1
|
Wang K, Wu G, Ma Q, Yang L, Wu C, Zhu J. Unraveling the venom constituents of the endoparasitoid Aphidius gifuensis with an emphasis on the discovery of a novel insecticidal peptide. PEST MANAGEMENT SCIENCE 2025; 81:1603-1614. [PMID: 39601069 DOI: 10.1002/ps.8562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Venom serves as a pivotal parasitic factor employed by parasitoid wasps to manipulate their hosts, creating a favorable environment for the successful growth of their progeny, and ultimately kill the host. The bioactive molecules within parasitoid venoms exhibit insecticidal activities with promising prospects for agricultural applications. However, knowledge regarding the venom components of parasitoids and the discovery of functional biomolecules from them remains limited. RESULTS In this study, 30 venom proteins were identified from the endoparasitoid Aphidius gifuensis through the application of a transcriptomic approach. These proteins were categorized into five groups: hydrolase, molecular chaperone, transferase, other functional protein, and hypothetical protein with unknown function. Particularly noteworthy is the abundant expression of the peptide Vn1 in the venom apparatus of A. gifuensis, indicating its pivotal role in venom activity. Consequently, Vn1 was chosen for further functional analysis, exhibiting insecticidal activity against Tenebrio molitor pupae. Further assessment for revealing its mode of action disclosed that Vn1 impacts genes related to immune response, environmental information processing, metabolism, and response to external stimuli in T. molitor, suggesting its involvement in the intricate parasitoid wasp-host interaction. CONCLUSION The findings of this study significantly contribute to our knowledge of the composition and functionality of A. gifuensis venom, establishing a foundation for further investigation into the biological roles of the identified venom constituents. The insecticidal Vn1 isolated from the venom of this parasitoid represents a valuable resource for the development of innovative biocontrol agents with potential applications in agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kui Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guocui Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qian Ma
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Chaoyan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
2
|
Calvete JJ, Lomonte B, Tena-Garcés J, Zollweg M, Mebs D. Mandibular gland proteomics of the Mexican alligator lizard, Abronia graminea, and the red-lipped arboreal alligator lizard, Abronia lythrochila. Toxicon 2024; 249:108055. [PMID: 39097104 DOI: 10.1016/j.toxicon.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
A useful approach to deepen our knowledge about the origin and evolution of venom systems in Reptilia has been exploring the vast biodiversity of this clade of vertebrates in search of orally produced proteins with toxic actions, as well as their corresponding delivery systems. The occurrence of toxins in anguimorph lizards has been demonstrated experimentally or inferred from reports of the toxic effects of the oral secretions of taxa within the Varanidae and Helodermatidae families. In the present study, we have focused on two alligator lizards of the Anguidae family, the Mexican alligator lizard, Abronia graminea, and the red-lipped arboreal alligator lizard, A. lythrochila. In addition, the fine morphology of teeth of the latter species is described. The presence of a conserved set of proteins, including B-type natriuretic peptides, cysteine-rich secretory proteins, group III phospholipase A2, and kallikrein, in submandibular gland extracts was demonstrated for both Abronia species. These proteins belong to toxin families found in oral gland secretions of venomous reptile species. This finding, along with previous demonstration of toxin-producing taxa in both paleo- and neoanguimorpha clades, provides further support for the existence of a handful of conserved toxin families in oral secretions across the 100+ million years of Anguimorpha cladogenesis.
Collapse
Affiliation(s)
- Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jordi Tena-Garcés
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | | | - Dietrich Mebs
- Institute of Legal Medicine, Goethe University of Frankfurt, Kennedyallee 104, D-60569, Frankfurt, Germany.
| |
Collapse
|
3
|
Lino-López GJ, Ruiz-May E, Elizalde-Contreras JM, Jiménez-Vargas JM, Rodríguez-Vázquez A, González-Carrillo G, Bojórquez-Velázquez E, García-Villalvazo PE, Bermúdez-Guzmán MDJ, Zatarain-Palacios R, Vázquez-Vuelvas OF, Valdez-Velázquez LL, Corzo G. Proteomic Analysis of Heloderma horridum horridum Venom: Assessment to Its Transcriptome and Newfound Proteins. J Proteome Res 2024; 23:3638-3648. [PMID: 39038168 DOI: 10.1021/acs.jproteome.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Heloderma horridum horridum, a venomous reptile native to America, has a venom with potential applications in treating type II diabetes. In this work, H. h. horridum venom was extracted, lyophilized, and characterized using enzymatic assays for hyaluronidase, phospholipase, and protease. Proteomic analysis of the venom was conducted employing bottom-up/shotgun approaches, SDS-PAGE, high-pH reversed-phase chromatography, and fractionation of tryptic peptides using nano-LC-MS/MS. The proteins found in H. h. horridum venom were reviewed according to the classification of the transcriptome previously reported. The proteomic approach identified 101 enzymes, 36 other proteins, 15 protein inhibitors, 11 host defense proteins, and 1 toxin, including novel venom components such as calcium-binding proteins, phospholipase A2 inhibitors, serpins, cathepsin, subtilases, carboxypeptidase-like, aminopeptidases, glycoside hydrolases, thioredoxin transferases, acid ceramidase-like, enolase, multicopper oxidases, phosphoglucose isomerase (PGI), fructose-1,6-bisphosphatase class 1, pentraxin-related, peptidylglycine α-hydroxylating monooxygenase/peptidyl-hydroxyglycine α-amidating lyase, carbonic anhydrase, acetylcholinesterase, dipeptidylpeptidase, and lysozymes. These findings contribute to understanding the venomous nature of H. h. horridum and highlight its potential as a source of bioactive compounds. Data are available via PRoteomeXchange with the identifier PXD052417.
