1
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
2
|
Pompeia C, Frare EO, Peigneur S, Tytgat J, da Silva ÁP, de Oliveira EB, Pereira A, Kerkis I, Kolonin MG. Synthetic polypeptide crotamine: characterization as a myotoxin and as a target of combinatorial peptides. J Mol Med (Berl) 2022; 100:65-76. [PMID: 34643765 DOI: 10.1007/s00109-021-02140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Crotamine is a rattlesnake-derived toxin that causes fast-twitch muscle paralysis. As a cell-penetrating polypeptide, crotamine has been investigated as an experimental anti-cancer and immunotherapeutic agent. We hypothesized that molecules targeting crotamine could be designed to study its function and intervene in its adverse activities. Here, we characterize synthetic crotamine and show that, like the venom-purified toxin, it induces hindlimb muscle paralysis by affecting muscle contraction and inhibits KCNA3 (Kv1.3) channels. Synthetic crotamine, labeled with a fluorophore, displayed cell penetration, subcellular myofiber distribution, ability to induce myonecrosis, and bind to DNA and heparin. Here, we used this functionally validated synthetic polypeptide to screen a combinatorial phage display library for crotamine-binding cyclic peptides. Selection for tryptophan-rich peptides was observed, binding of which to crotamine was confirmed by ELISA and gel shift assays. One of the peptides (CVWSFWGMYC), synthesized chemically, was shown to bind both synthetic and natural crotamine and to block crotamine-DNA binding. In summary, our study establishes a functional synthetic substitute to the venom-derived toxin and identifies peptides that could further be developed as probes to target crotamine. KEY MESSAGES: Synthetic crotamine was characterized as a functional substitute for venom-derived crotamine based on myotoxic effects. A combinatorial peptide library was screened for crotamine-binding peptides. Tryptophan-rich peptides were shown to bind to crotamine and interfere with its DNA binding. Crotamine myofiber distribution and affinity for tryptophan-rich peptides provide insights on its mechanism of action.
Collapse
Affiliation(s)
- Celine Pompeia
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
- Genetics Laboratory, Instituto Butantan, São Paulo, SP, Brazil
- Currently an Independent Researcher, São Paulo, SP, Brazil
| | | | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | | | | | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, São Paulo, SP, Brazil
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
3
|
Baudou FG, Rodriguez JP, Fusco L, de Roodt AR, De Marzi MC, Leiva L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop 2021; 224:106119. [PMID: 34481791 DOI: 10.1016/j.actatropica.2021.106119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
In South America there are three snake genera with predominantly neurotoxic venoms: Crotalus, Micrurus and Hydrophis, which include nine species/subspecies, 97 species and a single marine species, respectively. Although accidents with neurotoxic venoms are less frequent than those with anticoagulant, cytotoxic or necrotic venoms (e.g. from Bothrops), they are of major public health importance. Venoms from genus Crotalus have been extensively studied, while data on the venoms from the other two genera are very limited, especially for Hydrophis. The venoms of North and South American Crotalus species show biochemical and physiopathological differences. The former species cause bothrops-like envenomation symptoms, while the latter mainly have neurotoxic and myotoxic effects, leading to respiratory paralysis and, occasionally, renal failure by myoglobinuria and death, often with no local lesions. Micrurus and Hydrophis also cause neurotoxic envenomations. Many studies have isolated, identified and characterized new enzymes and toxins, thus expanding the knowledge of snake venom composition. The present review summarizes the currently available information on neurotoxic venoms from South American snakes, with a focus on protein composition and toxicological properties. It also includes some comments concerning potential medical applications of elapid and crotalic toxins.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - Juan P Rodriguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| | - Adolfo R de Roodt
- Área Investigación y Desarrollo-Venenos, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Ministerio de Salud de la Nación, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina
| | - Laura Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| |
Collapse
|
4
|
Franco-Servín C, Neri-Castro E, Bénard-Valle M, Alagón A, Rosales-García RA, Guerrero-Alba R, Poblano-Sánchez JE, Silva-Briano M, Guerrero-Barrera AL, Sigala-Rodríguez JJ. Biological and Biochemical Characterization of Coronado Island Rattlesnake ( Crotalus helleri caliginis) Venom and Antivenom Neutralization. Toxins (Basel) 2021; 13:toxins13080582. [PMID: 34437453 PMCID: PMC8402616 DOI: 10.3390/toxins13080582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
The Baja California Peninsula has over 250 islands and islets with many endemic species. Among them, rattlesnakes are the most numerous but also one of the least studied groups. The study of island rattlesnake venom could guide us to a better understanding of evolutionary processes and the description of novel toxins. Crotalus helleri caliginis venom samples were analyzed to determine possible ontogenetic variation with SDS-PAGE in one and two dimensions and with RP-HPLC. Western Blot, ELISA, and amino-terminal sequencing were used to determine the main components of the venom. The biological and biochemical activities demonstrate the similarity of C. helleri caliginis venom to the continental species C. helleri helleri, with both having low proteolytic and phospholipase A2 (PLA2) activity but differing due to the absence of neurotoxin (crotoxin-like) in the insular species. The main components of the snake venom were metalloproteases, serine proteases, and crotamine, which was the most abundant toxin group (30–35% of full venom). The crotamine was isolated using size-exclusion chromatography where its functional effects were tested on mouse phrenic nerve–hemidiaphragm preparations in which a significant reduction in muscle twitch contractions were observed. The two Mexican antivenoms could neutralize the lethality of C. helleri caliginis venom but not the crotamine effects.
