" reveal that Bleu TX-III is myotoxin with local but not systemic action due to the decrease in the plasmatic CK levels when Bleu TX-III is administrated by intravenous route in mice (dose 1 and 5 μg). And at a dose of 20 μg myotoxin behaves like a local and systemic action. Bleu TX-III induced moderate marked paw edema, evidencing the local increase in vascular permeability. The inflammatory events induced in the mice (I.M.) were investigated. The increase in the levels of IL-1, IL-6, and TNF-α was observed in the plasma. It is concluded that Bleu TX-III induces inflammatory events in this model. The enzymatic phospholipid hydrolysis may be relevant to these phenomena. Bothrops leucurus venom is still not extensively explored, and the knowledge of its toxins separately through the study of structure/function will contribute for a better understanding of its action mechanism.
Collapse
|
14
|
Biochemical characterization and pharmacological properties of new basic PLA2 BrTX-I isolated from Bothrops roedingeri (Roedinger's Lancehead) Mertens, 1942, snake venom. BIOMED RESEARCH INTERNATIONAL 2012; 2013:591470. [PMID: 23509747 PMCID: PMC3591238 DOI: 10.1155/2013/591470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
BrTX-I, a PLA2, was purified from Bothrops roedingeri venom after only one chromatographic step using reverse-phase HPLC on μ-Bondapak C-18 column. A molecular mass of 14358.69 Da was determined by MALDI-TOF mass spectrometry. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The total amino acid sequence was obtained using SwissProt database and showed high amino acid sequence identity with other PLA2 from snake venom. The amino acid composition showed that BrTX-I has a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA2. BrTX-I presented PLA2 activity and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0, 35-45°C, and required Ca(2+). In vitro, the whole venom and BrTX-I caused a neuromuscular blockade in biventer cervicis preparations in a similar way to other Bothrops species. BrTX-I induced myonecrosis and oedema-forming activity analyzed through injection of the purified BrTX-I in mice. Since BrTX-I exerts a strong proinflammatory effect, the enzymatic phospholipid hydrolysis might be relevant for these phenomena; incrementing levels of IL-1, IL-6, and TNF α were observed at 15 min, 30 min, one, two, and six hours postinjection, respectively.
Collapse
|
15
|
Huancahuire-Vega S, Corrêa DHA, Hollanda LM, Lancellotti M, Ramos CHI, Ponce-Soto LA, Marangoni S. Chemical modifications of PhTX-I myotoxin from Porthidium hyoprora snake venom: effects on structural, enzymatic, and pharmacological properties. BIOMED RESEARCH INTERNATIONAL 2012; 2013:103494. [PMID: 23484072 PMCID: PMC3591178 DOI: 10.1155/2013/103494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/31/2012] [Indexed: 12/03/2022]
Abstract
We recently described the isolation of a basic PLA2 (PhTX-I) from Porthidium hyoprora snake venom. This toxin exhibits high catalytic activity, induces in vivo myotoxicity, moderates footpad edema, and causes in vitro neuromuscular blockade. Here, we describe the chemical modifications of specific amino acid residues (His, Tyr, Lys, and Trp), performed in PhTX-I, to study their effects on the structural, enzymatic, and pharmacological properties of this myotoxin. After chemical treatment, a single His, 4 Tyr, 7 Lys, and one Trp residues were modified. The secondary structure of the protein remained unchanged as measured by circular dichroism; however other results indicated the critical role played by Lys and Tyr residues in myotoxic, neurotoxic activities and mainly in the cytotoxicity displayed by PhTX-I. His residue and therefore catalytic activity of PhTX-I are relevant for edematogenic, neurotoxic, and myotoxic effects, but not for its cytotoxic activity. This dissociation observed between enzymatic activity and some pharmacological effects suggests that other molecular regions distinct from the catalytic site may also play a role in the toxic activities exerted by this myotoxin. Our observations supported the hypothesis that both the catalytic sites as the hypothetical pharmacological sites are relevant to the pharmacological profile of PhTX-I.