Collapse
Affiliation(s)
- Gisela J Lino-López
- Facultad de Ciencias Químicas, Universidad de Colima, 28400 Coquimatlan, Colima, México
- Departamento de Control Biológico, CNRF-DGSV-SENASICA-SADER, Km 1.5 Carretera Tecomán-Estación FFCC, Col. Tepeyac, 28110 Tecomán, Colima, México
| | - Eliel Ruiz-May
- Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz,México
| | | | | | - Armando Rodríguez-Vázquez
- Centro de Conservación de Vida Silvestre El Palapo, Parcela No. 75 Z-1 P2/2, Predio Las Cuevas del Ejido Agua Zarca, 28400 Coquimatlan, Colima, México
| | - Gabino González-Carrillo
- Tecnológico Nacional de México/ITJMMPyH, U.A. Tamazula. Carretera Tamazula Santa Rosa No. 329, 49650 Tamazula de Gordiano, Jalisco, México
| | | | | | - Manuel de J Bermúdez-Guzmán
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), 28100 Tecomán, Colima, México
| | | | | | | | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México
| |
Collapse
|
4
|
de Oliveira L, Gower DJ, Wilkinson M, Segall M. Comparative morphology of oral glands in snakes of the family Homalopsidae reveals substantial variation and additional independent origins of salt glands within Serpentes. J Anat 2024; 244:708-721. [PMID: 38234265 PMCID: PMC11021688 DOI: 10.1111/joa.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024] Open
Abstract
Using diffusible iodine-based contrast-enhanced computed tomography (diceCT), we examined the morphology of the oral glands of 12 species of the family Homalopsidae. Snakes of this family exhibit substantial interspecific morphological variation in their oral glands. Particular variables are the venom glands, ranging from large (e.g., Subsessor bocourti) to small (e.g., Erpeton tentaculatum). The supra- and infralabial glands are more uniform in morphology, being the second most developed in almost all the sampled species. Premaxillary glands distinct from the supralabial glands were observed in five species (Myron richardsonii, Bitia hydroides, Cantoria violacea, Fordonia leucobalia, and Gerarda prevostiana), in addition to Cerberus rynchops, the only species in which this condition was previously documented associated with the excretion of salt. In the three species of the saltwater group of homalopsids (C. violacea, F. leucobalia, and G. prevostiana), the premaxillary glands also extend posteriorly, occupying a large area above the supralabial gland, a condition not observed in any other species of snake studied thus far. Character evolution analyses indicate that premaxillary glands differentiated from the supralabial gland and evolved independently three or four times in the family, always in lineages that invaded marine habitats. Our results suggest that the differentiated premaxillary glands are likely salt glands, as is the case in C. rynchops. If corroborated, this increases to six or seven the number of independent evolutionary origins of salt glands in snakes that have undergone an evolutionary transition to marine life.
Collapse
Affiliation(s)
- Leonardo de Oliveira
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | | | | | |
Collapse
|
5
|
Oliveira LD, Grazziotin FG, Sánchez-Martínez PM, Sasa M, Flores-Villela O, Prudente ALDC, Zaher H. Phylogenetic and morphological evidence reveals the association between diet and the evolution of the venom delivery system in Neotropical goo-eating snakes. SYST BIODIVERS 2023. [DOI: 10.1080/14772000.2022.2153944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Leonardo De Oliveira
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré, São Paulo, 04263-000, Brazil
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | - Felipe Gobbi Grazziotin
- Laboratório Especial de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | | | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
| | - Oscar Flores-Villela
- Museo de Zoologia ‘Alfonso L. Herrera’, Faculdad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | | | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré, São Paulo, 04263-000, Brazil
| |
Collapse
|
6
|
Guo L, Kruglyak L. Genetics and biology of coloration in reptiles: the curious case of the Lemon Frost geckos. Physiol Genomics 2023; 55:479-486. [PMID: 37642275 DOI: 10.1152/physiolgenomics.00015.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Although there are more than 10,000 reptile species, and reptiles have historically contributed to our understanding of biology, genetics research into class Reptilia has lagged compared with other animals. Here, we summarize recent progress in genetics of coloration in reptiles, with a focus on the leopard gecko, Eublepharis macularius. We highlight genetic approaches that have been used to examine variation in color and pattern formation in this species as well as to provide insights into mechanisms underlying skin cancer. We propose that their long breeding history in captivity makes leopard geckos one of the most promising emerging reptilian models for genetic studies. More broadly, technological advances in genetics, genomics, and gene editing may herald a golden era for studies of reptile biology.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, California, United States
- Department of Biological Chemistry, University of California, Los Angeles, California, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| |
Collapse
|
7
|
Koludarov I, Velasque M, Senoner T, Timm T, Greve C, Hamadou AB, Gupta DK, Lochnit G, Heinzinger M, Vilcinskas A, Gloag R, Harpur BA, Podsiadlowski L, Rost B, Jackson TNW, Dutertre S, Stolle E, von Reumont BM. Prevalent bee venom genes evolved before the aculeate stinger and eusociality. BMC Biol 2023; 21:229. [PMID: 37867198 PMCID: PMC10591384 DOI: 10.1186/s12915-023-01656-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/29/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. RESULTS Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. CONCLUSIONS Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.
Collapse
Affiliation(s)
- Ivan Koludarov
- Justus Liebig University of Gießen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany.
| | - Mariana Velasque
- Genomics & Regulatory Systems Unit, Okinawa Institute of Science & Technology, Tancha, Okinawa, 1919, Japan
| | - Tobias Senoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Deepak Kumar Gupta
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Andreas Vilcinskas
- Justus Liebig University of Gießen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Rosalyn Gloag
- Rosalyn Gloag - School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Brock A Harpur
- Brock A. Harpur - Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN, 47907, USA
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Centre of Molecular Biodiversity Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Grattan Street, Parkville, Viktoria, 3010, Australia
| | | | - Eckart Stolle
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Centre of Molecular Biodiversity Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Group of Applied Bioinformatics, Goethe University Frankfurt, Max-Von-Laue Str. 13, 60438, Frankfurt, Germany.
| |
Collapse
|
8
|
Frynta D, Elmi HSA, Janovcová M, Rudolfová V, Štolhoferová I, Rexová K, Král D, Sommer D, Berti DA, Landová E, Frýdlová P. Are vipers prototypic fear-evoking snakes? A cross-cultural comparison of Somalis and Czechs. Front Psychol 2023; 14:1233667. [PMID: 37928591 PMCID: PMC10620321 DOI: 10.3389/fpsyg.2023.1233667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023] Open
Abstract
Snakes are known as highly fear-evoking animals, eliciting preferential attention and fast detection in humans. We examined the human fear response to snakes in the context of both current and evolutionary experiences, conducting our research in the cradle of humankind, the Horn of Africa. This region is characterized by the frequent occurrence of various snake species, including deadly venomous viperids (adders) and elapids (cobras and mambas). We conducted experiments in Somaliland and compared the results with data from Czech respondents to address the still unresolved questions: To which extent is human fear of snakes affected by evolutionary or current experience and local culture? Can people of both nationalities recognize venomous snakes as a category, or are they only afraid of certain species that are most dangerous in a given area? Are respondents of both nationalities equally afraid of deadly snakes from both families (Viperidae, Elapidae)? We employed a well-established picture-sorting approach, consisting of 48 snake species belonging to four distinct groups. Our results revealed significant agreement among Somali as well as Czech respondents. We found a highly significant effect of the stimulus on perceived fear in both populations. Vipers appeared to be the most salient stimuli in both populations, as they occupied the highest positions according to the reported level of subjectively perceived fear. The position of vipers strongly contrasts with the fear ranking of deadly venomous elapids, which were in lower positions. Fear scores of vipers were significantly higher in both populations, and their best predictor was the body width of the snake. The evolutionary, cultural, and cognitive aspects of this phenomenon are discussed.
