1
|
Dai C, Hou M, Yang X, Wang Z, Sun C, Wu X, Wang S. Increased NAD + levels protect female mouse reproductive system against zearalenone-impaired glycolysis, lipid metabolism, antioxidant capacity and inflammation. Reprod Toxicol 2024; 124:108530. [PMID: 38159578 DOI: 10.1016/j.reprotox.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The reproductive system is a primary target organ for zearalenone (ZEN, a widespread fusarium mycotoxin) to exert its toxic effects, including decreased antioxidant capacity and aggravated inflammatory response. These ZEN-induced reproductive abnormalities are partially caused by the declining levels of nicotinamide adenine dinucleotide (NAD+), which results in an imbalance in lipid/glucose metabolism. Accordingly, the present study aimed to investigate whether supplements of nicotinamide mononucleotide (NMN, a NAD+ precursor) in female mice could protect against ZEN-induced reproductive toxicity. In this study, thirty female mice were randomly divided into three groups that were intragastrically administered with i) 0.5% DMSO (the Ctrl group), ii) 3 mg/(kg bw.d) ZEN (the ZEN group), or iii) ZEN + 500 mg/(kg bw.d) NMN (the ZEN/NMN group) for two weeks. The results revealed that, compared with the Ctrl group, animals exposed to ZEN exhibited reproductive toxicity, such as decreased antioxidant capacity and aggravated inflammatory response in reproductive tissues. These effects were strongly correlated with lower activities in key glycolytic enzymes (e.g., ALDOA and PGK), but increased expressions in key lipid-synthesis genes (e.g., LPIN1 and ATGL). These changes contribute to lipid accumulation, specifically for diacylglycerols (DAGs). Furthermore, these ZEN-induced changes were linked with disturbed NAD+ synthesis/degradation, and subsequently decreased NAD+ levels. Notably, NMN supplements in mice protected against these ZEN-induced reproductive abnormalities by boosting NAD+ levels. Herein, the present findings demonstrate that potential strategies to enhance NAD+ levels can protect against ZEN-induced reproductive toxicity.
Collapse
Affiliation(s)
- Chao Dai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqian Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China
| | - Xudong Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhefeng Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China.
| |
Collapse
|
2
|
Qu H, Zheng Y, Kang R, Feng Y, Li P, Wang Y, Cheng J, Ji C, Chai W, Ma Q. Toxicokinetics of Zearalenone following Oral Administration in Female Dezhou Donkeys. Toxins (Basel) 2024; 16:51. [PMID: 38251267 PMCID: PMC10819545 DOI: 10.3390/toxins16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by various Fusarium strains, that is present in food and feed raw materials worldwide, causing toxicity effects in animals and humans. This research aimed to explore the toxicokinetics of ZEN on female Dezhou donkeys following a single oral exposure dosage of 2 mg/kg BW (body weight). The sample collection of donkeys plasma was carried out at 0, 5, 10, 15, 20, 30, 45, 60, 90 min, 2 h, 2.5 h, 3 h, 3.5 h, 4 h, 4.5 h, 6 h, 9 h, 12 h, 24 h, 48 h, 72 h, 96 h and 120 h via intravenous catheter, and fecal and urinary samples were severally collected at 0 h and every 6 h until 120 h. The concentrations of ZEN, α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalanol (α-ZAL), β-zearalanol (β-ZAL), zearalanone (ZAN) in plasma, urine, and feces were detected by UPLC-MS/MS. Only ZEN was detected in plasma, and the maximum was 15.34 ± 5.12 µg/L occurred at 0.48 h after gavage. The total plasma clearance (Cl) of ZEN was 95.20 ± 8.01 L·kg·BW-1·h-1. In addition, the volume of distribution (Vd) was up to 216.17 ± 58.71 L/kg. The percentage of total ZEN (ZEN plus the main metabolites) excretion in feces and urine was 2.49% and 2.10%, respectively. In summary, ZEN was fast absorbed and relatively slowly excreted in female donkeys during 120 h after a single gavage, indicating a trend of wider tissue distribution and longer tissue persistence.
Collapse
Affiliation(s)
- Honglei Qu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China; (Y.F.); (Y.W.); (J.C.)
| | - Yunduo Zheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| | - Ruifen Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| | - Yulong Feng
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China; (Y.F.); (Y.W.); (J.C.)
| | - Pengshuai Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| | - Yantao Wang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China; (Y.F.); (Y.W.); (J.C.)
| | - Jie Cheng
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252201, China; (Y.F.); (Y.W.); (J.C.)