Collapse
Affiliation(s)
- Cristian Franco-Servín
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Melisa Bénard-Valle
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001 Colonia Chamilpa, Cuernavaca CP 62210, Morelos, Mexico; (E.N.-C.); (M.B.-V.); (A.A.)
| | - Ramsés Alejandro Rosales-García
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Raquel Guerrero-Alba
- Laboratorio de Electrofisiología, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - José Emanuel Poblano-Sánchez
- Laboratorio Clínico de Especialidades del Hospital General ISSSTE, Av. Universidad 410, Aguascalientes CP 20010, Ags, Mexico;
| | - Marcelo Silva-Briano
- Laboratorio de Ecología, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
| | - Alma Lilián Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Correspondence: (A.L.G.-B.); (J.J.S.-R.)
| | - José Jesús Sigala-Rodríguez
- Colección Zoológica, Departamento de Biología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes CP 20131, Ags, Mexico;
- Correspondence: (A.L.G.-B.); (J.J.S.-R.)
| |
Collapse
|
5
|
Salazar E, Rodriguez-Acosta A, Lucena S, Gonzalez R, McLarty MC, Sanchez O, Suntravat M, Garcia E, Finol HJ, Giron ME, Fernandez I, Deba F, Bessac BF, Sánchez EE. Biological activities of a new crotamine-like peptide from Crotalus oreganus helleri on C2C12 and CHO cell lines, and ultrastructural changes on motor endplate and striated muscle. Toxicon 2020; 188:95-107. [PMID: 33065200 PMCID: PMC7720416 DOI: 10.1016/j.toxicon.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/05/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023]
Abstract
Crotamine and crotamine-like peptides are non-enzymatic polypeptides, belonging to the family of myotoxins, which are found in high concentration in the venom of the Crotalus genus. Helleramine was isolated and purified from the venom of the Southern Pacific rattlesnake, Crotalus oreganus helleri. This peptide had a similar, but unique, identity to crotamine and crotamine-like proteins isolated from other rattlesnakes species. The variability of crotamine-like protein amino acid sequences may allow different toxic effects on biological targets or optimize the action against the same target of different prey. Helleramine was capable of increasing intracellular Ca2+ in Chinese Hamster Ovary (CHO) cell line. It inhibited cell migration as well as cell viability (IC50 = 11.44 μM) of C2C12, immortalized skeletal myoblasts, in a concentration dependent manner, and promoted early apoptosis and cell death under our experimental conditions. Skeletal muscle harvested from mice 24 h after helleramine injection showed contracted myofibrils and profound vacuolization that enlarged the subsarcolemmal space, along with loss of plasmatic and basal membrane integrity. The effects of helleramine provide further insights and evidence of myotoxic activities of crotamine-like peptides and their possible role in crotalid envenomings.