Collapse
Affiliation(s)
- Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Hassan Sh Abdirahman Elmi
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
- Department of Biology, Faculty of Education, Amoud University, Borama, Somalia
| | - Markéta Janovcová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Veronika Rudolfová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Iveta Štolhoferová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Kateřina Rexová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - David Král
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - David Sommer
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniel Alex Berti
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Eva Landová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Petra Frýdlová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Oliveira LD, Nachtigall PG, Vialla VL, Campos PF, Costa-Neves AD, Zaher H, Silva NJD, Grazziotin FG, Wilkinson M, Junqueira-de-Azevedo ILM. Comparing morphological and secretory aspects of cephalic glands among the New World coral snakes brings novel insights on their biological roles. Toxicon 2023; 234:107285. [PMID: 37683698 DOI: 10.1016/j.toxicon.2023.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Oral and other cephalic glands have been surveyed by several studies with distinct purposes. Despite the wide diversity and medical relevance of the New World coral snakes, studies focusing on understanding the biological roles of the glands within this group are still scarce. Specifically, the venom glands of some coral snakes were previously investigated but all other cephalic glands remain uncharacterized. In this sense, performing morphological and molecular analysis of these glands may help better understand their biological role. Here, we studied the morphology of the venom, infralabial, rictal, and harderian glands of thirteen species of Micrurus and Micruroides euryxanthus. We also performed a molecular characterization of these glands from selected species of Micrurus using transcriptomic and proteomic approaches. We described substantial morphological variation in the cephalic glands of New World coral snakes and structural evidence for protein-secreting cells in the inferior rictal glands. Our molecular analysis revealed that the venom glands, as expected, are majorly devoted to toxin production, however, the infralabial and inferior rictal glands also expressed some toxin genes at low to medium levels, despite the marked morphological differences. On the other hand, the harderian glands were dominated by the expression of lipocalins, but do not produce toxins. Our integrative analysis, including the prediction of biological processes and pathways, helped decipher some important traits of cephalic glands and better understand their biology.
Collapse
Affiliation(s)
- Leonardo de Oliveira
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil; Herpetology, The Natural History Museum, London, SW7 5BD, United Kingdom.
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Vincent Louis Vialla
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Pollyanna F Campos
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | | | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, Brazil
| | - Nelson Jorge da Silva
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, 74605-140, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Mark Wilkinson
- Herpetology, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| |
Collapse
|
10
|
Jones L, Waite C, Neri-Castro E, Fry BG. Comparative Analysis of Alpha-1 Orthosteric-Site Binding by a Clade of Central American Pit Vipers (Genera Atropoides, Cerrophidion, Metlapilcoatlus, and Porthidium). Toxins (Basel) 2023; 15:487. [PMID: 37624244 PMCID: PMC10467085 DOI: 10.3390/toxins15080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
The distribution and relative potency of post-synaptic neurotoxic activity within Crotalinae venoms has been the subject of less investigation in comparison with Elapidae snake venoms. No previous studies have investigated post-synaptic neurotoxic activity within the Atropoides, Metlapilcoatlus, Cerrophidion, and Porthidium clade. Given the specificity of neurotoxins to relevant prey types, we aimed to uncover any activity present within this clade of snakes that may have been overlooked due to lower potency upon humans and thus not appearing as a clinical feature. Using biolayer interferometry, we assessed the relative binding of crude venoms to amphibian, lizard, bird, rodent and human α-1 nAChR orthosteric sites. We report potent alpha-1 orthosteric site binding in venoms from Atropoides picadoi, Metlapilcoatlus occiduus, M. olmec, M. mexicanus, M. nummifer. Lower levels of binding, but still notable, were evident for Cerrophidion godmani, C. tzotzilorum and C. wilsoni venoms. No activity was observed for Porthidium venoms, which is consistent with significant alpha-1 orthosteric site neurotoxicity being a trait that was amplified in the last common ancestor of Atropoides/Cerrophidion/Metlapilcoatlus subsequent to the split by Porthidium. We also observed potent taxon-selective activity, with strong selection for non-mammalian targets (amphibian, lizard, and bird). As these are poorly studied snakes, much of what is known about them is from clinical reports. The lack of affinity towards mammalian targets may explain the knowledge gap in neurotoxic activity within these species, since symptoms would not appear in bite reports. This study reports novel venom activity, which was previously unreported, indicating toxins that bind to post-synaptic receptors may be more widespread in pit vipers than previously considered. While these effects appear to not be clinically significant due to lineage-specific effects, they are of significant evolutionary novelty and of biodiscovery interest. This work sets the stage for future research directions, such as the use of in vitro and in vivo models to determine whether the alpha-1 orthosteric site binding observed within this study confers neurotoxic venom activity.
Collapse
Affiliation(s)
- Lee Jones
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Callum Waite
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio 35010, Dgo., Mexico;
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, Cuernavaca 62210, Mor., Mexico
| | - Bryan G. Fry
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| |
Collapse
|
11
|
Mancuso M, Zaman S, Maddock ST, Kamei RG, Salazar-Valenzuela D, Wilkinson M, Roelants K, Fry BG. Resistance Is Not Futile: Widespread Convergent Evolution of Resistance to Alpha-Neurotoxic Snake Venoms in Caecilians (Amphibia: Gymnophiona). Int J Mol Sci 2023; 24:11353. [PMID: 37511112 PMCID: PMC10379402 DOI: 10.3390/ijms241411353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Predatory innovations impose reciprocal selection pressures upon prey. The evolution of snake venom alpha-neurotoxins has triggered the corresponding evolution of resistance in the post-synaptic nicotinic acetylcholine receptors of prey in a complex chemical arms race. All other things being equal, animals like caecilians (an Order of legless amphibians) are quite vulnerable to predation by fossorial elapid snakes and their powerful alpha-neurotoxic venoms; thus, they are under strong selective pressure. Here, we sequenced the nicotinic acetylcholine receptor alpha-1 subunit of 37 caecilian species, representing all currently known families of caecilians from across the Americas, Africa, and Asia, including species endemic to the Seychelles. Three types of resistance were identified: (1) steric hindrance from N-glycosylated asparagines; (2) secondary structural changes due to the replacement of proline by another amino acid; and (3) electrostatic charge repulsion of the positively charged neurotoxins, through the introduction of a positively charged amino acid into the toxin-binding site. We demonstrated that resistance to alpha-neurotoxins convergently evolved at least fifteen times across the caecilian tree (three times in Africa, seven times in the Americas, and five times in Asia). Additionally, as several species were shown to possess multiple resistance modifications acting synergistically, caecilians must have undergone at least 20 separate events involving the origin of toxin resistance. On the other hand, resistance in non-caecilian amphibians was found to be limited to five origins. Together, the mutations underlying resistance in caecilians constitute a robust signature of positive selection which strongly correlates with elapid presence through both space (sympatry with caecilian-eating elapids) and time (Cenozoic radiation of elapids). Our study demonstrates the extent of convergent evolution that can be expected when a single widespread predatory adaptation triggers parallel evolutionary arms races at a global scale.