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Q.); (Y.Z.); (R.K.); (P.L.); (C.J.)
| |
Collapse
|
3
|
Yang C, Chen Y, Yang M, Li J, Wu Y, Fan H, Kong X, Ning C, Wang S, Xiao W, Yuan Z, Yi J, Wu J. Betulinic acid alleviates zearalenone-induced uterine injury in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120435. [PMID: 36257561 DOI: 10.1016/j.envpol.2022.120435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin with estrogen-like biological activity, which widely present in feed and raw materials, with strong reproductive system toxicity and a major threat to animal reproduction. Betulinic acid (BA) is a natural plant compound with antioxidant, anti-inflammatory and other pharmacological activities. However, the mechanism of ZEA-induced uterine injury and the protective effect of BA have not been reported. Our results show that ZEA could cause uterine histopathological damage and cellular ultrastructural damage, affecting the secretion of sex hormones, such as estradiol (E2) and progesterone (P4), and increase the mRNA and protein expression of estrogen receptor α (ERα). ZEA could inhibit the activities of catalase (CAT) and superoxide dismutase (SOD), increase the production of malondialdehyde (MDA) and reactive oxygen species (ROS), and cause uterine oxidative stress. Furthermore, ZEA affected the homeostasis of uterine cell proliferation and death by regulating the expression of proliferating cell nuclear antigen (PCNA) and activating the mitochondrial apoptotic pathway. ZEA-induced uterine injury might be related to the activation of p38/ERK MAPK signaling pathway. However, the regulatory effect of ZEA on the uterus was reversed after BA treatment. In conclusion, the uterus is an important target organ attacked by ZEA, and BA showed a good therapeutic effect.
Collapse
Affiliation(s)
- Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Mengran Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Yuan T, Li J, Wang Y, Li M, Yang A, Ren C, Qi D, Zhang N. Effects of Zearalenone on Production Performance, Egg Quality, Ovarian Function and Gut Microbiota of Laying Hens. Toxins (Basel) 2022; 14:toxins14100653. [PMID: 36287922 PMCID: PMC9610152 DOI: 10.3390/toxins14100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) is a ubiquitous contaminant in poultry feed, since ZEN and its metabolites can interfere with estrogen function and affect the reproductive ability of animals. The estrogen-like effect of ZEN on mammal is widely reported, while little information is available, regarding the effect of relatively low dose of ZEN on estrogen function and production performance of laying hens, and the relationship between them. This work was aimed to investigate the effects of ZEN on the production performance, egg quality, ovarian function and gut microbiota of laying hens. A total of 96 Hy-line brown laying hens aged 25-week were randomly divided into 3 groups including basal diet group (BD group), basal diet supplemented with 250 μg/kg (250 μg/kg ZEN group) and 750 μg/kg (750 μg/kg ZEN group) ZEN group. Here, 750 μg/kg ZEN resulted in a significant increase in the feed conversion ratio (FCR) (g feed/g egg) (p < 0.05), a decrease in the egg production (p > 0.05), albumen height and Haugh unit (p > 0.05), compared to the BD group. The serum Follicle-stimulating hormone (FSH) levels significantly decreased in ZEN supplemented groups (p < 0.05). Serum Luteinizing hormone (LH) and Progesterone (P) levels in the 750 μg/kg ZEN group were significantly lower than those in the BD group (p < 0.05). 16S rRNA sequencing indicated that ZEN reduced cecum microbial diversity (p < 0.05) and altered gut microbiota composition. In contrast to 250 μg/kg ZEN, 750 μg/kg ZEN had more dramatic effects on the gut microbiota function. Spearman’s correlation analysis revealed negative correlations between the dominant bacteria of the 750 μg/kg ZEN group and the production performance, egg quality and ovarian function of hens. Overall, ZEN was shown to exert a detrimental effect on production performance, egg quality and ovarian function of laying hens in this study. Moreover, alterations in the composition and function of the gut microbiota induced by ZEN may be involved in the adverse effects of ZEN on laying hens.
Collapse
|
5
|
Research Progress of Safety of Zearalenone: A Review. Toxins (Basel) 2022; 14:toxins14060386. [PMID: 35737047 PMCID: PMC9230539 DOI: 10.3390/toxins14060386] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Zearalenone, a mycotoxin produced by fungi of the genus Fusarium, widely exists in animal feed and human food. The structure of zearalenone is similar to estrogen, so it mainly has estrogenic effects on various organisms. Products contaminated with zearalenone can pose risks to animals and humans. Therefore, it is imperative to carry out toxicological research on zearalenone and evaluate its risk to human health. This paper briefly introduces the production, physical, and chemical properties of zearalenone and the research progress of its toxicity kinetics, focusing on its genetic toxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, carcinogenicity, endocrine interference, and its impact on intestinal health. Finally, the progress of the risk assessment of human exposure is summarized to provide a reference for the follow-up study of zearalenone.
Collapse
|
6
|
Lv S, Wu X, Guan J, Yan Y, Ge M, Zhu G. Quantification and Confirmation of Zearalenone Using a LC-MS/MS QTRAP System in Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Abstract
This review focuses on factors associated with mold production in feedstuffs and major mycotoxins affecting ruminants in North America. Ruminants are often considered less sensitive to mycotoxins owing to rumen microflora metabolism to less toxic compounds. However, ruminants occupy wide agricultural niches that expose animals to diverse toxins under widely different environmental and nutritional conditions. Often the moldy and potentially highly contaminated feeds end up at feedlots. Less than optimal feedstuffs creating suboptimal rumen microbial flora could result in decreased ruminal capacity to detoxify certain mycotoxins and adverse effects. Numerous mycotoxins and clinical effects in ruminants are discussed.
