1
|
Rodríguez-Durán A, Andrade-Silva V, Numan M, Waldman J, Ali A, Logullo C, da Silva Vaz Junior I, Parizi LF. Multi-Omics Technologies Applied to Improve Tick Research. Microorganisms 2025; 13:795. [PMID: 40284631 PMCID: PMC12029647 DOI: 10.3390/microorganisms13040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
The advancement of multi-omics technologies is crucial to deepen knowledge on tick biology. These approaches, used to study diverse phenomena, are applied to experiments that aim to understand changes in gene transcription, protein function, cellular processes, and prediction of systems at global biological levels. This review addressed the application of omics data to investigate and elucidate tick physiological processes, such as feeding, digestion, reproduction, neuronal, endocrine systems, understanding population dynamics, transmitted pathogens, control, and identifying new vaccine targets. Furthermore, new therapeutic perspectives using tick bioactive molecules, such as anti-inflammatory, analgesic, and antitumor, were summarized. Taken together, the application of omics technologies can help to understand the protein functions and biological behavior of ticks, as well as the identification of potential new antigens influencing the development of alternative control strategies and, consequently, the tick-borne disease prevention in veterinary and public health contexts. Finally, tick population dynamics have been determined through a combination of environmental factors, host availability, and genetic adaptations, and recent advances in omics technologies have improved our understanding of their ecological resilience and resistance mechanisms. Future directions point to the integration of spatial omics and artificial intelligence to further unravel tick biology and improve control strategies.
Collapse
Affiliation(s)
- Arlex Rodríguez-Durán
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (A.R.-D.); (M.N.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Grupo de Investigación Parasitología Veterinaria, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia (UNAL), Carrera 30 No 45-03, Bogotá 110111, Colombia
| | - Vinícius Andrade-Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Muhammad Numan
- Programa de Pós-Graduação em Ciências Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; (A.R.-D.); (M.N.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-853, RJ, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; (V.A.-S.); (J.W.); (I.d.S.V.J.)
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil
| |
Collapse
|
2
|
Cerri F, Araujo MDS, Aguirre ADAR, Evaristo GPC, Evaristo JAM, Nogueira FCS, de Medeiros JF, Dias QM. Crude saliva of Amblyomma cajennense sensu stricto (Acari: Ixodidae) reduces locomotor activity and increases the hemocyte number in the females of Aedes aegypti (Diptera: Culicidae). Exp Parasitol 2023:108570. [PMID: 37330106 DOI: 10.1016/j.exppara.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Aedes aegypti are vector insects of arboviruses such as dengue, Zika, and chikungunya. All available vector control methods have limited efficacy, highlighting the urgent need to find alternative ones. Evidence shows that arachnids like ticks are sources of biologically active compounds. Moreover, chemical modulation of the locomotor and immune systems of vector insects can be used to control arbovirus transmission. The present study evaluated the effectiveness of crude saliva of female Amblyomma cajennense sensu stricto (s.s.) ticks in reducing locomotor activity and inducing an immune response in Ae. aegypti females. Additionally, the study evaluated the protein constitution of tick saliva. For this purpose, the crude saliva obtained from several semi-engorged A. cajennense females was used. A volume of 0.2 nL of crude tick saliva was administered to mosquitoes by direct intrathoracic microinjection. The effect of the tick's saliva on the locomotor activity of the mosquito was observed using Flybox, a video-automated monitoring system, and the hemolymph hemocyte levels were quantified by reading slides under a light microscope. The protein concentration of the crude tick saliva was 1.27 μg/μL, and its electrophoretic profile indicates the presence of proteins with a molecular weight ranging between ∼17 and 95 kDa. Microplusins, ixodegrins, cystatin, actins, beta-actin, calponin, albumin, alpha-globulins, and hemoglobin were the main proteins identified by proteomics in the saliva of A. cajennense. The microinjected saliva had low toxicity for Ae. aegypti females and significantly reduced their locomotor activity, especially in the transition between the light and dark phases. The crude tick saliva did not change the period and rhythmicity of the circadian cycle. The tick saliva significantly increased the number of hemocytes two days after injection and reduced it after five days. These results suggest that further evaluation of the biological properties of tick saliva proteins against Ae. aegypti would be of interest.
Collapse
Affiliation(s)
- Fabiano Cerri
- Laboratório de Neuro e Imunofarmacologia (NIMFAR) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil; Universidade Federal de Rondônia - Programa de Pós-Graduação em Biologia Experimental, (PGBIOEXP), Brazil
| | - Maisa da Silva Araujo
- Laboratório de Entomologia/Plataforma de Produção e Infecção de Vetores da Malária (PIVEM) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil
| | - André de Abreu Rangel Aguirre
- Laboratório de Entomologia/Plataforma de Produção e Infecção de Vetores da Malária (PIVEM) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil
| | | | - Joseph Albert Medeiros Evaristo
- Laboratório de Proteômica, LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fábio César Sousa Nogueira
- Laboratório de Proteômica, LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jansen Fernandes de Medeiros
- Universidade Federal de Rondônia - Programa de Pós-Graduação em Biologia Experimental, (PGBIOEXP), Brazil; Laboratório de Entomologia/Plataforma de Produção e Infecção de Vetores da Malária (PIVEM) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil
| | - Quintino Moura Dias
- Laboratório de Neuro e Imunofarmacologia (NIMFAR) - Fundação Oswaldo Cruz (FIOCRUZ Rondônia) - Fundação Oswaldo Cruz, Porto Velho, RO, Brazil; Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT - NIM), Rio de Janeiro, RJ, Brazil; Universidade Federal de Rondônia - Programa de Pós-Graduação em Biologia Experimental, (PGBIOEXP), Brazil.
| |
Collapse
|
3
|
Morais KLP, Ciccone L, Stura E, Alvarez-Flores MP, Mourier G, Driessche MV, Sciani JM, Iqbal A, Kalil SP, Pereira GJ, Marques-Porto R, Cunegundes P, Juliano L, Servent D, Chudzinski-Tavassi AM. Structural and functional properties of the Kunitz-type and C-terminal domains of Amblyomin-X supporting its antitumor activity. Front Mol Biosci 2023; 10:1072751. [PMID: 36845546 PMCID: PMC9948614 DOI: 10.3389/fmolb.2023.1072751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Amblyomin-X is a Kunitz-type FXa inhibitor identified through the transcriptome analysis of the salivary gland from Amblyomma sculptum tick. This protein consists of two domains of equivalent size, triggers apoptosis in different tumor cell lines, and promotes regression of tumor growth, and reduction of metastasis. To study the structural properties and functional roles of the N-terminal (N-ter) and C-terminal (C-ter) domains of Amblyomin-X, we synthesized them by solid-phase peptide synthesis, solved the X-Ray crystallographic structure of the N-ter domain, confirming its Kunitz-type signature, and studied their biological properties. We show here that the C-ter domain is responsible for the uptake of Amblyomin-X by tumor cells and highlight the ability of this domain to deliver intracellular cargo by the strong enhancement of the intracellular detection of molecules with low cellular-uptake efficiency (p15) after their coupling with the C-ter domain. In contrast, the N-ter Kunitz domain of Amblyomin-X is not capable of crossing through the cell membrane but is associated with tumor cell cytotoxicity when it is microinjected into the cells or fused to TAT cell-penetrating peptide. Additionally, we identify the minimum length C-terminal domain named F2C able to enter in the SK-MEL-28 cells and induces dynein chains gene expression modulation, a molecular motor that plays a role in the uptake and intracellular trafficking of Amblyomin-X.