Collapse
Affiliation(s)
- Marco Mancuso
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Shabnam Zaman
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Simon T Maddock
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
- School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé P.O. Box 1348, Seychelles
| | - Rachunliu G Kamei
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
- Amphibians and Reptiles Division, The Field Museum of Natural History, 1400 S Lake Shore Dr., Chicago, IL 60605, USA
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bryan G Fry
- Venom Evolutionary Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Xu G, Chen L. Biological Activities and Ecological Significance of Fire Ant Venom Alkaloids. Toxins (Basel) 2023; 15:439. [PMID: 37505709 PMCID: PMC10467088 DOI: 10.3390/toxins15070439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Venoms produced by arthropods act as chemical weapons to paralyze prey or deter competitors. The utilization of venom is an essential feature in the biology and ecology of venomous arthropods. Solenopsis fire ants (Hymenoptera: Formicidae) are medically important venomous ants. They have acquired different patterns of venom use to maximize their competitive advantages rendered by the venom when facing different challenges. The major components of fire ant venom are piperidine alkaloids, which have strong insecticidal and antibiotic activities. The alkaloids protect fire ants from pathogens over the course of their lives and can be used to defend them from predators and competitors. They are also utilized by some of the fire ants' natural enemies, such as phorid flies to locate host ants. Collectively, these ants' diverse alkaloid compositions and functions have ecological significance for their survival, successful invasion, and rapid range expansion. The venom alkaloids with powerful biological activities may have played an important role in shaping the assembly of communities in both native and introduced ranges.
Collapse
Affiliation(s)
- Guangxin Xu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China;
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Li Chen
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China;
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
13
|
Avella I, Damm M, Freitas I, Wüster W, Lucchini N, Zuazo Ó, Süssmuth RD, Martínez-Freiría F. One Size Fits All-Venomics of the Iberian Adder ( Vipera seoanei, Lataste 1878) Reveals Low Levels of Venom Variation across Its Distributional Range. Toxins (Basel) 2023; 15:371. [PMID: 37368672 PMCID: PMC10301717 DOI: 10.3390/toxins15060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
European vipers (genus Vipera) are medically important snakes displaying considerable venom variation, occurring at different levels in this group. The presence of intraspecific venom variation, however, remains understudied in several Vipera species. Vipera seoanei is a venomous snake endemic to the northern Iberian Peninsula and south-western France, presenting notable phenotypic variation and inhabiting several diverse habitats across its range. We analysed the venoms of 49 adult specimens of V. seoanei from 20 localities across the species' Iberian distribution. We used a pool of all individual venoms to generate a V. seoanei venom reference proteome, produced SDS-PAGE profiles of all venom samples, and visualised patterns of variation using NMDS. By applying linear regression, we then assessed presence and nature of venom variation between localities, and investigated the effect of 14 predictors (biological, eco-geographic, genetic) on its occurrence. The venom comprised at least 12 different toxin families, of which five (i.e., PLA2, svSP, DI, snaclec, svMP) accounted for about 75% of the whole proteome. The comparative analyses of the SDS-PAGE venom profiles showed them to be remarkably similar across the sampled localities, suggesting low geographic variability. The regression analyses suggested significant effects of biological and habitat predictors on the little variation we detected across the analysed V. seoanei venoms. Other factors were also significantly associated with the presence/absence of individual bands in the SDS-PAGE profiles. The low levels of venom variability we detected within V. seoanei might be the result of a recent population expansion, or of processes other than directional positive selection.
Collapse
Affiliation(s)
- Ignazio Avella
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Maik Damm
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.D.)
| | - Inês Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Nahla Lucchini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Óscar Zuazo
- Calle La Puebla 1, 26250 Santo Domingo de la Calzada, Spain
| | - Roderich D. Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.D.)
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
14
|
Paolino G, Di Nicola MR, Avella I, Mercuri SR. Venomous Bites, Stings and Poisoning by European Vertebrates as an Overlooked and Emerging Medical Problem: Recognition, Clinical Aspects and Therapeutic Management. Life (Basel) 2023; 13:1228. [PMID: 37374011 PMCID: PMC10305571 DOI: 10.3390/life13061228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Europe presents a high number of venomous and poisonous animals able to elicit medically relevant symptoms in humans. However, since most of the accidents involving venomous or poisonous animals in Europe are unreported, their incidence and morbidity are severely overlooked. Here we provide an overview of the European vertebrate species of greatest toxicological interest, the clinical manifestations their toxins can cause, and their treatment. We report the clinical symptoms induced by envenomations and poisoning caused by reptiles, fishes, amphibians and mammals in Europe, ranging from mild, local symptoms (e.g., erythema, edema) to systemic and potentially deadly. The present work constitutes a tool for physicians to recognize envenomation/poisoning symptoms caused by the most medically relevant European vertebrates and to decide which approach is the most appropriate to treat them.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
- Unit of Clinical Dermatology, Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
- Asociación Herpetológica Española, Apartado de Correos 191, 28911 Leganés, Spain
| | - Ignazio Avella
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Santo Raffaele Mercuri
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
| |
Collapse
|
15
|