Collapse
|
8
|
Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxicokinetics, Toxicity and Estrogenicity. Toxins (Basel) 2020; 12:toxins12060377. [PMID: 32517357 PMCID: PMC7354539 DOI: 10.3390/toxins12060377] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
One of the concerns when using grain ingredients in feed formulation for livestock and poultry diets is mycotoxin contamination. Aflatoxin, fumonisin, ochratoxin, trichothecene (deoxynivalenol, T-2 and HT-2) and zearalenone (ZEN) are mycotoxins that have been frequently reported in animal feed. ZEN, which has raised additional concern due to its estrogenic response in animals, is mainly produced by Fusarium graminearum (F. graminearum), F. culmorum, F. cerealis, F. equiseti, F. crookwellense and F. semitectums, and often co-occurs with deoxynivalenol in grains. The commonly elaborated derivatives of ZEN are α-zearalenol, β-zearalenol, zearalanone, α-zearalanol, and β-zearalanol. Other modified and masked forms of ZEN (including the extractable conjugated and non-extractable bound derivatives of ZEN) have also been quantified. In this review, common dose of ZEN in animal feed was summarized. The absorption rate, distribution (“carry-over”), major metabolites, toxicity and estrogenicity of ZEN related to poultry, swine and ruminants are discussed.
Collapse
|
9
|
Rai A, Das M, Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr 2019; 60:2710-2729. [DOI: 10.1080/10408398.2019.1655388] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ankita Rai
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Mukul Das
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| |
Collapse
|
10
|
Xu Y, Wang Y, Ji J, Wu H, Pi F, Zhang Y, Sun X. Chemical and toxicological alterations of zearalenone under ozone treatment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 36:163-174. [DOI: 10.1080/19440049.2018.1547425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yifan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Hao Wu
- Research and development department, Guangzhou GRG Metrology &Test Co., Ltd, Guangzhou, Guangdong, P.R. China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
11
|
Thongprapai P, Cheewasedtham W, Chong KF, Rujiralai T. Selective magnetic nanographene oxide solid‐phase extraction with high‐performance liquid chromatography and fluorescence detection for the determination of zearalenone in corn samples. J Sep Sci 2018; 41:4348-4354. [DOI: 10.1002/jssc.201800441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Pornpimol Thongprapai
- Department of Chemistry and Center of Excellence for Innovation in ChemistryFaculty of SciencePrince of Songkla University Hat Yai Songkhla Thailand
- Analytical Chemistry and Environment Research UnitDivision of ChemistryDepartment of ScienceFaculty of Science & TechnologyPrince of Songkla University Pattani Thailand
| | - Wilairat Cheewasedtham
- Analytical Chemistry and Environment Research UnitDivision of ChemistryDepartment of ScienceFaculty of Science & TechnologyPrince of Songkla University Pattani Thailand
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & TechnologyUniversiti Malaysia Pahang Gambang Kuantan Malaysia
| | - Thitima Rujiralai
- Department of Chemistry and Center of Excellence for Innovation in ChemistryFaculty of SciencePrince of Songkla University Hat Yai Songkhla Thailand
- Analytical Chemistry and Environment Research UnitDivision of ChemistryDepartment of ScienceFaculty of Science & TechnologyPrince of Songkla University Pattani Thailand
| |
Collapse
|
12
|
Wang N, Li P, Pan J, Wang M, Long M, Zang J, Yang S. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice. Sci Rep 2018; 8:13646. [PMID: 30206282 PMCID: PMC6133983 DOI: 10.1038/s41598-018-32006-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Zearalenone (ZEN) is an estrogen-like mycotoxin occurring in food and feeds, and it can cause oxidative damage and apoptosis in the testis, liver, and kidney. A current concern for researchers is how to reduce the harm it causes to humans and animals. In this study, our aim was to isolate and identify a novel and efficient ZEN-detoxifying strain of bacteria, and we aimed to assess the protective effect of the isolated strain on kidney damage caused by ZEN in mice. Our results indicated that a strain of Bacillus velezensis (B. velezensis), named A2, could completely degrade ZEN (7.45 μg/mL) after three days of incubation at 37 °C in the Luria-Bertani (LB) medium. This fermentation broth of the B. velezensis A2 strain was given to mice. The histopathological analysis indicated that the fermentation broth from the B. velezensis A2 strain reduced the degree of renal injury that is induced by ZEN. Furthermore, it greatly reduced the increase in serum levels of creatinine (CRE), uric acid (UA), and urea nitrogen (BUN) caused by ZEN. In addition, B. velezensis A2 strain also significantly inhibited the increase of malonaldehyde (MDA) content, and reversed the decreases of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities caused by ZEN. Studies have shown that ZEN is involved in the regulation of mRNA and protein levels of genes involved in the ER stress-induced apoptotic pathway, such as heavy chain binding protein (BIP), C-/-EBP homologous protein (CHOP), cysteine Aspartate-specific protease-12 (Caspase-12), c-Jun N-terminal kinase (JNK), and BCL2-related X protein (Bcl-2 and Bax). However, when mice were administered the fermentation broth of the B. velezensis A2 strain, it significantly reversed the expressions of these genes in their kidney tissue. In conclusion, our results indicate that the newly identified strain of B. velezensis A2, has a protective effect from renal injury induced by ZEN in mice. This strain has a potential application in the detoxification of ZEN in feed and protects animals from ZEN poisoning.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jian Zang
- Testing& Analysis Center, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
13
|
Kadokawa H, Pandey K, Onalenna K, Nahar A. Reconsidering the roles of endogenous estrogens and xenoestrogens: the membrane estradiol receptor G protein-coupled receptor 30 (GPR30) mediates the effects of various estrogens. J Reprod Dev 2018. [PMID: 29515057 PMCID: PMC6021614 DOI: 10.1262/jrd.2017-153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrone (E1) and estriol (E3) are considered “weak” estrogens, which exert suppressive effects through estrogen receptors α and β. However, recent studies have demonstrated that E1 and E3,
as well as estradiol (E2), suppress gonadotropin-releasing hormone-induced luteinizing hormone secretion from bovine gonadotrophs via G-protein-coupled receptor 30, which is expressed in
various reproductive organs. Currently, there is a lack of fundamental knowledge regarding E1 and E3, including their blood levels. In addition, xenoestrogens may remain in the body over
long time periods because of enterohepatic circulation. Therefore, it is time to reconsider the roles of endogenous estrogens and xenoestrogens for reproduction.