Collapse
Affiliation(s)
- K. L. P. Morais
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Ciccone
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - E. Stura
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. P. Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. Mourier
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. Vanden Driessche
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - J. M. Sciani
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - A. Iqbal
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - S. P. Kalil
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. J. Pereira
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - R. Marques-Porto
- Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - P. Cunegundes
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - D. Servent
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| | - A. M. Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| |
Collapse
|
4
|
Jmel MA, Voet H, Araújo RN, Tirloni L, Sá-Nunes A, Kotsyfakis M. Tick Salivary Kunitz-Type Inhibitors: Targeting Host Hemostasis and Immunity to Mediate Successful Blood Feeding. Int J Mol Sci 2023; 24:1556. [PMID: 36675071 PMCID: PMC9865953 DOI: 10.3390/ijms24021556] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Kunitz domain-containing proteins are ubiquitous serine protease inhibitors with promising therapeutic potential. They target key proteases involved in major cellular processes such as inflammation or hemostasis through competitive inhibition in a substrate-like manner. Protease inhibitors from the Kunitz superfamily have a low molecular weight (18-24 kDa) and are characterized by the presence of one or more Kunitz motifs consisting of α-helices and antiparallel β-sheets stabilized by three disulfide bonds. Kunitz-type inhibitors are an important fraction of the protease inhibitors found in tick saliva. Their roles in inhibiting and/or suppressing host homeostatic responses continue to be shown to be additive or synergistic with other protease inhibitors such as cystatins or serpins, ultimately mediating successful blood feeding for the tick. In this review, we discuss the biochemical features of tick salivary Kunitz-type protease inhibitors. We focus on their various effects on host hemostasis and immunity at the molecular and cellular level and their potential therapeutic applications. In doing so, we highlight that their pharmacological properties can be exploited for the development of novel therapies and vaccines.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Hanne Voet
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Ricardo N. Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro 21941-902, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Anderson Sá-Nunes
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022; 11:3961. [PMID: 36553703 PMCID: PMC9777846 DOI: 10.3390/foods11243961] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
6
|
Lobba ARM, Alvarez-Flores MP, Fessel MR, Buri MV, Oliveira DS, Gomes RN, Cunegundes PS, DeOcesano-Pereira C, Cinel VD, Chudzinski-Tavassi AM. A Kunitz-type inhibitor from tick salivary glands: A promising novel antitumor drug candidate. Front Mol Biosci 2022; 9:936107. [PMID: 36052162 PMCID: PMC9424826 DOI: 10.3389/fmolb.2022.936107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Salivary glands are vital structures responsible for successful tick feeding. The saliva of ticks contains numerous active molecules that participate in several physiological processes. A Kunitz-type factor Xa (FXa) inhibitor, similar to the tissue factor pathway inhibitor (TFPI) precursor, was identified in the salivary gland transcriptome of Amblyomma sculptum ticks. The recombinant mature form of this Kunitz-type inhibitor, named Amblyomin-X, displayed anticoagulant, antiangiogenic, and antitumor properties. Amblyomin-X is a protein that inhibits FXa in the blood coagulation cascade and acts via non-hemostatic mechanisms, such as proteasome inhibition. Amblyomin-X selectively induces apoptosis in cancer cells and promotes tumor regression through these mechanisms. Notably, the cytotoxicity of Amblyomin-X seems to be restricted to tumor cells and does not affect non-tumorigenic cells, tissues, and organs, making this recombinant protein an attractive molecule for anticancer therapy. The cytotoxic activity of Amblyomin-X on tumor cells has led to vast exploration into this protein. Here, we summarize the function, action mechanisms, structural features, pharmacokinetics, and biodistribution of this tick Kunitz-type inhibitor recombinant protein as a promising novel antitumor drug candidate.
Collapse
Affiliation(s)
- Aline R. M. Lobba
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Miryam Paola Alvarez-Flores
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Melissa Regina Fessel
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Douglas S. Oliveira
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Renata N. Gomes
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Priscila S. Cunegundes
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Victor D. Cinel
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Ana M. Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Ana M. Chudzinski-Tavassi,
| |
Collapse
|
7
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
8
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
9
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Colella F, Scillitani G, Pierri CL. Sweet as honey, bitter as bile: Mitochondriotoxic peptides and other therapeutic proteins isolated from animal tissues, for dealing with mitochondrial apoptosis. Toxicology 2020; 447:152612. [PMID: 33171268 DOI: 10.1016/j.tox.2020.152612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are subcellular organelles involved in cell metabolism and cell life-cycle. Their role in apoptosis regulation makes them an interesting target of new drugs for dealing with cancer or rare diseases. Several peptides and proteins isolated from animal and plant sources are known for their therapeutic properties and have been tested on cancer cell-lines and xenograft murine models, highlighting their ability in inducing cell-death by triggering mitochondrial apoptosis. Some of those molecules have been even approved as drugs. Conversely, many other bioactive compounds are still under investigation for their proapoptotic properties. In this review we report about a group of peptides, isolated from animal venoms, with potential therapeutic properties related to their ability in triggering mitochondrial apoptosis. This class of compounds is known with different names, such as mitochondriotoxins or mitocans.
Collapse
Affiliation(s)
- Francesco Colella
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
11
|
Lichtenstein F, Iqbal A, de Lima Will SEA, Bosch RV, DeOcesano-Pereira C, Goldfeder MB, Chammas R, Trufen CEM, Morais KLP, de Souza JG, Natalino RJM, de Azevedo IJ, Nishiyama Junior MY, Oliveira U, Alves FIA, Araujo JM, Lobba ARM, Chudzinski-Tavassi AM. Modulation of stress and immune response by Amblyomin-X results in tumor cell death in a horse melanoma model. Sci Rep 2020; 10:6388. [PMID: 32286411 PMCID: PMC7156751 DOI: 10.1038/s41598-020-63275-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.
Collapse
Affiliation(s)
- Flavio Lichtenstein
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Asif Iqbal
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Sonia Elisabete Alves de Lima Will
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Rosemary Viola Bosch
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Carlos DeOcesano-Pereira
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Mauricio Barbugiani Goldfeder
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Roger Chammas
- ICESP, Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Eduardo Madureira Trufen
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Katia Luciano Pereira Morais
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Jean Gabriel de Souza
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Renato Jose Mendonça Natalino
- ICESP, Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Ursula Oliveira
- Laboratório Especial de Toxinologia Aplicada - CeTICS, Butantan Institute, São Paulo, Brazil
| | - Francisco Ivanio Arruda Alves
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Jaqueline Mayara Araujo
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Aline Ramos Maia Lobba
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil. .,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
12
|
Martins LA, Kotál J, Bensaoud C, Chmelař J, Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140336. [DOI: 10.1016/j.bbapap.2019.140336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
|
13
|
Pavon LF, Capper D, Sibov TT, de Toledo SRC, Thomale UW, de Souza JG, Cabral FR, Berra CM, Silva da Costa MD, Mendonça Niçacio J, Dastoli PA, de Oliveira DM, Malheiros SMF, da Cruz EF, Malheiros JM, de Oliveira SM, Silva NS, Petrilli AS, Cappellano AM, Brunialti MC, Salomão R, de Paiva Neto MA, Chudzinski-Tavassi AM, Cavalheiro S. New therapeutic target for pediatric anaplastic ependymoma control: study of anti-tumor activity by a Kunitz-type molecule, Amblyomin-X. Sci Rep 2019; 9:9973. [PMID: 31292491 PMCID: PMC6620274 DOI: 10.1038/s41598-019-45799-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/30/2019] [Indexed: 11/08/2022] Open
Abstract
EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.