Rodrigues PSDM, Cirqueira Martins H, Falcão MS, Trevisan M, Portaro FCV, da Silva LG, Sano-Martins IS, Gonçalves LRDC, Seibert CS. Effects of Mauritia flexuosa L. f. buriti oil on symptoms induced by Bothrops moojeni snake envenomation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116612. [PMID: 37156448 DOI: 10.1016/j.jep.2023.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Brazil, there are species of snakes that become involved in accidents and cause serious health problems to the inhabitants, highlighting the genus Bothrops for being responsible for approximately 90% of accidents reported annually. In the northern region of the country, this genus is responsible for the largest number of accidents, especially among rural dwellers. These populations invest in alternative treatments for with the purpose of improving the symptoms caused by snakebites. The species Mauritia flexuosa L. f., known as buriti, is traditionally used for the treatment of envenomation by snakes. AIM OF THE STUDY This study aimed to evaluate the antiophidic potential of the oil of Mauritia flexuosa L. f. for Bothrops moojeni H. venom, confronting cultural and scientific knowledge. MATERIALS AND METHODS The physicochemical properties were determined, and the components present in the oil, extracted from fruit pulp, were analyzed by Gas Chromatography Coupled with Mass Spectrometry. The in vitro inhibitory capacity of the oil for phospholipase, metalloprotease and serine protease activities was investigated. In the in vivo studies, male Swiss mice were used to evaluate the effect of oil on lethality and toxicity, and hemorrhagic, myotoxic and edematogenic activities were assessed. RESULTS GC‒MS analysis identification of 90.95% of the constituents of the oil, with the main components being 9-eicosenoic acid, (Z)- (34.54%), n-hexadecanoic acid (25.55%) and (E)-9-octadecenoic acid ethyl ester (12.43%). For the substrates, the outcomes indicate that the oil inhibited the activity of the main classes of toxins present in Bothrops moojeni H. venom (VBm) at the highest dose tested (0.5 μL), with inhibition of 84% for the hydrolysis of the selective substrate for serine protease and inhibition of 60% for the hydrolysis of substrates for PLA2 and metalloproteases. The antiophidic activity in vivo was evaluated with two concentrations of the oil: 1.5 mg, the dosage the population, diluted in mineral oil to a volume of 1 tablespoon and 15 mg, administered by gavage 30 min before poisoning and at time zero (concomitant to poisoning), and both concentrations administered by gavage in combination with topical use at time zero. The bleeding time in the group treated with oil at a concentration of 15 mg administered at time zero was significantly lower than that in the control group (p < 0.05). However, a greater inhibition of bleeding time was observed when local application was combined with the gavage treatment at both concentrations tested at time zero (p < 0.05). In the myotoxicity test, oil was efficient in reducing the myotoxic effects induced by the venom at the two concentrations tested, with gavage administration at time zero and gavage plus topical administration at time zero (p < 0.05). CONCLUSIONS The data obtained show that the oil is safe to use at the concentrations studied and contains fatty acids that may collaborate for cellular-level repair of the injuries caused by Bm poisoning. The in vitro and in vivo experiments showed that oil inhibits the main proteolytic enzymes present in the venom and that it has important activities to control the local effects caused by bothropic venom.
Collapse
Affiliation(s)
| | - Hemilly Cirqueira Martins
- Postgraduate Program in Environmental Sciences, PPGCiamb, Federal University of Tocantins, Palmas, TO, Brazil.
| | - Milena Santos Falcão
- Postgraduate Program in Environmental Sciences, PPGCiamb, Federal University of Tocantins, Palmas, TO, Brazil.
| | - Márcio Trevisan
- Postgraduate Program in Environmental Sciences, PPGCiamb, Federal University of Tocantins, Palmas, TO, Brazil.
| | | | - Lais Gomes da Silva
- Laboratory of Immunochemistry, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, Brazil.
| | - Ida Sigueko Sano-Martins
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP, Brazil.
| | | | - Carla Simone Seibert
- Postgraduate Program in Environmental Sciences, PPGCiamb, Federal University of Tocantins, Palmas, TO, Brazil.
| |
Collapse
|
16
|
Schaeffer R, Pascolutti VJ, Jackson TNW, Arbuckle K. Diversity Begets Diversity When Diet Drives Snake Venom Evolution, but Evenness Rather Than Richness Is What Counts. Toxins (Basel) 2023; 15:toxins15040251. [PMID: 37104189 PMCID: PMC10142186 DOI: 10.3390/toxins15040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Snake venoms are primarily used to subjugate prey, and consequently, their evolution has been shown to be predominantly driven by diet-related selection pressure. Venoms tend to be more lethal to prey than non-prey species (except in cases of toxin resistance), prey-specific toxins have been identified, and preliminary work has demonstrated an association between the diversity of diet classes and that of toxicological activities of whole venom. However, venoms are complex mixtures of many toxins, and it remains unclear how toxin diversity is driven by diet. Prey-specific toxins do not encompass the molecular diversity of venoms, and whole venom effects could be driven by one, few, or all components, so the link between diet and venom diversity remains minimally understood. Here, we collated a database of venom composition and diet records and used a combination of phylogenetic comparative methods and two quantitative diversity indices to investigate whether and how diet diversity relates to the toxin diversity of snake venoms. We reveal that venom diversity is negatively related to diet diversity using Shannon's index but positively related using Simpson's index. Since Shannon's index predominantly considers the number of prey/toxins, whereas Simpson's index more strongly reflects evenness, we provide insights into how the diet-venom diversity link is driven. Specifically, species with low diet diversity tend to have venoms dominated by a few abundant (possibly specialised) toxin families, whereas species with diverse diets tend to 'hedge their bets' by having venoms with a more even composition of different toxin classes.
Collapse
Affiliation(s)
- Romane Schaeffer
- Département Biologie and Geosciences, Faculté Sciences et Ingénierie, Université Toulouse III-Paul Sabatier, 31062 Toulouse, France
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Victoria J Pascolutti
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin Arbuckle
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
17
|
Calvete JJ, Lomonte B, Lorente C, Pla D, Zollweg M, Mebs D. Proteomic analysis of the mandibular glands from the Chinese crocodile lizard, Shinisaurus crocodilurus - Another venomous lizard? Toxicon 2023; 225:107050. [PMID: 36736630 DOI: 10.1016/j.toxicon.2023.107050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Based on its phylogenetic relationship to monitor lizards (Varanidae), Gila monsters (Heloderma spp.), and the earless monitor Lanthanotus borneesis, the Chinese crocodile lizard, Shinisaurus crocodilurus, has been assigned to the Toxicofera clade, which comprises venomous reptiles. However, no data about composition and biological activities of its oral secretion have been reported. In the present study, a proteomic analysis of the mandibular gland of S. crocodilurus and, for comparison, of the herbivorous Solomon Island skink Corucia zebrata, was performed. Scanning electron microscopy (SEM) of the teeth from S. crocodilurus revealed a sharp ridge on the anterior surface, but no grooves, whereas those of C. zebrata possess a flattened crown with a pointed cusp. Proteomic analysis of their gland extracts provided no evidence of venom-derived peptides or proteins, strongly supporting the non-venomous character of these lizards. Data are available via ProteomeXchange with identifier PXD039424.