Collapse
Affiliation(s)
- Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kiran Pandey
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kereilwe Onalenna
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Asrafun Nahar
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
14
|
Multi-walled carbon nanotubes-based magnetic solid-phase extraction for the determination of zearalenone and its derivatives in maize by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Studies on the Presence of Mycotoxins in Biological Samples: An Overview. Toxins (Basel) 2017; 9:toxins9080251. [PMID: 28820481 PMCID: PMC5577585 DOI: 10.3390/toxins9080251] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022] Open
Abstract
Mycotoxins are fungal secondary metabolites with bioaccumulation levels leading to their carry-over into animal fluids, organs, and tissues. As a consequence, mycotoxin determination in biological samples from humans and animals has been reported worldwide. Since most mycotoxins show toxic effects at low concentrations and considering the extremely low levels present in biological samples, the application of reliable detection methods is required. This review summarizes the information regarding the studies involving mycotoxin determination in biological samples over the last 10 years. Relevant data on extraction methodology, detection techniques, sample size, limits of detection, and quantitation are presented herein. Briefly, liquid-liquid extraction followed by LC-MS/MS determination was the most common technique. The most analyzed mycotoxin was ochratoxin A, followed by zearalenone and deoxynivalenol—including their metabolites, enniatins, fumonisins, aflatoxins, T-2 and HT-2 toxins. Moreover, the studies were classified by their purpose, mainly focused on the development of analytical methodologies, mycotoxin biomonitoring, and exposure assessment. The study of tissue distribution, bioaccumulation, carry-over, persistence and transference of mycotoxins, as well as, toxicokinetics and ADME (absorption, distribution, metabolism and excretion) were other proposed goals for biological sample analysis. Finally, an overview of risk assessment was discussed.
Collapse
|
16
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Dänicke S, Eriksen GS, Altieri A, Roldán-Torres R, Oswald IP. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J 2017; 15:e04851. [PMID: 32625539 PMCID: PMC7009830 DOI: 10.2903/j.efsa.2017.4851] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zearalenone (ZEN), a mycotoxin primarily produced by Fusarium fungi, occurs predominantly in cereal grains. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to ZEN and its modified forms in feed. Modified forms of ZEN occurring in feed include phase I metabolites α‐zearalenol (α‐ZEL), β‐zearalenol (β‐ZEL), α‐zearalanol (α‐ZAL), β‐zearalanol (β‐ZAL), zearalanone (ZAN) and phase II conjugates. ZEN has oestrogenic activity and the oestrogenic activity of the modified forms of ZEN differs considerably. For ZEN, the EFSA Panel on Contaminants in the Food Chain (CONTAM) established no observed adverse effect levels (NOAELs) for pig (piglets and gilts), poultry (chicken and fattening turkeys), sheep and fish (extrapolated from carp) and lowest observed effect level (LOAEL) for dogs. No reference points could be established for cattle, ducks, goats, horses, rabbits, mink and cats. For modified forms, no reference points could be established for any animal species and relative potency factors previously established from rodents by the CONTAM Panel in 2016 were used. The dietary exposure was estimated on 17,706 analytical results with high proportions of left‐censored data (ZEN about 60%, ZAN about 70%, others close to 100%). Samples for ZEN were collected between 2001 and 2015 in 25 different European countries, whereas samples for the modified forms were collected mostly between 2013 and 2015 from three Member States. Based on exposure estimates, the risk of adverse health effects of feed containing ZEN was considered extremely low for poultry and low for sheep, dog, pig and fish. The same conclusions also apply to the sum of ZEN and its modified forms.
Collapse
|
17
|
Poór M, Kunsági-Máté S, Bálint M, Hetényi C, Gerner Z, Lemli B. Interaction of mycotoxin zearalenone with human serum albumin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:16-24. [PMID: 28365492 DOI: 10.1016/j.jphotobiol.2017.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin produced mainly by Fusarium species. Fungal contamination of cereals and plants can result in the formation of ZEN, leading to its presence in different foods, animal feeds, and drinks. Because ZEN is an endocrine disruptor, it causes reproductive disorders in farm animals and hyperoestrogenic syndromes in humans. Despite toxicokinetic properties of ZEN were studied in more species, we have no information regarding the interaction of ZEN with serum albumin. Since albumin commonly plays an important role in the toxicokinetics of different toxins, interaction of ZEN with albumin has of high biological importance. Therefore the interaction of ZEN with human serum albumin (HSA) was investigated using spectroscopic methods, ultrafiltration, and molecular modeling studies. Fluorescence spectroscopic studies demonstrate that ZEN forms complex with HSA. Binding constant (K) of ZEN-HSA complex was quantified with fluorescence quenching technique. The determined binding constant (logK=5.1) reflects the strong interaction of ZEN with albumin suggesting the potential biological importance of ZEN-HSA complex formation. Based on the results of the investigations with site markers as well as docking studies, ZEN occupies a non-conventional binding site on HSA. Considering the above listed observations, we should keep in mind this interaction if we would like to precisely understand the toxicokinetic behavior of ZEN.