Collapse
Affiliation(s)
- Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Alexis Rodriguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Sara Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Roschman Gonzalez
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Morgan C McLarty
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Oscar Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Estefanie Garcia
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hector J Finol
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria E Giron
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Irma Fernandez
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Farah Deba
- Texas A&M Rangel College of Pharmacy, Kingsville, TX, USA
| | - Bret F Bessac
- Texas A&M Rangel College of Pharmacy, Kingsville, TX, USA; Jerry H. Hodge School of Pharmacy, Texas Tech University HSC, Amarillo, TX, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA.
| |
Collapse
|
6
|
Silvestrini AVP, de Macedo LH, de Andrade TAM, Mendes MF, Pigoso AA, Mazzi MV. Intradermal Application of Crotamine Induces Inflammatory and Immunological Changes In Vivo. Toxins (Basel) 2019; 11:toxins11010039. [PMID: 30646542 PMCID: PMC6357061 DOI: 10.3390/toxins11010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Crotamine is a single-chain polypeptide with cell-penetrating properties, which is considered a promising molecule for clinical use. Nevertheless, its biosafety data are still scarce. Herein, we assessed the in vivo proinflammatory properties of crotamine, including its local effect and systemic serum parameters. Sixty male Wistar rats were intradermically injected with 200, 400 and 800 µg crotamine and analyzed after 1, 3 and 7 days. Local effect of crotamine was assessed by determination of MPO and NAG activities, NO levels and angiogenesis. Systemic inflammatory response was assessed by determination of IL-10, TNF-α, CRP, NO, TBARS and SH groups. Crotamine induced macrophages and neutrophils chemotaxis as evidenced by the upregulation of both NAG (0.5–0.6 OD/mg) and MPO (0.1–0.2 OD/mg) activities, on the first and third day of analysis, respectively. High levels of NO were observed for all concentrations and time-points. Moreover, 800 μg crotamine resulted in serum NO (64.7 μM) and local tissue NO (58.5 μM) levels higher or equivalent to those recorded for their respective histamine controls (55.7 μM and 59.0 μM). Crotamine also induced a significant angiogenic response compared to histamine. Systemically, crotamine induced a progressive increase in serum CRP levels up to the third day of analysis (22.4–45.8 mg/mL), which was significantly greater than control values. Crotamine (400 μg) also caused an increase in serum TNF-α, in the first day of analysis (1095.4 pg/mL), however a significant increase in IL-10 (122.2 pg/mL) was also recorded for the same time-point, suggesting the induction of an anti-inflammatory effect. Finally, crotamine changed the systemic redox state by inducing gradual increase in serum levels of TBARS (1.0–1.8 μM/mL) and decrease in SH levels (124.7–19.5 μM/mL) throughout the experimental period of analysis. In summary, rats intradermally injected with crotamine presented local and systemic acute inflammatory responses similarly to histamine, which limits crotamine therapeutic use on its original form.
Collapse
Affiliation(s)
- Ana Vitória Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Luana Henrique de Macedo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Thiago Antônio Moretti de Andrade
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maíra Felonato Mendes
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Acácio Antônio Pigoso
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| | - Maurício Ventura Mazzi
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, FHO-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339 Araras, SP, Brazil.
| |
Collapse
|
7
|
Carvalho LHD, Teixeira LF, Zaqueo KD, Bastos JF, Nery NM, Setúbal SS, Pontes AS, Butzke D, Cavalcante W, Gallacci M, Fernandes CFC, Stabeli RG, Soares AM, Zuliani JP. Local and systemic effects caused by Crotalus durissus terrificus, Crotalus durissus collilineatus, and Crotalus durissus cascavella snake venoms in swiss mice. Rev Soc Bras Med Trop 2019; 52:e20180526. [DOI: 10.1590/0037-8682-0526-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/18/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
| | | | - Kayena Delaix Zaqueo
- Fundação Oswaldo Cruz, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Brazil
| | | | | | | | | | - Diana Butzke
- Universidade Federal de Rondônia, Brazil; Centro Universitário São Lucas, Brasil
| | | | | | | | | | | | | |
Collapse
|
8
|
Selection To Increase Expression, Not Sequence Diversity, Precedes Gene Family Origin and Expansion in Rattlesnake Venom. Genetics 2017; 206:1569-1580. [PMID: 28476866 DOI: 10.1534/genetics.117.202655] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/02/2017] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is the primary mechanism leading to new genes and phenotypic novelty, but the proximate evolutionary processes underlying gene family origin, maintenance, and expansion are poorly understood. Although sub- and neofunctionalization provide clear long-term advantages, selection does not act with foresight, and unless a redundant gene copy provides an immediate fitness advantage, the copy will most likely be lost. Many models for the evolution of genes immediately following duplication have been proposed, but the robustness and applicability of these models is unclear because of the lack of data at the population level. We used qPCR, protein expression data, genome sequencing, and hybrid enrichment to test three competing models that differ in whether selection favoring the spread of duplicates acts primarily on expression level or sequence diversity for specific toxin-encoding loci in the eastern diamondback rattlesnake (Crotalus adamanteus). We sampled 178 individuals and identified significant inter- and intrapopulation variation in copy number, demonstrated that copy number was significantly and positively correlated with protein expression, and found little to no sequence variation across paralogs in all populations. Collectively, these results demonstrate that selection for increased expression, not sequence diversity, was the proximate evolutionary process underlying gene family origin and expansion, providing data needed to resolve the debate over which evolutionary processes govern the fates of gene copies immediately following duplication.