Collapse
Affiliation(s)
- Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San José 11501, Costa Rica.
| | - Carolina Lorente
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | - Davinia Pla
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | | | - Dietrich Mebs
- Institute of Legal Medicine, Goethe University of Frankfurt, Kennedyallee 104, D-60569, Frankfurt, Germany.
| |
Collapse
|
18
|
Bites by Non-Native Reptiles in France: Species, Circumstances and Outcome. Toxins (Basel) 2022; 14:toxins14080570. [PMID: 36006232 PMCID: PMC9412768 DOI: 10.3390/toxins14080570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to make an exhaustive assessment of circumstances of bites by exotic reptiles bred in France. A retrospective observational study was conducted in all the reported cases from 2000 to 2020 in French poison control centers (PCCs). Two hundred and eighteen cases of bites were recorded. The sex ratio (M/F) of the patients was 1.79 and the mean age of the patients was 29.0 ± 15.8 years. Twenty-two cases (10.1%) occurred during the deep night. One hundred and eighty-six bites (85.7%) occurred in a private context; however, there were more cases of high severity when it occurred in a professional setting (60.0% vs. 11.2%, p < 0.01). The feeding/nursing activity accounted for 54.7% cases. Forty-three species of snake were identified; 28 were considered venomous. There were no deaths among the patients in the study. Most of the cases (85.8%) were of mild severity. All of the patients bitten by a venomous reptile were hospitalized: 10 patients received an antivenom; and 2 required surgery. Bites occurred at home and by a small number of popular non-venomous reptile species (pythons and boas, colubrids). These occurred mainly when handling the animals. The rare envenomations were mainly by Asian and American crotalids, followed by elapids. One-third of them were treated with antivenom when available.
Collapse
|
19
|
Kowalski K, Marciniak P, Rychlik L. A new, widespread venomous mammal species: hemolytic activity of Sorex araneus venom is similar to that of Neomys fodiens venom. ZOOLOGICAL LETTERS 2022; 8:7. [PMID: 35672837 PMCID: PMC9172195 DOI: 10.1186/s40851-022-00191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Venom production has evolved independently many times in the animal kingdom, although it is rare among mammals. Venomous shrews produce toxins in their salivary glands and use their venoms to hunt and store prey. Thus far, the toxicity and composition of shrew venoms have been studied only in two shrew species: the northern short-tailed shrew, Blarina brevicauda, and the Eurasian water shrew, Neomys fodiens. Venom of N. fodiens has potent paralytic activity which enables hunting and storing prey in a comatose state. Here, we assayed the hemolytic effects of extracts from salivary glands of N. fodiens and the common shrew, Sorex araneus, in erythrocytes of Pelophylax sp. frogs. We identified toxins in shrew venom by high-performance liquid chromatography coupled to tandem mass spectrometry. RESULTS Our results prove, confirming a suggestion made four centuries ago, that S. araneus is venomous. We also provide the first experimental evidence that shrew venoms produce potent hemolysis in frog erythrocytes. We found significant concentration-dependent effects of venoms of N. fodiens and S. araneus on hemolysis of red blood cells evaluated as hemoglobin release. Treatment of erythrocytes with N. fodiens venom at concentrations of 1.0 and 0.5 mg/ml and with S. araneus venom at concentration of 1.0 mg/ml caused an increased release of hemoglobin. Our findings confirm that hemolytic effects of N. fodiens venom are stronger than those produced by S. araneus venom. We identified four toxins in the venom of N. fodiens: proenkephalin, phospholipase A2 (PLA2), a disintegrin and metalloproteinase domain-containing protein (ADAM) and lysozyme C, as well as a non-toxic hyaluronidase. In the venom of S. araneus we found five toxins: proenkephalin, kallikrein 1-related peptidase, beta-defensin, ADAM and lysozyme C. PLA2 and ADAMs are likely to produce hemolysis in frog erythrocytes. CONCLUSIONS Our results clearly show that shrew venoms possess hemolytic action that may allow them to hunt larger prey. Since a member of the numerous genus Sorex is venomous, it is likely that venom production among shrews and other eulipotyphlans may be more widespread than it has previously been assumed.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Vertebrate Zoology and Ecology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
20
|
Snake Venomics: Fundamentals, Recent Updates, and a Look to the Next Decade. Toxins (Basel) 2022; 14:toxins14040247. [PMID: 35448856 PMCID: PMC9028316 DOI: 10.3390/toxins14040247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Venomic research, powered by techniques adapted from proteomics, transcriptomics, and genomics, seeks to unravel the diversity and complexity of venom through which knowledge can be applied in the treatment of envenoming, biodiscovery, and conservation. Snake venom proteomics is most extensively studied, but the methods varied widely, creating a massive amount of information which complicates data comparison and interpretation. Advancement in mass spectrometry technology, accompanied by growing databases and sophisticated bioinformatic tools, has overcome earlier limitations of protein identification. The progress, however, remains challenged by limited accessibility to samples, non-standardized quantitative methods, and biased interpretation of -omic data. Next-generation sequencing (NGS) technologies enable high-throughput venom-gland transcriptomics and genomics, complementing venom proteomics by providing deeper insights into the structural diversity, differential expression, regulation and functional interaction of the toxin genes. Venomic tissue sampling is, however, difficult due to strict regulations on wildlife use and transfer of biological materials in some countries. Limited resources for techniques and funding are among other pertinent issues that impede the progress of venomics, particularly in less developed regions and for neglected species. Genuine collaboration between international researchers, due recognition of regional experts by global organizations (e.g., WHO), and improved distribution of research support, should be embraced.
Collapse
|
21
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
22
|
Calvete JJ, Pla D, Els J, Carranza S, Damm M, Hempel BF, John EBO, Petras D, Heiss P, Nalbantsoy A, Göçmen B, Süssmuth RD, Calderón-Celis F, Nosti AJ, Encinar JR. Combined Molecular and Elemental Mass Spectrometry Approaches for Absolute Quantification of Proteomes: Application to the Venomics Characterization of the Two Species of Desert Black Cobras, Walterinnesia aegyptia and Walterinnesia morgani. J Proteome Res 2021; 20:5064-5078. [PMID: 34606723 PMCID: PMC8576837 DOI: 10.1021/acs.jproteome.1c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
We report a novel hybrid, molecular
and elemental mass spectrometry
(MS) setup for the absolute quantification of snake venom proteomes
shown here for two desert black cobra species within the genus Walterinnesia, Walterinnesia aegyptia and Walterinnesia morgani. The experimental
design includes the decomplexation of the venom samples by reverse-phase
chromatography independently coupled to four mass spectrometry systems:
the combined bottom-up and top-down molecular MS for protein identification
and a parallel reverse-phase microbore high-performance liquid chromatograph
(RP-μHPLC) on-line to inductively coupled plasma (ICP-MS/MS)
elemental mass spectrometry and electrospray ionization quadrupole
time-of-flight mass spectrometry (ESI-QToF MS). This allows to continuously
record the absolute sulfur concentration throughout the chromatogram
and assign it to the parent venom proteins separated in the RP-μHPLC-ESI-QToF
parallel run via mass profiling. The results provide a locus-resolved
and quantitative insight into the three desert black cobra venom proteome
samples. They also validate the units of measure of our snake venomics
strategy for the relative quantification of snake venom proteomes
as % of total venom peptide bonds as a proxy for the % by weight of
the venom toxins/toxin families. In a more general context, our work
may pave the way for broader applications of hybrid elemental/molecular
MS setups in diverse areas of proteomics.