Collapse
Affiliation(s)
- Miklós Poór
- Department of Pharmacology, University of Pécs, Faculty of Pharmacy, Szigeti út 12, Pécs H-7624, Hungary; Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, Pécs H-7624, Hungary.
| | - Sándor Kunsági-Máté
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs H-7624, Hungary; János Szentágothai Research Center, Ifjúság útja 20, Pécs H-7624, Hungary
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, Pécs H-7624, Hungary; Department of Biochemistry, Eötvös Loránd University, Pázmány sétány 1/C, Budapest H-1117, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, Pécs H-7624, Hungary; MTA-ELTE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Pázmány sétány 1/C, Budapest H-1117, Hungary
| | - Zsófia Gerner
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs H-7624, Hungary
| | - Beáta Lemli
- Department of General and Physical Chemistry, University of Pécs, Ifjúság útja 6, Pécs H-7624, Hungary; János Szentágothai Research Center, Ifjúság útja 20, Pécs H-7624, Hungary
| |
Collapse
|
18
|
Fournier A, Feidt C, Lastel ML, Archimede H, Thome JP, Mahieu M, Rychen G. Toxicokinetics of chlordecone in goats: Implications for risk management in French West Indies. CHEMOSPHERE 2017; 171:564-570. [PMID: 28039835 DOI: 10.1016/j.chemosphere.2016.12.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
The former use of chlordecone (CLD) in the French West Indies has resulted in long-term pollution of soils. CLD is known to be potentially transferred towards animal products of animals reared outdoors, mainly through accidental soil ingestion. Several studies indicate that soil bound CLD is bioavailable when administered to farm animals. Currently there is a need to quantify the level of CLD absorption and its toxicokinetic characteristics in the ruminant and particularly in the goat. These are considered as important farm species in the French West Indies. The objective of this study was to evaluate the absorption rate and the half-life of CLD in the non-lactating goat. The goats were administered either intravenously (i.v., n = 6) or orally (p.o., n = 6) one dose (1 mg kg-1 body weight) of CLD. Blood samples were collected at defined times up to 160 days post-dosing. CLD was analyzed in serum by high-resolution gas chromatography. A comparison of the area under the serum concentration-time curves (AUC) showed that the i.v. route is equivalent to the oral route. Thus, CLD is considered almost completely absorbed after p.o. administration, as shown by the mean absolute bioavailability. The comparison between the pharmacokinetic profiles of CLD following oral and intravenous dose showed a difference during the first 14 days and a similar kinetic after this period. The half-life of CLD in serum was close to 20 days. These results highlight a possible strategy of decontamination due to the short half-life of CLD, obtained in dry goats that did not excrete fat matter.
Collapse
Affiliation(s)
- Agnès Fournier
- Université de Lorraine, INRA, USC 340, UR AFPA, 2 avenue de la Forêt de Haye, TSA 40602, 54518, Vandœuvre-lès-Nancy Cedex, France.
| | - Cyril Feidt
- Université de Lorraine, INRA, USC 340, UR AFPA, 2 avenue de la Forêt de Haye, TSA 40602, 54518, Vandœuvre-lès-Nancy Cedex, France
| | - Marie-Laure Lastel
- Université de Lorraine, INRA, USC 340, UR AFPA, 2 avenue de la Forêt de Haye, TSA 40602, 54518, Vandœuvre-lès-Nancy Cedex, France
| | - Harry Archimede
- INRA, URZ, UR 143, Domaine Duclos, F-97170, Petit-Bourg, Guadeloupe, France
| | - Jean-Pierre Thome
- Université de Liège, LEAE-CART, Allée du 6 Août, 11, 4000, Liège, Belgium
| | - Maurice Mahieu
- INRA, URZ, UR 143, Domaine Duclos, F-97170, Petit-Bourg, Guadeloupe, France
| | - Guido Rychen
- Université de Lorraine, INRA, USC 340, UR AFPA, 2 avenue de la Forêt de Haye, TSA 40602, 54518, Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
19
|
Shi B, Su Y, Chang S, Sun Y, Meng X, Shan A. Vitamin C protects piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes. Food Funct 2017; 8:3675-3687. [DOI: 10.1039/c7fo01301a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN), a common mycotoxin found in human food and animal feed, is effectively detoxified by vitamin C by modulation of the nuclear receptor signaling pathway.