Collapse
|
9
|
Kerkis I, de Brandão Prieto da Silva AR, Pompeia C, Tytgat J, de Sá Junior PL. Toxin bioportides: exploring toxin biological activity and multifunctionality. Cell Mol Life Sci 2017; 74:647-661. [PMID: 27554773 PMCID: PMC11107510 DOI: 10.1007/s00018-016-2343-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Toxins have been shown to have many biological functions and to constitute a rich source of drugs and biotechnological tools. We focus on toxins that not only have a specific activity, but also contain residues responsible for transmembrane penetration, which can be considered bioportides-a class of cell-penetrating peptides that are also intrinsically bioactive. Bioportides are potential tools in pharmacology and biotechnology as they help deliver substances and nanoparticles to intracellular targets. Bioportides characterized so far are peptides derived from human proteins, such as cytochrome c (CYCS), calcitonin receptor (camptide), and endothelial nitric oxide synthase (nosangiotide). However, toxins are usually disregarded as potential bioportides. In this review, we discuss the inclusion of some toxins and molecules derived thereof as a new class of bioportides based on structure activity relationship, minimization, and biological activity studies. The comparative analysis of the amino acid residue composition of toxin-derived bioportides and their short molecular variants is an innovative analytical strategy which allows us to understand natural toxin multifunctionality in vivo and plan novel pharmacological and biotechnological products. Furthermore, we discuss how many bioportide toxins have a rigid structure with amphiphilic properties important for both cell penetration and bioactivity.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| | | | - Celine Pompeia
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Louvain, Belgium
| | - Paulo L de Sá Junior
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
10
|
Neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis. Toxicon 2015; 96:46-9. [PMID: 25598498 DOI: 10.1016/j.toxicon.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 11/21/2022]
Abstract
A myographic study was performed to compare the neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis in mice phrenic-diaphragm preparation. It was concluded that both venoms present neurotoxic activity as a consequence of their crotoxin content. Furthermore, crotoxin from C.d. cumanensis is more potent than that from C.d. ruruima venom. At the concentration range in which both venoms express neurotoxic activity, only C.d. cumanensis venom also manifest a direct myotoxic effect that probably involves the synergic participation of other components than crotoxin.
Collapse
|
11
|
Lourenço A, Zorzella Creste CF, Curtolo de Barros L, Delazari dos Santos L, Pimenta DC, Barraviera B, Ferreira RS. Individual venom profiling of Crotalus durissus terrificus specimens from a geographically limited region: Crotamine assessment and captivity evaluation on the biological activities. Toxicon 2013; 69:75-81. [DOI: 10.1016/j.toxicon.2013.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 12/11/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
|
12
|
Hernandez-Oliveira e Silva S, Rostelato-Ferreira S, Rocha-e-Silva TAA, Randazzo-Moura P, Dal-Belo CA, Sanchez EF, Borja-Oliveira CR, Rodrigues-Simioni L. Beneficial effect of crotamine in the treatment of myasthenic rats. Muscle Nerve 2013; 47:591-3. [PMID: 23460475 DOI: 10.1002/mus.23714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Crotamine is a basic, low-molecular-weight peptide that, at low concentrations, improves neurotransmission in isolated neuromuscular preparations by modulating sodium channels. In this study, we compared the effects of crotamine and neostigmine on neuromuscular transmission in myasthenic rats. METHODS We used a conventional electromyographic technique in in-situ neuromuscular preparations and a 4-week treadmill program. RESULTS During the in-situ electromyographic recording, neostigmine (17 μg/kg) caused short-term facilitation, whereas crotamine induced progressive and sustained twitch-tension enhancement during 140 min of recording (50 ± 5%, P < 0.05). On the treadmill evaluation, rats showed significant improvement in exercise tolerance, characterized by a decrease in the number of fatigue episodes after 2 weeks of a single-dose treatment with crotamine. CONCLUSIONS These results indicate that crotamine is more efficient than neostigmine for enhancing muscular performance in myasthenic rats, possibly by improving the safety factor of neuromuscular transmission.
Collapse
|