Collapse
Affiliation(s)
- Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslational, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Davinia Pla
- Laboratorio de Venómica Evolutiva y Traslational, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Johannes Els
- Environment and Protected Areas Authority, 82828 Sharjah, United Arab Emirates
| | - Salvador Carranza
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Maik Damm
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.,BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Elisa B O John
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Túbingen, 72076 Tübingen, Germany
| | - Paul Heiss
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Bayram Göçmen
- Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Alicia Jiménez Nosti
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
23
|
Pintor AF, Ray N, Longbottom J, Bravo-Vega CA, Yousefi M, Murray KA, Ediriweera DS, Diggle PJ. Addressing the global snakebite crisis with geo-spatial analyses - Recent advances and future direction. Toxicon X 2021; 11:100076. [PMID: 34401744 PMCID: PMC8350508 DOI: 10.1016/j.toxcx.2021.100076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
Venomous snakebite is a neglected tropical disease that annually leads to hundreds of thousands of deaths or long-term physical and mental ailments across the developing world. Insufficient data on spatial variation in snakebite risk, incidence, human vulnerability, and accessibility of medical treatment contribute substantially to ineffective on-ground management. There is an urgent need to collect data, fill knowledge gaps and address on-ground management problems. The use of novel, and transdisciplinary approaches that take advantage of recent advances in spatio-temporal models, 'big data', high performance computing, and fine-scale spatial information can add value to snakebite management by strategically improving our understanding and mitigation capacity of snakebite. We review the background and recent advances on the topic of snakebite related geospatial analyses and suggest avenues for priority research that will have practical on-ground applications for snakebite management and mitigation. These include streamlined, targeted data collection on snake distributions, snakebites, envenomings, venom composition, health infrastructure, and antivenom accessibility along with fine-scale models of spatio-temporal variation in snakebite risk and incidence, intraspecific venom variation, and environmental change modifying human exposure. These measures could improve and 'future-proof' antivenom production methods, antivenom distribution and stockpiling systems, and human-wildlife conflict management practices, while simultaneously feeding into research on venom evolution, snake taxonomy, ecology, biogeography, and conservation.
Collapse
Affiliation(s)
- Anna F.V. Pintor
- Division of Data, Analytics and Delivery for Impact (DDI), World Health Organization, Geneva, Switzerland
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Carlos A. Bravo-Vega
- Research Group in Mathematical and Computational Biology (BIOMAC), Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Masoud Yousefi
- School of Biology, College of Science, University of Tehran, Iran
| | - Kris A. Murray
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, UK
- MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Atlantic Blvd, Fajara, Gambia
| | - Dileepa S. Ediriweera
- Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Peter J. Diggle
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
24
|
Zhang M, Bromfield EG, Veenendaal T, Klumperman J, Helms JB, Gadella BM. Characterization of different oligomeric forms of CRISP2 in the perinuclear theca versus the fibrous tail structures of boar spermatozoa. Biol Reprod 2021; 105:1160-1170. [PMID: 34309660 DOI: 10.1093/biolre/ioab145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 06/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian sperm carry a variety of highly condensed insoluble protein structures such as the perinuclear theca, the fibrous sheath and the outer dense fibers, which are essential to sperm function. We studied the role of cysteine rich secretory protein 2 (CRISP2); a known inducer of non-pathological protein amyloids, in pig sperm with a variety of techniques. CRISP2, which is synthesized during spermatogenesis, was localized by confocal immunofluorescent imaging in the tail and in the post-acrosomal region of the sperm head. High resolution localization by immunogold labeling electron microscopy (EM) of ultrathin cryosections revealed that CRISP2 was present in the perinuclear theca and neck region of the sperm head, as well as in the outer dense fibers and the fibrous sheath of the sperm tail. Interestingly, we found that under native, non-reducing conditions CRISP2 formed oligomers both in the tail and the head but with different molecular weights and different biochemical properties. The tail oligomers were insensitive to reducing conditions but nearly complete dissociated into monomers under 8 M urea treatment, while the head 250 kDa CRISP2 positive oligomer completely dissociated into CRISP2 monomers under reducing conditions. The head specific dissociation of CRISP2 oligomer is likely a result of the reduction of various sulfhydryl groups in the cysteine rich domain of this protein. The sperm head CRISP2 shared typical solubilization characteristics with other perinuclear theca proteins as was shown with sequential detergent and salt treatments. Thus, CRISP2 is likely to participate in the formation of functional protein complexes in both the sperm tail and sperm head, but with differing oligomeric organization and biochemical properties. Future studies will be devoted to the understand the role of CRISP2 in sperm protein complexes formation and how this contributes to the fertilization processes.
Collapse
Affiliation(s)
- M Zhang
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - E G Bromfield
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.,Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - T Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - J B Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - B M Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
25
|
Calvete JJ, Lomonte B, Saviola AJ, Bonilla F, Sasa M, Williams DJ, Undheim EA, Sunagar K, Jackson TN. Mutual enlightenment: A toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance. Toxicon X 2021; 9-10:100070. [PMID: 34195606 PMCID: PMC8234350 DOI: 10.1016/j.toxcx.2021.100070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that may claim over 100,000 human lives annually worldwide. Snakebite occurs as the result of an interaction between a human and a snake that elicits either a defensive response from the snake or, more rarely, a feeding response as the result of mistaken identity. Snakebite envenoming is therefore a biological and, more specifically, an ecological problem. Snake venom itself is often described as a "cocktail", as it is a heterogenous mixture of molecules including the toxins (which are typically proteinaceous) responsible for the pathophysiological consequences of envenoming. The primary function of venom in snake ecology is pre-subjugation, with defensive deployment of the secretion typically considered a secondary function. The particular composition of any given venom cocktail is shaped by evolutionary forces that include phylogenetic constraints associated with the snake's lineage and adaptive responses to the snake's ecological context, including the taxa it preys upon and by which it is predated upon. In the present article, we describe how conceptual frameworks from ecology and evolutionary biology can enter into a mutually enlightening relationship with clinical toxinology by enabling the consideration of snakebite envenoming from an "ecological stance". We detail the insights that may emerge from such a perspective and highlight the ways in which the high-fidelity descriptive knowledge emerging from applications of -omics era technologies - "venomics" and "antivenomics" - can combine with evolutionary explanations to deliver a detailed understanding of this multifactorial health crisis.