Collapse
Affiliation(s)
- Baoming Shi
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Yang Su
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Siying Chang
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Yuchen Sun
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Xiangyu Meng
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| |
Collapse
|
20
|
Yang D, Jiang T, Lin P, Chen H, Wang L, Wang N, Zhao F, Tang K, Zhou D, Wang A, Jin Y. Apoptosis inducing factor gene depletion inhibits zearalenone-induced cell death in a goat Leydig cell line. Reprod Toxicol 2016; 67:129-139. [PMID: 28011299 DOI: 10.1016/j.reprotox.2016.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEA) is a contaminant of human food and animal feedstuffs that causes health hazards. However, the signal pathways underlying ZEA toxicity remain elusive. The aims of this study were to determine which pathways are involved in ZEA-induced cell death and investigate the effect of apoptosis inducing factor (AIF) on cell death during ZEA treatment in the immortalized goat Leydig cell line hTERT-GLC. This study showed that ZEA-induced cell death in hTERT-GLCs works via endoplasmic reticulum (ER) stress, the caspase-dependent pathway, the caspase-independent pathway and autophagy. Recombinant lentiviral vectors were constructed to silence AIF expression in hTERT-GLCs. Flow cytometry results showed that knockdown of AIF diminished ZEA-induced cell apoptosis in hTERT-GLCs. Furthermore, we found AIF depletion down-regulated phosphoIRE1α, GRP78, CHOP and promoted the switch of LC3-I to LC3-II. Therefore, ZEA induces cytotoxicity in hTERT-GLCs via different pathways, while AIF-mediated signaling plays a critical role in ZEA-induced cell death in hTERT-GLCs.
Collapse
Affiliation(s)
- Diqi Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Tingting Jiang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Lei Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Nan Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Fan Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China
| | - Aihua Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling,712100, Shaanxi, China.
| |
Collapse
|
21
|
Effect of Degradation of Zearalenone-Contaminated Feed by Bacillus licheniformis CK1 on Postweaning Female Piglets. Toxins (Basel) 2016; 8:toxins8100300. [PMID: 27763510 PMCID: PMC5086660 DOI: 10.3390/toxins8100300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
Zearalenone (ZEA), an estrogenic mycotoxin, is mainly produced by Fusarium fungi. In this study, Bacillus licheniformis CK1 isolated from soil with the capability of degrading ZEA was evaluated for its efficacy in reducing the adverse effects of ZEA in piglets. The gilts were fed one of the following three diets for 14 days: a basic diet for the control group; the basic diet supplemented with ZEA-contaminated basic diet for the treatment 1 (T1) group; and the basic diet supplemented with fermented ZEA-contaminated basic diet by CK1 for the treatment 2 (T2) group. The actual ZEA contents (analyzed) were 0, 1.20 ± 0.11, 0.47 ± 0.22 mg/kg for the control, T1, and T2 diets, respectively. The results showed that the T1 group had significantly increased the size of vulva and the relative weight of reproductive organs compared to the control group at the end of the trial. The T1 group significantly decreased the concentration of the luteinizing hormone (LH) compared with the control and T2 groups. Expression of ERβ was significantly up-regulated in the T2 group compared with the control. In addition, expression of ERβ was not different between the control and the T1 group. In summary, our results suggest that Bacillus licheniformis CK1 could detoxify ZEA in feed and reduce the adverse effects of ZEA in the gilts.
Collapse
|
22
|
Nakamura U, Kadokawa H. The nonsteroidal mycoestrogen zearalenone and its five metabolites suppress LH secretion from the bovine anterior pituitary cells via the estradiol receptor GPR30 in vitro. Theriogenology 2015; 84:1342-9. [DOI: 10.1016/j.theriogenology.2015.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/13/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
|
23
|
Invited review: Diagnosis of zearalenone (ZEN) exposure of farm animals and transfer of its residues into edible tissues (carry over). Food Chem Toxicol 2015; 84:225-49. [PMID: 26277628 DOI: 10.1016/j.fct.2015.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
Abstract
The aim of the review was to evaluate the opportunities for diagnosing the zearalenone (ZEN) exposure and intoxication of farm animals by analyzing biological specimens for ZEN residue levels. Metabolism is discussed to be important when evaluating species-specific consequences for the overall toxicity of ZEN. Besides these toxicological facts, analytics of ZEN residues in various animal-derived matrices requires sensitive, matrix-adapted multi-methods with low limits of quantification, which is more challenging than the ZEN analysis in feed. Based on dose-response experiments with farm animals, the principle usability of various specimens as bio-indicators for ZEN exposure is discussed with regard to individual variation and practicability for the veterinary practitioner. ZEN residue analysis in biological samples does not only enable evaluation of ZEN exposure but also allows the risk for the consumer arising from contaminated foodstuffs of animal origin to be assessed. It was compiled from literature that the tolerable daily intake of 0.25 μg ZEN/kg body weight and day is exploited to approximately 8%, when a daily basket of animal foodstuffs and associated carry over factors are assumed at reported ZEN contamination levels of complete feed.