Collapse
Affiliation(s)
- Lorena Favaro Pavon
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil.
| | - David Capper
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tatiana Tais Sibov
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ulrich-W Thomale
- Pediatric Neurosurgery, Campus Virchow Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Jean Gabriel de Souza
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, São Paulo, Brazil
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, São Paulo, Brazil
| | | | - Carolina Maria Berra
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcos Devanir Silva da Costa
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jardel Mendonça Niçacio
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Patrícia Alessandra Dastoli
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Suzana M F Malheiros
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | | | | | | | - Nasjla Saba Silva
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Antonio Sérgio Petrilli
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea Maria Cappellano
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Milena Colò Brunialti
- Laboratory of Immunology and Infectology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Laboratory of Immunology and Infectology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Manoel A de Paiva Neto
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, São Paulo, Brazil.
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, São Paulo, Brazil.
| | - Sérgio Cavalheiro
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Štibrániová I, Bartíková P, Holíková V, Kazimírová M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front Physiol 2019; 10:830. [PMID: 31333488 PMCID: PMC6617849 DOI: 10.3389/fphys.2019.00830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks are obligatory blood-feeding ectoparasites, causing blood loss and skin damage in their hosts. In addition, ticks also transmit a number of various pathogenic microorganisms that cause serious diseases in humans and animals. Ticks evolved a wide array of salivary bioactive compounds that, upon injection into the host skin, inhibit or modulate host reactions such as hemostasis, inflammation and wound healing. Modulation of the tick attachment site in the host skin involves mainly molecules which affect physiological processes orchestrated by cytokines, chemokines and growth factors. Suppressing host defense reactions is crucial for tick survival and reproduction. Furthermore, pharmacologically active compounds in tick saliva have a promising therapeutic potential for treatment of some human diseases connected with disorders in hemostasis and immune system. These disorders are often associated to alterations in signaling pathways and dysregulation or overexpression of specific cytokines which, in turn, affect mechanisms of angiogenesis, cell motility and cytoskeletal regulation. Moreover, tick salivary molecules were found to exert cytotoxic and cytolytic effects on various tumor cells and have anti-angiogenic properties. Elucidation of the mode of action of tick bioactive molecules on the regulation of cell processes in their mammalian hosts could provide new tools for understanding the complex changes leading to immune disorders and cancer. Tick bioactive molecules may also be exploited as new pharmacological inhibitors of the signaling pathways of cytokines and thus help alleviate patient discomfort and increase patient survival. We review the current knowledge about tick salivary peptides and proteins that have been identified and functionally characterized in in vitro and/or in vivo models and their therapeutic perspective.
Collapse
Affiliation(s)
- Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
15
|
Chmelař J, Kotál J, Kovaříková A, Kotsyfakis M. The Use of Tick Salivary Proteins as Novel Therapeutics. Front Physiol 2019; 10:812. [PMID: 31297067 PMCID: PMC6607933 DOI: 10.3389/fphys.2019.00812] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The last three decades of research into tick salivary components have revealed several proteins with important pharmacological and immunological activities. Two primary interests have driven research into tick salivary secretions: the search for suitable pathogen transmission blocking or “anti-tick” vaccine candidates and the search for novel therapeutics derived from tick salivary components. Intensive basic research in the field of tick salivary gland transcriptomics and proteomics has identified several major protein families that play important roles in tick feeding and overcoming vertebrate anti-tick responses. Moreover, these families contain members with unrealized therapeutic potential. Here we review the major tick salivary protein families exploitable in medical applications such as immunomodulation, inhibition of hemostasis and inflammation. Moreover, we discuss the potential, opportunities, and challenges in searching for novel tick-derived drugs.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| | - Anna Kovaříková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| |
Collapse
|
16
|
Boufleur P, Sciani JM, Goldfeder M, Faria F, Branco V, Chudzinski-Tavassi AM. Biodistribution and Pharmacokinetics of Amblyomin-X, a Novel Antitumour Protein Drug in Healthy Mice. Eur J Drug Metab Pharmacokinet 2019; 44:111-120. [PMID: 30132264 DOI: 10.1007/s13318-018-0500-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Amblyomin-X is a recombinant protein under development for cancer treatment owing to its selective cytotoxic activity over several tumour cell lines and tumour regression in mice models. The aim of this study was to examine the distribution and pharmacokinetics of amblyomin-X in healthy female mice. METHODS Amblyomin-X was injected intravenously into the healthy animals and at controlled times plasma and organs were removed and analysed for identification and quantification of the protein. Alternatively, the labelled protein was injected into mice and tracked in an in vivo imaging system. RESULTS Amblyomin-X was rapidly eliminated from plasma, probably because of its inability to bind to plasma albumin. After 10 min, the protein was found in the thymus and lungs, and later in the heart, liver and kidneys. In the liver, the protein was found until 24 h after a single injection. The in vivo analysis showed the same kinetics profile, besides the identification of amblyomin-X in the bladder region, indicating its elimination via urine. Only fragments of amblyomin-X were observed in the urine. CONCLUSIONS These findings suggest that amblyomin-X is rapidly distributed to the tissues, metabolized by the liver or even kidneys, and eliminated in urine in healthy mice. There is no accumulation in any organ.
Collapse
Affiliation(s)
- Pamela Boufleur
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil
| | - Juliana Mozer Sciani
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil. .,Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. Francisco de Assis, 218 Cidade Universitária, Bragança Paulista, SP, 12916-900, Brazil.
| | - Mauricio Goldfeder
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil
| | - Fernanda Faria
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil
| | - Vânia Branco
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil
| | | |
Collapse
|
17
|
Maria DA, Will SEAL, Bosch RV, Souza JG, Sciani JM, Goldfeder MB, Rondon GG, Chudzinski-Tavassi AM. Preclinical evaluation of Amblyomin-X, a Kunitz-type protease inhibitor with antitumor activity. Toxicol Rep 2018; 6:51-63. [PMID: 30581760 PMCID: PMC6298944 DOI: 10.1016/j.toxrep.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Amblyomin-X is a recombinant protein with selective antitumor activity, causing tumor reduction in vivo. Acute and subchronic toxicity studies shows low toxicity in healthy mice, with reversible adverse effects. Amblyomin-X toxicity profile was defined.