Collapse
Affiliation(s)
- Salomón Huancahuire-Vega
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Daniel H. A. Corrêa
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciana M. Hollanda
- Biotechnology Laboratory (LABIOTEC), Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo Lancellotti
- Biotechnology Laboratory (LABIOTEC), Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carlos H. I. Ramos
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil
| | - Luis Alberto Ponce-Soto
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
16
|
Ullah A, Souza T, Betzel C, Murakami M, Arni R. Crystallographic portrayal of different conformational states of a Lys49 phospholipase A2 homologue: Insights into structural determinants for myotoxicity and dimeric configuration. Int J Biol Macromol 2012; 51:209-14. [DOI: 10.1016/j.ijbiomac.2012.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/28/2012] [Accepted: 05/05/2012] [Indexed: 11/26/2022]
|
17
|
Fernandes CAH, Gartuzo ECG, Pagotto I, Comparetti EJ, Huancahuire-Vega S, Ponce-Soto LA, Costa TR, Marangoni S, Soares AM, Fontes MRM. Crystallization and preliminary X-ray diffraction analysis of three myotoxic phospholipases A2 from Bothrops brazili venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:935-8. [PMID: 22869126 PMCID: PMC3412777 DOI: 10.1107/s1744309112026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/08/2012] [Indexed: 11/10/2022]
Abstract
Two myotoxic and noncatalytic Lys49-phospholipases A(2) (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A(2) (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56-2.05 Å and belonged to space groups P3(1)21 (braziliantoxin-II), P6(5)22 (braziliantoxin-III) and P2(1) (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A(2) (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A(2) braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A(2).
Collapse
Affiliation(s)
- Carlos A. H. Fernandes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Elaine C. G. Gartuzo
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Ivan Pagotto
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Edson J. Comparetti
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| | - Salomón Huancahuire-Vega
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Luis Alberto Ponce-Soto
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP, Brazil
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Tássia R. Costa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, FCFRP, USP, Ribeirão Preto-SP, Brazil
| | - Sergio Marangoni
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP, Brazil
| | - Andreimar M. Soares
- Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Centro de Estudos de Biomoléculas Aplicadas, Universidade Federal de Rondônia, Porto Velho-RO, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Botucatu-SP and Instituto Nacional de Ciência e Tecnologia em Toxinas, CNPq, Brazil
| |
Collapse
|
18
|
Huancahuire-Vega S, Ponce-Soto LA, Martins-de-Souza D, Marangoni S. Biochemical and pharmacological characterization of PhTX-I a new myotoxic phospholipase A2 isolated from Porthidium hyoprora snake venom. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:108-19. [PMID: 21496495 DOI: 10.1016/j.cbpc.2011.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 01/04/2023]
Abstract
This paper reports the biochemical and pharmacological characterization of a new myotoxic PLA(2) (EC 3.1.1.4) called PhTX-I, purified from Porthidium hyoprora venom by one step analytical chromatography reverse phase HPLC. The homogeneity of the PhTX-I fraction and its molecular mass were initially evaluated by SDS-PAGE and confirmed by MALDI-TOF spectrometry, indicating a molecular mass of 14.249Da and constituted of a single polipeptidic chain. Amino acid sequence was determined by "de novo sequencing," in tandem mass spectrometry, belonging to D49-PLA(2) enzyme class and exhibiting high identity (44-90%) with other myotoxics PLA(2) from snake venoms. The enzymatic investigation showed maximal activity at pH 8 and 35-45°C. This activity was dependent on Ca(2+), other cations (Mg(2+), Mn(2+), Cd(2+) and Zn(2+)) reduced notably the enzymatic activity, suggesting that the arrangement of the catalytic site presents an exclusive structure for Ca(2+). Ex vivo, whole venom and PhTX-I PLA(2) caused blockade of the neuromuscular transmission in young chick biventer cervicis preparations similar to other isolated snake venom toxins from the Bothrops genus. In vivo, both induced local myotoxicity and systemic interleukin-6 response upon intramuscular injection, additionally, induced moderate footpad edema. In vitro, both induced low cytotoxicity in skeletal muscle myoblasts, however PhTX-I PLA(2) was able to lyse myotubes.
Collapse
|