Collapse
|
24
|
Buranatragool K, Poapolathep S, Isariyodom S, Imsilp K, Klangkaew N, Poapolathep A. Dispositions and tissue residue of zearalenone and its metabolites α-zearalenol and β-zearalenol in broilers. Toxicol Rep 2015; 2:351-356. [PMID: 28962368 PMCID: PMC5598537 DOI: 10.1016/j.toxrep.2014.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/18/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022] Open
Abstract
Zearalenone (ZEA) is a secondary fungal metabolite produced mainly by a Fusarium graminearum. To clarify the toxicokinetics, and residues of ZEA and its major metabolites α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) in chickens, ZEA was then administered intravenously (iv) or orally (po) to broiler chickens at a dosage of 1.2 mg/kg body weight. The concentrations of ZEA, α-ZOL and β-ZOL in the plasma and various tissues were quantified using LC-MS/MS. The plasma concentrations of ZEA were measurable up to 2 h after iv and po administration, and the concentrations of α-ZOL and β-ZOL were detected up to 4 h after both types of administration. A two-compartment model was developed to describe the toxicokinetic of ZEA in broilers. The values of t1/2β and Vd were 1.36 ± 0.29 h and 6.40 ± 0.89 l/kg, respectively. The absolute oral bioavailability was 29.66 ± 5.6%. ZEA, α-ZOL and β-ZOL were measurable in the vital organs after po administration. These results suggest that ZEA is absorbed from the gastrointestinal tract and it has ability to penetrate into the various tissues of broiler chickens.
Collapse
Affiliation(s)
- Kawinnart Buranatragool
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | | | - Kanjana Imsilp
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Narumol Klangkaew
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
25
|
|
26
|
Yin S, Zhang Y, Gao R, Cheng B, Shan A. The immunomodulatory effects induced by dietary Zearalenone in pregnant rats. Immunopharmacol Immunotoxicol 2014; 36:187-94. [PMID: 24754511 DOI: 10.3109/08923973.2014.909847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Zearalenone (ZEN) is a common contaminant that is present in feedstuff of high humidity and high temperatures. OBJECTIVE The aim of this study was to investigate the effects of diets contaminated with different concentrations of ZEN on immunomodulation in early pregnant rats. MATERIALS AND METHODS Forty-eight pregnant Sprague Dawley (SD) rats were randomly divided into four treatment groups fed on a diet supplemented with one of four concentrations of ZEN: 0 mg/kg (ZEN 0), 50 mg/kg (ZEN 50), 100 mg/kg (ZEN 100) and 150 mg/kg (ZEN 150). The pregnant rats were fed ZEN-treated diets from gestation days 0 to 7 and a basal diet from gestation days 8 to 20. RESULTS ZEN exposure (ZEN 100 and 150) caused significant decreases in splenic coefficients, viability of splenocyte and T-cell proliferation and induced histopathological damage in the spleen of early pregnant rats compared with other groups. Levels of IgG and IgA were decreased, while IgM was increased, in high doses of ZEN (ZEN 100 and ZEN 150) compared with other groups. ZEN 150 caused increases in white blood cells and hemoglobin and induced a significant decrease in platelets in blood of the pregnant rats compared with other groups. ZEN 150 increased the mRNA expression levels of interleukin (IL)-6, IL-18 and IL-1β and decreased the mRNA expression levels of interferon-γ, tumor necrosis factor-α and IL-10 in the spleen of pregnant rats compared with ZEN 0. CONCLUSION High doses of ZEN-induced immunomodulatory effects on early pregnant rats by altering immunological parameters.
Collapse
Affiliation(s)
- Shutong Yin
- Institute of Animal Nutrition, Northeast Agricultural University , Harbin , P.R. China
| | | | | | | | | |
Collapse
|
27
|
Jia Z, Liu M, Qu Z, Zhang Y, Yin S, Shan A. Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:580-591. [PMID: 24562056 DOI: 10.1016/j.etap.2014.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/28/2013] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
An experiment was conducted to determine the toxic effects of zearalenone (ZEN) on oxidative stress, inflammatory cytokines, biochemical and pathological changes in the kidney of pregnant rats, and to explore the possible mechanism in ZEN induced kidney damage. The rats were fed a normal diet treated with 0.3, 48.5, 97.6 or 146 mg/kg ZEN in feed on gestation days (GDs) 0 through 7, and then all the rats were fed with a normal diet on GDs 8 through 20. The results showed that ZEN induced kidney dysfunction, oxidative damage, pathological changes and increased mRNA and protein expression of TLR4 and inflammatory cytokines in kidney in dose-dependent manner. The results indicated that ZEN caused kidney damage of pregnant rats and TLR4-mediated inflammatory reactions signal pathway was one of the mechanisms of ZEN mediated toxicity in kidney.
Collapse
Affiliation(s)
- Zhiqiang Jia
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Min Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhe Qu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuanyuan Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Shutong Yin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
28
|
Yiannikouris A, Kettunen H, Apajalahti J, Pennala E, Moran CA. Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1641-50. [PMID: 23844575 DOI: 10.1080/19440049.2013.809625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The sequestration/inactivation of the oestrogenic mycotoxin zearalenone (ZEA) by two adsorbents--yeast cell wall extract (YCW) and hydrated sodium calcium aluminosilicate (HSCAS)--was studied in three laboratory models: (1) an in vitro model was adapted from referenced methods to test for the sequestrant sorption capabilities under buffer conditions at two pH values using liquid chromatography coupled to a fluorescence detector for toxin quantification; (2) a second in vitro model was used to evaluate the sequestrant sorption stability according to pH variations and using ³H-labelled ZEA at low toxin concentration; and (3) an original, ex vivo Ussing chamber model was developed to further understand the transfer of ZEA through intestinal tissue and the impact of each sequestrant on the mycotoxin bioavailability of ³H-labelled ZEA. YCW was a more efficient ZEA adsorbent than HSCAS in all three models, except under very acidic conditions (pH 2.5 or 3.0). The Ussing chamber model offered a novel, ex vivo, alternative method for understanding the effect of sequestrant on the bioavailability of ZEA. The results showed that compared with HSCAS, YCW was more efficient in sequestering ZEA and that it reduced the accumulation of ZEA in the intestinal tissue by 40% (p < 0.001).