Amblyomin-X, a Kunitz-type protease inhibitor, is a recombinant protein that selectively induces apoptosis in tumor cells and promotes tumor reduction in vivo in melanoma animal models. Furthermore, Amblyomin-X was able to drastically reduce lung metastasis in a mice orthotopic kidney tumor model. Due to its antitumor activity, Amblyomin-X potential to become a new drug is currently under investigation, therefore the aim of the present study was to perform preclinical assays to evaluate Amblyomin-X toxicity in healthy mice. Exploratory toxicity assays have shown that treatment with 512 mg/kg of Amblyomin-X lead to animal mortality, therefore two groups of treatment were evaluated in the present work: in the acute toxicity assay, animals were injected once with doses ranging from 4 to 256 mg/kg of Amblyomin-X, while in the subacute toxicity assay, animals were injected with 0.25, 0.57 and 1 mg/kg of Amblyomin-X daily, during 28 days. Following this treatment regimens, Amblyomin-X did not cause any mortality; moreover, toxicity signs were discrete, reversible and observed only at the higher doses, thus establishing a safety profile for administration in mice, which can be further used to determine the dose translation of this novel drug candidate for treatment in other species.
Collapse
Affiliation(s)
- Durvanei A Maria
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Sonia Elisabete A L Will
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Rosemary V Bosch
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Jean G Souza
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Juliana M Sciani
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Mauricio B Goldfeder
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Giuliana G Rondon
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| | - Ana M Chudzinski-Tavassi
- Laboratório de Biologia Molecular, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, 05503-900, SP, Brazil
| |
Collapse
|
18
|
Ixodid tick salivary gland extracts suppress human transforming growth factor-β1 triggered signalling pathways in cervical carcinoma cells. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0129-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Parizi LF, Ali A, Tirloni L, Oldiges DP, Sabadin GA, Coutinho ML, Seixas A, Logullo C, Termignoni C, DA Silva Vaz I. Peptidase inhibitors in tick physiology. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:129-144. [PMID: 29111611 DOI: 10.1111/mve.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/23/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction.
Collapse
Affiliation(s)
- L F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M L Coutinho
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - I DA Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Sousa ACP, Oliveira CJF, Szabó MPJ, Silva MJB. Anti-neoplastic activity of Amblyomma sculptum, Amblyomma parvum and Rhipicephalus sanguineus tick saliva on breast tumor cell lines. Toxicon 2018; 148:165-171. [DOI: 10.1016/j.toxicon.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 11/26/2022]
|
21
|
Suppan J, Engel B, Marchetti-Deschmann M, Nürnberger S. Tick attachment cement - reviewing the mysteries of a biological skin plug system. Biol Rev Camb Philos Soc 2018; 93:1056-1076. [PMID: 29119723 PMCID: PMC5947171 DOI: 10.1111/brv.12384] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 11/14/2022]
Abstract
The majority of ticks in the family Ixodidae secrete a substance anchoring their mouthparts to the host skin. This substance is termed cement. It has adhesive properties and seals the lesion during feeding. The particular chemical composition and the curing process of the cement are unclear. This review summarizes the literature, starting with a historical overview, briefly introducing the different hypotheses on the origin of the adhesive and how the tick salivary glands have been identified as its source. Details on the sequence of cement deposition, the curing process and detachment are provided. Other possible functions of the cement, such as protection from the host immune system and antimicrobial properties, are presented. Histochemical and ultrastructural data of the intracellular granules in the salivary gland cells, as well as the secreted cement, suggest that proteins constitute the main material, with biochemical data revealing glycine to be the dominant amino acid. Applied methods and their restrictions are discussed. Tick cement is compared with adhesives of other animals such as barnacles, mussels and sea urchins. Finally, we address the potential of tick cement for the field of biomaterial research and in particular for medical applications in future.
Collapse
Affiliation(s)
- Johannes Suppan
- Department of Trauma Surgery, Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Benedikt Engel
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060, Vienna, Austria
| | | | - Sylvia Nürnberger
- Department of Trauma Surgery, Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
22
|
Bensaoud C, Abdelkafi-Koubaa Z, Ben Mabrouk H, Morjen M, Hmila I, Rhim A, Ayeb ME, Marrakchi N, Bouattour A, M'ghirbi Y. Hyalomma dromedarii (Acari: Ixodidae) Salivary Gland Extract Inhibits Angiogenesis and Exhibits In Vitro Antitumor Effects. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1476-1482. [PMID: 29029126 DOI: 10.1093/jme/tjx153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Hard ticks (Acari: Ixodidae) are blood-sucking ectoparasites characterized by the extended period of their attachment to their host. To access their bloodmeal, ticks secrete saliva containing a range of molecules that target the host's inflammation, immune system, and hemostatic components. Some of these molecules reportedly possess antiangiogenic and antitumor properties. The present study describes our investigation, the first of its kind, of the antiangiogenic and antitumoral effects of the Hyalomma dromedarii Koch, 1844 (Acari: Ixodidae), salivary gland extract (SGE), which inhibited the adhesion and migration of Human Umbilical Vein Endothelial Cells (HUVECs) in a dose-dependent manner, as well as angiogenesis in the Chick Chorioallantoic Membrane model. Interestingly, H. dromedarii SGE exerted an antiproliferative effect on U87 glioblastoma cells and inhibited their adhesion and migration to fibrinogen. These results open up new possibilities for characterizing and developing new molecules involved in the key steps of tumor progression.
Collapse
Affiliation(s)
- Chaima Bensaoud
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Hazem Ben Mabrouk
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Maram Morjen
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Issam Hmila
- laboratoire d'Epidémiologie et microbiologie vétérinaire (LR11IPT03), Université de Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Adel Rhim
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Mohamed El Ayeb
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08), Institut Pasteur de Tunis, Université de Tunis El Manar, 1002 Tunis, Tunisia
| | - Ali Bouattour
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| | - Youmna M'ghirbi
- Service d'entomologie médicale (LR11IPT03), Université Tunis El Manar, Institut Pasteur de Tunis, 1002 Tunis, Tunisia
| |
Collapse
|
23
|
Murfin KE, Fikrig E. Tick Bioactive Molecules as Novel Therapeutics: Beyond Vaccine Targets. Front Cell Infect Microbiol 2017. [PMID: 28634573 PMCID: PMC5459892 DOI: 10.3389/fcimb.2017.00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kristen E Murfin
- Section of Infectious Disease, Department of Internal Medicine, Yale University School of MedicineNew Haven, CT, United States
| | - Erol Fikrig
- Section of Infectious Disease, Department of Internal Medicine, Yale University School of MedicineNew Haven, CT, United States.,Howard Hughes Medical InstituteChevy Chase, MD, United States.,Department of Microbial Pathogenesis, Yale UniversityNew Haven, CT, United States
| |
Collapse
|
24
|
Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:199. [PMID: 28589099 PMCID: PMC5438962 DOI: 10.3389/fcimb.2017.00199] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.
Collapse
Affiliation(s)
| | - Thierry Foulon
- Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Biogenèse des Signaux Peptidiques, Sorbonne Universités, UPMC Univ. Paris 06Paris, France
| | | |
Collapse
|
25
|
Zhang H, Qiao R, Gong H, Cao J, Zhou Y, Zhou J. Identification and anticoagulant activity of a novel Kunitz-type protein HA11 from the salivary gland of the tick Hyalomma asiaticum. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 71:71-85. [PMID: 28091958 DOI: 10.1007/s10493-017-0106-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/07/2017] [Indexed: 05/16/2023]
Abstract
Kunitz/bovine pancreatic trypsin inhibitor proteins are abundant in the salivary glands of ticks and perform multiple functions in blood feeding, including inhibiting blood coagulation, regulating host blood supply and disrupting host angiogenesis. In this study, we identified a novel gene designated HA11 (Hyalomma asiaticum 11 kDa protein) from the salivary gland of the tick H. asiaticum. HA11 is encoded by a gene with an open reading frame of 306 bp that is translated into a deduced 101 amino acid 11 kDa protein that shares 27% sequence identity with a Kunitz-like protease inhibitor precursor in Amblyomma variegatum. Bioinformatic analysis confirmed HA11 as a member of the Kunitz-type family of inhibitors. Real time-PCR detected HA11 mRNA transcripts in tick larvae and nymphae stages, with levels highest in salivary gland tissue, and transcription was induced by blood feeding. HA11 anticoagulant activity was demonstrated by its ability to delay normal clotting of rabbit plasma in an activated partial thromboplastin time assay. Furthermore, RNA interference confirmed that HA11 influences H. asiaticum development and blood feeding, and the recombinant protein exerted low hemolytic activity. These results suggest HA11 is a novel Kunitz-type anticoagulant protein involved in tick blood feeding that may have potential as an anticoagulant drug or vaccine.
Collapse
Affiliation(s)
- Houshuang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Ruiqiong Qiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Haiyan Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Jie Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Yongzhi Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
26
|
de Souza JG, Morais KL, Anglés-Cano E, Boufleur P, de Mello ES, Maria DA, Origassa CST, Zampolli HDC, Câmara NOS, Berra CM, Bosch RV, Chudzinski-Tavassi AM. Promising pharmacological profile of a Kunitz-type inhibitor in murine renal cell carcinoma model. Oncotarget 2016; 7:62255-62266. [PMID: 27566592 PMCID: PMC5308724 DOI: 10.18632/oncotarget.11555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC), also called kidney cancer or renal adenocarcinoma, is highly resistant to current treatments. It has been previously reported that a Kunitz-type inhibitor domain-containing protein, isolated from the salivary glands of the Amblyomma cajennense tick, triggers apoptosis in murine renal adenocarcinoma cells (Renca) by inhibiting the proteasome and endoplasmic reticulum stress. Of note, Amblyomin-X is the corresponding recombinant protein identified in the cDNA library from A. cajennense salivary glands. Herein, using orthotopic kidney tumors in mice, we demonstrate that Amblyomin-X is able to drastically reduce the incidence of lung metastases by inducing cell cycle arrest and apoptosis. The in vitro assays show that Amblyomin-X is capable of reducing the proliferation rate of Renca cells, promoting cell cycle arrest, and down-regulating the expression of crucial proteins (cyclin D1, Ki67 and Pgp) involved in the aggressiveness and resistance of RCC. Regarding non-tumor cells (NIH3T3), Amblyomin-X produced minor effects in the cyclin D1 levels. Interestingly, observing the image assays, the fluorescence-labelled Amblyomin-X was indeed detected in the tumor stroma whereas in healthy animals it was rapidly metabolized and excreted. Taken the findings together, Amblyomin-X can be considered as a potential anti-RCC drug candidate.
Collapse
Affiliation(s)
- Jean Gabriel de Souza
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
- Department of Biochemistry, Federal University of São Paulo, SP, Brazil
- CENTD- Center of Excellence in New Target Discovery, Butantan Institute, SP, Brazil
| | - Katia L.P. Morais
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
- CENTD- Center of Excellence in New Target Discovery, Butantan Institute, SP, Brazil
| | - Eduardo Anglés-Cano
- INSERM UMR_S 1140-Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pamela Boufleur
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
- Department of Biochemistry, Federal University of São Paulo, SP, Brazil
| | | | | | - Clarice Silvia Taemi Origassa
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
- Nephrology Division, Federal University of São Paulo, SP, Brazil
| | | | | | - Ana Marisa Chudzinski-Tavassi
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
- CENTD- Center of Excellence in New Target Discovery, Butantan Institute, SP, Brazil
| |
Collapse
|
27
|
Branco VG, Iqbal A, Alvarez-Flores MP, Sciani JM, de Andrade SA, Iwai LK, Serrano SMT, Chudzinski-Tavassi AM. Amblyomin-X having a Kunitz-type homologous domain, is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1428-35. [PMID: 27479486 DOI: 10.1016/j.bbapap.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cancer has long been associated with thrombosis and many of the standard chemotherapeutics used to treat cancer are pro-thrombotic. Thus, the identification of novel selective anticancer drugs that also have antithrombotic properties is of enormous significance. Amblyomin-X is an anticancer protein derived from the salivary glands of the Amblyomma cajennense tick. METHODS In this work, we determined the inhibition profile of Amblyomin-X and its effect on activated partial thromboplastin time (aPTT) and prothrombin time (PT), using various approaches such as, kinetic analyses, amidolytic assays, SDS-PAGE, and mass spectrometry. RESULTS Amblyomin-X inhibited factor Xa, prothrombinase and tenase activities. It was hydrolyzed by trypsin and plasmin. MS/MS data of tryptic hydrolysate of Amblyomin-X suggested the presence of Cys(8)-Cys(59) and Cys(19)-Cys(42) but not Cys(34)-Cys(55) disulfide bond. Instead of Cys(34)-Cys(55), two noncanonical Cys(34)-Cys(74) and Cys(55)-Cys(74) disulfide bonds were identified. Furthermore, when Amblyomin-X (1mg/kg) injected in rabbits, it prolonged aPTT and PT. CONCLUSION Amblyomin-X is a noncompetitive inhibitor (Ki=3.9μM) of factor Xa. It is a substrate for plasmin and trypsin, but not for factor Xa and thrombin. The disulfide Cys(34)-Cys(55) bond probably scrambles with interchain seventh free cysteine residues (Cys(74)) of Amblyomin-X. The prolongation of PT and aPTT is reversible. GENERAL SIGNIFICANCE In term of anticoagulant property, this is structural and functional characterization of Amblyomin-X. All together, these results and previous findings suggest that Amblyomin-X has a potential to become an anticancer drug with antithrombotic property.
Collapse
Affiliation(s)
- Vania G Branco
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Asif Iqbal
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil; Centre of Excellence for New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Miryam P Alvarez-Flores
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil; Centre of Excellence for New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Juliana M Sciani
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Sonia A de Andrade
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Leo K Iwai
- Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Solange M T Serrano
- Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Ana M Chudzinski-Tavassi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil; Centre of Excellence for New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
28
|
Morais KLP, Pacheco MTF, Berra CM, Bosch RV, Sciani JM, Chammas R, de Freitas Saito R, Iqbal A, Chudzinski-Tavassi AM. Amblyomin-X induces ER stress, mitochondrial dysfunction, and caspase activation in human melanoma and pancreatic tumor cell. Mol Cell Biochem 2016; 415:119-31. [PMID: 27015684 PMCID: PMC4819916 DOI: 10.1007/s11010-016-2683-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/12/2016] [Indexed: 01/13/2023]
Abstract
During the last two decades, new insights into proteasome function and its role in several human diseases made it a potential therapeutic target. In this context, Amblyomin-X is a Kunitz-type FXa inhibitor similar to endogenous tissue factor pathway inhibitor (TFPI) and is a novel proteasome inhibitor. Herein, we have demonstrated Amblyomin-X cytotoxicity to different tumor cells lines such as pancreatic (Panc1, AsPC1BxPC3) and melanoma (SK-MEL-5 and SK-MEL-28). Of note, Amblyomin-X was not cytotoxic to normal human fibroblast cells. In addition, Amblyomin-X promoted accumulation of ER stress markers (GRP78 and GADD153) in sensitive (SK-MEL-28) and bortezomib-resistant (Mia-PaCa-2) tumor cells. The intracellular calcium concentration [Ca2+]i was slightly modulated in human tumor cells (SK-MEL-28 and Mia-PaCa-2) after 24 h of Amblyomin-X treatment. Furthermore, Amblyomin-X induced mitochondrial dysfunction, cytochrome-c release, PARP cleavage, and activation of caspase cascade in both human tumor (SK-MEL-28 and Mia-PaCa-2) cells. These investigations might help in further understanding of the antitumor properties of Amblyomin-X.