Collapse
|
29
|
Osselaere A, Devreese M, Goossens J, Vandenbroucke V, De Baere S, De Backer P, Croubels S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem Toxicol 2013; 51:350-5. [DOI: 10.1016/j.fct.2012.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/06/2012] [Accepted: 10/08/2012] [Indexed: 01/05/2023]
|
30
|
Development of a liquid–chromatography tandem mass spectrometry and ultra-high-performance liquid chromatography high-resolution mass spectrometry method for the quantitative determination of zearalenone and its major metabolites in chicken and pig plasma. Anal Chim Acta 2012. [DOI: 10.1016/j.aca.2012.10.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Cha SH, Kim SH, Bischoff K, Kim HJ, Son SW, Kang HG. Production of a highly group-specific monoclonal antibody against zearalenone and its application in an enzyme-linked immunosorbent assay. J Vet Sci 2012; 13:119-25. [PMID: 22705733 PMCID: PMC3386336 DOI: 10.4142/jvs.2012.13.2.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A monoclonal antibody (mAb) against zearalenone (ZEN) was produced using ZEN-carboxymethoxylamine and -BSA conjugates. Antibody produced by one clone showing a very high binding ability was selected and found to have a higher affinity for ZEN compared to a commerciall ZEN antibody. We developed two direct competitive ELISA systems using the selected antibody (ZEN-coated and anti-ZEN antibody-coated ELISA). Quantitative ranges for the anti-ZEN antibody-coated ELISA and ZEN-coated ELISA were from 25 to 750 ppb and from 12.5 to 100 ppb, respectively. The detection limit of both methods as measured with standard solutions was 10 ppb. The intra-plate and inter-well variation of both ELISAs were less than 10%. The IC50 values for α-zearalenol, β-zearalenol, α-zearalanol, and β-zearalanol compared to ZEN were 108.1, 119.3, 114.1, and 130.3% for the ZEN-coated ELISA. These values were 100.7, 120.7, 121.6, and 151.6% for the anti-ZEN antibody-coated ELISA. According to the anti-ZEN antibody-coated ELISA, the average recovery rates of ZEN from spiked animal feed containing 150 to 600 ng/mL of ZEN ranged from 106.07 to 123.00% with 0.93 to 2.28% coefficients of variation. Our results demonstrate that the mAb developed in this study could be used to simultaneously screen for ZEN and its metabolites in feed.
Collapse
Affiliation(s)
- Sang-Ho Cha
- Toxicology and Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, Anyang 430-824, Korea
| | | | | | | | | | | |
Collapse
|
32
|
A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain. PLoS One 2012; 7:e43608. [PMID: 23049739 PMCID: PMC3458049 DOI: 10.1371/journal.pone.0043608] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/24/2012] [Indexed: 12/04/2022] Open
Abstract
Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects.
Collapse
|
33
|
Liu G, Han Z, Nie D, Yang J, Zhao Z, Zhang J, Li H, Liao Y, Song S, De Saeger S, Wu A. Rapid and sensitive quantitation of zearalenone in food and feed by lateral flow immunoassay. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.03.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Sprynskyy M, Gadzała-Kopciuch R, Nowak K, Buszewski B. Removal of zearalenone toxin from synthetics gastric and body fluids using talc and diatomite: A batch kinetic study. Colloids Surf B Biointerfaces 2012; 94:7-14. [DOI: 10.1016/j.colsurfb.2011.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/26/2022]
|
35
|
Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2197] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
36
|
Metzler M, Pfeiffer E, Hildebrand A. Zearalenone and its metabolites as endocrine disrupting chemicals. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1244] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zearalenone (ZEA) is a macrocyclic β-resorcylic acid lactone produced by numerous species of Fusarium. It frequently contaminates corn and cereal products in many regions of the world. The biological activity of ZEA is dominated by its pronounced oestrogenicity, which is even enhanced in certain reductive metabolites. This review updates the metabolism in fungi, plants and mammalian systems, as well as the pharmacokinetics of ZEA. The present evidence for the hormonal effects of the parent mycoestrogen and some of its metabolites in vitro and in farm and experimental animals in vivo is reviewed, together with its association with endocrine-disruptive effects in humans. Possible mechanisms of the oestrogenic and carcinogenic activity of ZEA are discussed and future areas of research proposed.
Collapse
Affiliation(s)
- M. Metzler
- Chair of Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Bldg. 50.41, Adenauerring 20, 76131 Karlsruhe, Germany
| | - E. Pfeiffer
- Chair of Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Bldg. 50.41, Adenauerring 20, 76131 Karlsruhe, Germany
| | - A. Hildebrand
- Chair of Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Bldg. 50.41, Adenauerring 20, 76131 Karlsruhe, Germany
| |
Collapse
|