Collapse
Affiliation(s)
- Katia L P Morais
- Biochemistry and Biophysics Laboratory, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil.,Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - Carolina Maria Berra
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Rosemary V Bosch
- Biochemistry and Biophysics Laboratory, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil
| | - Juliana Mozer Sciani
- Biochemistry and Biophysics Laboratory, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil
| | - Roger Chammas
- Experimental Oncology Medical Investigation Laboratory - LIM/24, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Renata de Freitas Saito
- Experimental Oncology Medical Investigation Laboratory - LIM/24, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Asif Iqbal
- Biochemistry and Biophysics Laboratory, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Biochemistry and Biophysics Laboratory, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, 05503-900, Brazil. .,Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Harnessing the knowledge of animal toxins to generate drugs. Pharmacol Res 2016; 112:30-36. [PMID: 26826284 DOI: 10.1016/j.phrs.2016.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 11/20/2022]
Abstract
Animal toxins present high selectivity and specificity for their molecular targets, and have long been considered as prototypes for developing novel drugs, with some successful cases. In this regard, the variety of molecules found in animal venoms, which can be capable of affecting vital physiological systems, have providing the development of studies focusing on turning those molecules (toxins) into therapeutics to treat several diseases, such as chronic pain, hypertension, thrombosis, cancer, and so on. However, some important issues have been responsible for disrupting the toxin-based drug discovery projects. In this review, we have briefly highlighted the development of drugs based on animal toxins, discussing some successful cases as well as the main causes of failure, pointing out the recent strategies applied to overcome the difficulties related to the translational process in this kind of development scenario.
Collapse
|
30
|
Pacheco MTF, Morais KLP, Berra CM, Demasi M, Sciani JM, Branco VG, Bosch RV, Iqbal A, Chudzinski-Tavassi AM. Specific role of cytoplasmic dynein in the mechanism of action of an antitumor molecule, Amblyomin-X. Exp Cell Res 2015; 340:248-58. [PMID: 26748183 DOI: 10.1016/j.yexcr.2015.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/28/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022]
Abstract
The Kunitz-type recombinant protein, Amblyomin-X, is an antitumor recombinant molecule from a cDNA library prepared from the salivary glands of the tick Amblyomma cajennense. The primary target of this protein appears to be the proteasome. Amblyomin-X increased gene and protein expression of distinct subunits of the molecular motor dynein, which plays a key role in the intracellular transport. Herein, Amblyomin-X was specifically taken up by tumor cells through lipid-raft endocytic pathways, but not by fibroblasts. Moreover, dynein inhibitor, ciliobrevin A, decreased Amblyomin-X uptake by tumor cells. Furthermore, incubation of tumor cells with Amblyomin-X inhibited trypsin-like activity of the proteasome, which was restored upon pretreatment with ciliobrevin A. Only in tumor cells treated with Amblyomin-X, we identified proteins bounds to dynein that are related to aggresome formation, autophagy inhibition, and early and recycling endosome markers. In addition, Amblyomin-X was found to interact with dynein, increased Rab11A protein expression and Rab11A co-localization with the light-intermediate chain 2 (LIC2) of dynein. Thereby, the results provide new insights on the antitumor mechanism of Amblyomin-X and reveal an unsuspected role of cytoplasmic dynein in its uptake, intracellular trafficking and pro-apoptotic action.
Collapse
Affiliation(s)
- Mario T F Pacheco
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Kátia L P Morais
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil; Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Carolina M Berra
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Marilene Demasi
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Juliana M Sciani
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Vania G Branco
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Rosemary V Bosch
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Asif Iqbal
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
31
|
Chudzinski-Tavassi AM, Morais KLP, Pacheco MTF, Pasqualoto KFM, de Souza JG. Tick salivary gland as potential natural source for the discovery of promising antitumor drug candidates. Biomed Pharmacother 2015; 77:14-9. [PMID: 26796259 DOI: 10.1016/j.biopha.2015.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
Nowadays, the relationship between cancer blood coagulation is well established. Regarding biodiversity and bioprospection, the tick biology has become quite attractive natural source for coagulation inhibitors, since its saliva has a very rich variety of bioactive molecules. For instance, a Kunitz-type FXa inhibitor, named Amblyomin-X, was found through transcriptome of the salivary gland of the Amblyomma cajennense. tick. This TFPI-like inhibitor, after obtained as recombinant protein, has presented anticoagulant, antigionenic, and antitumor properties. Although its effects on blood coagulation could be relevant for antitumor effect, Amblyomin-X acts by non-hemostatic mechanisms, such as proteasome inhibition and autophagy inhibition. Notably, cytotoxicity was not observed on non-tumor cells treated with this protein, suggesting some selectivity for tumor cells. Considering the current efforts in order to develop effective anticancer therapies, the findings presented in this review strongly suggest Amblyomin-X as a promising novel antitumor drug candidate.
Collapse
Affiliation(s)
| | - Katia L P Morais
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil; Department of Biochemistry, Federal University of São Paulo, SP, Brazil
| | | | | | - Jean Gabriel de Souza
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil; Department of Biochemistry, Federal University of São Paulo, SP, Brazil
| |
Collapse
|
32
|
Ranasinghe SL, Fischer K, Zhang W, Gobert GN, McManus DP. Cloning and Characterization of Two Potent Kunitz Type Protease Inhibitors from Echinococcus granulosus. PLoS Negl Trop Dis 2015; 9:e0004268. [PMID: 26645974 PMCID: PMC4672886 DOI: 10.1371/journal.pntd.0004268] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.
Collapse
Affiliation(s)
- Shiwanthi L. Ranasinghe
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Public Health, The University of Queensland, Herston, Queensland, Australia
| | - Katja Fischer
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Wenbao Zhang
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Department of Biochemistry, Xinjiang Medical University, Urumqi, Xinjiang, China
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
33
|
Saito RDF, Tortelli TC, Jacomassi MD, Otake AH, Chammas R. Emerging targets for combination therapy in melanomas. FEBS Lett 2015; 589:3438-48. [PMID: 26450371 DOI: 10.1016/j.febslet.2015.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 12/21/2022]
Abstract
Cutaneous melanomas are often difficult to treat when diagnosed in advanced stages. Melanoma cells adapt to survive in extreme environmental conditions and are among the tumors with larger genomic instability. Here we discuss some intrinsic and extrinsic mechanisms of resistance of melanoma cells to both conventional and target therapies, such as autophagy, adaptation to endoplasmic reticulum stress, metabolic reprogramming, mechanisms of tumor repopulation and the role of extracellular vesicles in this later phenomenon. These biological processes are potentially targetable and thus provide a platform for research and discovery of new drugs for combination therapy to manage melanoma patient treatment.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Center for Translational Research in Oncology (LIM24), Dept. of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil
| | - Tharcísio Citrângulo Tortelli
- Center for Translational Research in Oncology (LIM24), Dept. of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil
| | - Mayara D'Auria Jacomassi
- Center for Translational Research in Oncology (LIM24), Dept. of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil
| | - Andréia Hanada Otake
- Center for Translational Research in Oncology (LIM24), Dept. of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Dept. of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, Brazil.
| |
Collapse
|
34
|
Cordeiro FA, Amorim FG, Anjolette FAP, Arantes EC. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Dis 2015; 21:24. [PMID: 26273285 PMCID: PMC4535291 DOI: 10.1186/s40409-015-0028-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/21/2015] [Indexed: 11/30/2022] Open
Abstract
Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.
Collapse
Affiliation(s)
- Francielle A Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernanda G Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernando A P Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
35
|
Sousa ACP, Szabó MPJ, Oliveira CJF, Silva MJB. Exploring the anti-tumoral effects of tick saliva and derived components. Toxicon 2015; 102:69-73. [DOI: 10.1016/j.toxicon.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 06/11/2015] [Indexed: 01/11/2023]
|
36
|
Post-transcriptional control of Amblyomin-X on secretion of vascular endothelial growth factor and expression of adhesion molecules in endothelial cells. Toxicon 2015; 101:1-10. [PMID: 25912945 DOI: 10.1016/j.toxicon.2015.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/20/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a pivotal process of homeostasis and tissue repair, but it also favours neovascularisation syndromes and cancer nutrition. The chemical mediation of angiogenesis is complex, involving a balance between serine proteases and their inhibitors. We addressed the mechanisms of action of a Kunitz serine protease inhibitor (KPI) on spontaneous angiogenesis, using Amblyomin-X, a KPI designed from the cDNA library of the Amblyomma cajennense tick. Amblyomin-X treatment (10-1000 ng/10 μL; each 48 h; 3 times) reduced the number of vessels in the subcutaneous dorsal tissue of male Swiss mice, as measured by intravital microscopy, haematoxylin-eosin staining, and PECAM-1 immunofluorescence labeling. Incubation of Amblyomin-X with t-End endothelial cells, a murine endothelial microvascular lineage, did not alter cell proliferation, cell-cycle phases, necrosis and apoptosis, and the production of nitric oxide and prostaglandin E2. Nevertheless, Amblyomin-X treatment reduced t-End migration and adhesion to Matrigel(®), and inhibited the VEGF-A secretion and VCAM-1 and β3 integrin expressions by posttranscriptional pathways. Together, data herein outline novel posttranscriptional mechanisms of KPIs on endothelial cells during angiogenesis and point out the possible application of Amblyomin-X as a local inhibitor to undesired neovascularisation process.
Collapse
|
37
|
de Oliveira PR, Scopinho Furquim KC, Bechara GH, Camargo-Mathias MI. Morpho-histochemical characterization of the salivary glands of semi-engorged Amblyomma triste (Koch, 1844) (Acari: Ixodidae) female ticks. J Microsc Ultrastruct 2015; 3:92-99. [PMID: 30023188 PMCID: PMC6014189 DOI: 10.1016/j.jmau.2014.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/19/2014] [Accepted: 10/02/2014] [Indexed: 11/14/2022] Open
Abstract
This study presents the morphological and physiological characterization of the salivary glands of semi-engorged Amblyomma triste females. Unfed individuals were placed on New Zealand White rabbits for feeding and the females, after 4 days, were collected, dissected and the salivary glands were submitted to the application of histological (hematoxylin–eosin technique) and histochemical tests for the detection of protein (bromophenol blue technique, polysaccharides (periodic acid–Schiff technique), lipid (Nile blue technique) and calcium (von Kossa technique). The histological results show that the glandular tissue is composed by a system of ducts and three types of acini (I, II and III). The acini I are formed by a large central cell surrounded by several smaller agranular peripheral cells. Acini II are formed by cells a, c1, c2, c3 and c5, which are full of secretion granules. Acini III are constituted by cells d, e and f; the former two contain secretion granules, the latter is agranular. The glandular histochemical composition was also verified. Data obtained here will certainly help in the understanding of the cellular morphology and of the general physiology of these organs in this specie, providing important information for the creation of scientific bases which will contribute for the development of more specific and efficient methods of control.
Collapse
Affiliation(s)
| | | | - Gervásio Henrique Bechara
- UNESP - São Paulo State University, Via de acesso Prof. Paulo Castellane, s/n, 14884-900 Jaboticabal, SP, Brazil
| | | |
Collapse
|
38
|
Pacheco MTF, Berra CM, Morais KLP, Sciani JM, Branco VG, Bosch RV, Chudzinski-Tavassi AM. Dynein function and protein clearance changes in tumor cells induced by a Kunitz-type molecule, Amblyomin-X. PLoS One 2014; 9:e111907. [PMID: 25479096 PMCID: PMC4257547 DOI: 10.1371/journal.pone.0111907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/02/2014] [Indexed: 01/07/2023] Open
Abstract
Amblyomin-X is a Kunitz-type recombinant protein identified from the transcriptome of the salivary glands of the tick Amblyomma cajennense and has anti-coagulant and antitumoral activity. The supposed primary target of this molecule is the proteasome system. Herein, we elucidated intracellular events that are triggered by Amblyomin-X treatment in an attempt to provide new insight into how this serine protease inhibitor, acting on the proteasome, could be comparable with known proteasome inhibitors. The collective results showed aggresome formation after proteasome inhibition that appeared to occur via the non-exclusive ubiquitin pathway. Additionally, Amblyomin-X increased the expression of various chains of the molecular motor dynein in tumor cells, modulated specific ubiquitin linkage signaling and inhibited autophagy activation by modulating mTOR, LC3 and AMBRA1 with probable dynein involvement. Interestingly, one possible role for dynein in the mechanism of action of Amblyomin-X was in the apoptotic response and its crosstalk with autophagy, which involved the factor Bim; however, we observed no changes in the apoptotic response related to dynein in the experiments performed. The characteristics shared among Amblyomin-X and known proteasome inhibitors included NF-κB blockage and nascent polypeptide-dependent aggresome formation. Therefore, our study describes a Kunitz-type protein that acts on the proteasome to trigger distinct intracellular events compared to classic known proteasome inhibitors that are small-cell-permeable molecules. In investigating the experiments and literature on Amblyomin-X and the known proteasome inhibitors, we also found differences in the structures of the molecules, intracellular events, dynein involvement and tumor cell type effects. These findings also reveal a possible new target for Amblyomin-X, i.e., dynein, and may serve as a tool for investigating tumor cell death associated with proteasome inhibition.
Collapse
Affiliation(s)
- Mario T. F. Pacheco
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Carolina M. Berra
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Kátia L. P. Morais
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana M. Sciani
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Vania G. Branco
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Rosemary V. Bosch
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
39
|
Morais KLP, Pasqualoto KFM, Pacheco MTF, Berra CM, Alvarez-Flores MP, Chudzinski-Tavassi AM. Rational development of a novel TFPI-like inhibitor fromAmblyomma cajennensetick. TOXIN REV 2013. [DOI: 10.3109/15569543.2013.845217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Cao J, Shi L, Zhou Y, Gao X, Zhang H, Gong H, Zhou J. Characterization of a new Kunitz-type serine protease inhibitor from the hard tick Rhipicephalus hemaphysaloides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:104-113. [PMID: 25708749 DOI: 10.1002/arch.21118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new Kunitz-type serine protease inhibitor, Rhipilin-2, was identified in the tick Rhipicephalus hemaphysaloides. The cDNA sequence of Rhipilin-2 is 693 bp, and it encodes a deduced 195 amino acid protein with a size of 22 kDa. Bioinformatic analysis shows that Rhipilin-2 belongs to the Kunitz-type family of inhibitors, containing one Kunitz domain with homology to the tissue factor pathway inhibitor. Using Real time polymerase chain reaction (Real time-PCR), Rhipilin-2 mRNA transcripts were detected in tick salivary glands and midgut. Blood feeding induced transcript expression. The recombinant protein was expressed in insect Sf9 cells and confirmed by immunofluorescence test and Western blot analysis with an anti-His antibody. The purified recombinant Rhipilin-2 inhibited serine protease trypsin and elastase, but not thrombin. The anticoagulant activity of Rhipilin-2 was shown by delaying normal clotting of rabbit plasma in the activated partial thromboplastin time tests. These results indicate that Rhipilin-2 is a novel Kunitz-type serine protease inhibitor involved in tick blood feeding.
Collapse
Affiliation(s)
- Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
41
|
A Kunitz-type FXa inhibitor affects tumor progression, hypercoagulable state and triggers apoptosis. Biomed Pharmacother 2012; 67:192-6. [PMID: 23433900 DOI: 10.1016/j.biopha.2012.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022] Open
Abstract
Cancer is linked to hypercoagulability, and many studies have shown that anticoagulant drugs affect tumor progression. In this study was demonstrated that the Amblyomin-X (which is a recombinant protein that exerts similarity to the Kunitz-type inhibitors and shows pro-apoptotic effects in different tumor cell lines) and heparin (a classic anticoagulant) have similar effects on cancer progression and on normalization of the hypercoagulable state. However, Amblyomin-X showed a distinct mechanism in triggering its effects in vitro, because it exerted a cytotoxic effect in cancer cells by inducing apoptosis and promoting cell cycle arrest.
Collapse
|
42
|
A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production. Invest New Drugs 2012; 31:493-505. [PMID: 22975862 PMCID: PMC3644403 DOI: 10.1007/s10637-012-9871-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/16/2012] [Indexed: 12/23/2022]
Abstract
In cancer-treatment, potentially therapeutic drugs trigger their effects through apoptotic mechanisms. Generally, cell response is manifested by Bcl-2 family protein regulation, the impairment of mitochondrial functions, and ROS production. Notwithstanding, several drugs operate through proteasome inhibition, which, by inducing the accumulation and aggregation of misfolded or unfolded proteins, can lead to endoplasmic reticulum (ER) stress. Accordingly, it was shown that Amblyomin-X, a Kunitz-type inhibitor identified in the transcriptome of the Amblyomma cajennense tick by ESTs sequence analysis of a cDNA library, obtained in recombinant protein form, induces apoptosis in murine renal adenocarcinoma (RENCA) cells by: inducing imbalance between pro- and anti-apoptotic Bcl-2 family proteins, dysfunction/mitochondrial damage, production of reactive oxygen species (ROS), caspase cascade activation, and proteasome inhibition, all ER-stress inductive. Moreover, there was no manifest action on normal mouse-fibroblast cells (NHI3T3), suggesting an Amblyomin-X tumor-cell selectivity. Taken together, these evidences indicate that Amblyomin-X could be a promising candidate for cancer therapy.
Collapse
|
43
|
Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis. Toxicon 2012; 60:333-40. [PMID: 22575283 DOI: 10.1016/j.toxicon.2012.04.349] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 11/22/2022]
Abstract
Amblyomin-X is a Kunitz-type serine protease inhibitor (Kunitz-type SPI) designed from the cDNA library of the Amblyomma cajennense tick, which displays in vivo anti-tumor activities. Here, the mechanisms of actions of Amblyomin-X in vascular endothelial growth factor A (VEGF-A)-induced angiogenesis were characterized. Topical application of Amblyomin-X (10 or 100 ng/10 μl; each 48 h) inhibited VEGF-A-induced (10 ng/10 μl; each 48 h) angiogenesis in the dorsal subcutaneous tissue in male Swiss mice. Moreover, similar effect was observed in the VEGF-A-induced angiogenesis in the chicken chorioallantoic membrane (CAM). Additional in vitro assays in t-End cells showed that Amblyomin-X treatment delayed the cell cycle, by maintaining them in G0/G1 phase, and inhibited cell proliferation and adhesion, tube formation and membrane expression of the adhesion molecule platelet-endothelial cell adhesion molecule-1 (PECAM-1), regardless of mRNA synthesis. Together, results herein reveal the role of Kunitz-type SPI on in vivo VEGF-A-induced angiogenesis, by exerting modulatory actions on endothelial cell proliferation and adhesion, especially on membrane expression of PECAM-1. These data provide further mechanisms of actions of Kunitz-type SPI, corroborating their relevance as scientific tools in the design of therapeutic molecules.
Collapse
|
44
|
Akagi EM, Júnior PLDS, Simons SM, Bellini MH, Barreto SA, Chudzinski-Tavassi AM. Pro-apoptotic effects of Amblyomin-X in murine renal cell carcinoma "in vitro". Biomed Pharmacother 2012; 66:64-9. [PMID: 22281290 DOI: 10.1016/j.biopha.2011.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/01/2011] [Indexed: 10/14/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most lethal urologic cancers and is highly resistant to both radiotherapy and chemotherapy. The recombinant protein Amblyomin-X, characterized as a Kunitz-type protease inhibitor, was obtained from a cDNA library from the salivary glands of the Amblyomma cajennense tick. This paper reports the biological effect of Amblyomin-X on inducing cell death by apoptotic process in vitro. For this purpose, the changes in morphological aspects of cells, the phosphatidylserine exposition and DNA degradation were evaluated after treatment with Amblyomin-X. We found that Amblyomin-X was able to induce apoptosis in Renca cells in a dose-dependent manner. So, the results presented here open perspectives for new researches and developing for Amblyomin-X in the treatment of RCC.
Collapse
Affiliation(s)
- Erica Mie Akagi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenue Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. Insect natural products and processes: new treatments for human disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:747-69. [PMID: 21658450 DOI: 10.1016/j.ibmb.2011.05.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 05/09/2023]
Abstract
In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, RJ, Brazil.
| | | | | | | | | |
Collapse
|
46
|
The action of Amblyomma cajennense tick saliva in compounds of the hemostatic system and cytotoxicity in tumor cell lines. Biomed Pharmacother 2011; 65:443-50. [DOI: 10.1016/j.biopha.2011.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/21/2011] [Indexed: 11/20/2022] Open
|
47
|
Oliveira DGL, Simons SM, Chudzinski-Tavassi AM, Zamboni CB. Analysis of saliva from Amblyomma cajennense (Acari: Ixodidae) species from Brazil by NAA. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-1265-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|