Collapse
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fabián Bonilla
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, Costa Rica
| | | | - Eivind A.B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, NTNU, Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Timothy N.W. Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
26
|
Han Q, Huang L, Li J, Wang Z, Gao H, Yang Z, Zhou Z, Liu Z. Neurotoxins in the venom gland of Calommata signata, a burrowing spider. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100871. [PMID: 34315107 DOI: 10.1016/j.cbd.2021.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022]
Abstract
Calommata signata, a burrowing spider, represents a special type of predation mode in spiders, and its utilization of toxins is different from that of web-weaving spiders and wandering spiders. The existing researches on spider toxins are mainly focused on the web-weaving and wandering spiders, but little attention on that of the burrowing spiders. Through transcriptome sequencing of C. signata venom gland and the remaining part as the counterpart tissue, 25 putative neurotoxin precursors were identified. These most neurotoxins were novel because their low similarities with the known sequences except for that of over 50% similarities in four neuropeptide toxins. The 25 neuropeptide toxins were divided into five families according to the constitution of cysteines for the possible disulfide bonds and the similarities of the deduced amino acid sequences. Besides neuropeptide toxins, other potential toxins in the venom gland were also analyzed. Unlike web-weaving spiders and wandering spiders, only a few neurotoxin genes were significantly expressed in the venom gland of C. signata. In the non-peptide toxin genes, only CsTryp_SPc-1, CsPA2-1, CsVa5-2 and four PDI genes were abundantly expressed in the venom gland. The present study provided an improved understanding on the spider toxin diversity and useful information for the exploitation of spider toxins.
Collapse
Affiliation(s)
- Qianqian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Lixin Huang
- Department of Applied Microbiology, Jiangsu Lixiahe District Institute of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Microbiology, Yangzhou 225007, China
| | - Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhaoying Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhiming Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhangjin Zhou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
27
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
28
|
Gorman CE, Hulsey CD. Non-trophic Functional Ecology of Vertebrate Teeth: A Review. Integr Comp Biol 2021; 60:665-675. [PMID: 32573716 DOI: 10.1093/icb/icaa086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Teeth are critical to the functional ecology of vertebrate trophic abilities, but are also used for a diversity of other non-trophic tasks. Teeth can play a substantial role in how animals move, manipulate their environment, positively interact with conspecifics, antagonistically interact with other organisms, and sense the environment. We review these non-trophic functions in an attempt to place the utility of human and all other vertebrate dentitions in a more diverse framework that emphasizes an expanded view of the functional importance and ecological diversity of teeth. In light of the extensive understanding of the developmental genetics, trophic functions, and evolutionary history of teeth, comparative studies of vertebrate dentitions will continue to provide unique insights into multi-functionality, many-to-one mapping, and the evolution of novel abilities.
Collapse
Affiliation(s)
- Courtney E Gorman
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
29
|
Logan JM, Beck A, Dunstan N, Allen L, Woods AE. Development of the venom delivery system in Elapidae snake species: Naja siamensis and Oxyuranus microlepidotus. Toxicon 2021; 199:12-19. [PMID: 34010665 DOI: 10.1016/j.toxicon.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
Many advanced snakes possess a unique venom delivery system which they utilise to subdue prey and for defence. Despite extensive efforts, the evolutionary differences in this key system between advanced snake families remains enigmatic. The current study has investigated the development of the venom delivery system using two oviparous Elapidae models, Naja siamensis and Oxyuranus microlepidotus. The development stages of the embryos in both models were detailed using previously standardised characterisation. Variations in the days post-oviposition between these stages was observed, despite a continuous development trajectory. These differences also translated to the development of the venom delivery system.
Collapse
Affiliation(s)
- Jessica M Logan
- Mechanisms in Cell Biology and Disease Research Group, Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, 5001, Australia.
| | - Andrew Beck
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, 5001, Australia.
| | - Nathan Dunstan
- Venom Supplies Pty Ltd., Tanunda, South Australia, Australia.
| | - Luke Allen
- Venom Supplies Pty Ltd., Tanunda, South Australia, Australia.
| | - Anthony E Woods
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
30
|
Venom Use in Eulipotyphlans: An Evolutionary and Ecological Approach. Toxins (Basel) 2021; 13:toxins13030231. [PMID: 33810196 PMCID: PMC8004749 DOI: 10.3390/toxins13030231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Venomousness is a complex functional trait that has evolved independently many times in the animal kingdom, although it is rare among mammals. Intriguingly, most venomous mammal species belong to Eulipotyphla (solenodons, shrews). This fact may be linked to their high metabolic rate and a nearly continuous demand of nutritious food, and thus it relates the venom functions to facilitation of their efficient foraging. While mammalian venoms have been investigated using biochemical and molecular assays, studies of their ecological functions have been neglected for a long time. Therefore, we provide here an overview of what is currently known about eulipotyphlan venoms, followed by a discussion of how these venoms might have evolved under ecological pressures related to food acquisition, ecological interactions, and defense and protection. We delineate six mutually nonexclusive functions of venom (prey hunting, food hoarding, food digestion, reducing intra- and interspecific conflicts, avoidance of predation risk, weapons in intraspecific competition) and a number of different subfunctions for eulipotyphlans, among which some are so far only hypothetical while others have some empirical confirmation. The functions resulting from the need for food acquisition seem to be the most important for solenodons and especially for shrews. We also present several hypotheses explaining why, despite so many potentially beneficial functions, venomousness is rare even among eulipotyphlans. The tentativeness of many of the arguments presented in this review highlights our main conclusion, i.e., insights regarding the functions of eulipotyphlan venoms merit additional study.
Collapse
|
31
|
Andrade-Silva D, Nishiyama MY, Stuginski DR, Zelanis A, Serrano SMT. The distinct N-terminomes of Bothrops jararaca newborn and adult venoms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140643. [PMID: 33722654 DOI: 10.1016/j.bbapap.2021.140643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Using approaches of transcriptomics and proteomics we have shown that the phenotype of Bothrops jararaca venom undergoes a significant rearrangement upon neonate to adult transition. Most regulatory processes in biology are intrinsically related to modifications of protein structure, function, and abundance. However, it is unclear to which extent intrinsic proteolysis affects toxins and snake venom phenotypes upon ontogenesis. Here we assessed the natural N-terminome of Bothrops jararaca newborn and adult venoms and explored the degree of N-terminal protein truncation in ontogenetic-based proteome variation. To this end we applied the Terminal Amine Isotopic Labeling of Substrates (TAILS) technology to characterize venom collected in the presence of proteinase inhibitors. We identified natural N-terminal sequences in the newborn (71) and adult (84) venoms, from which only 37 were common to both. However, truncated toxins were found in higher number in the newborn (212) than in the adult (140) venom. Moreover, sequences N-terminally blocked by pyroglutamic acid were identified in the newborn (55) and adult (49) venoms. Most toxin classes identified by their natural N-terminal sequences showed a similar number of unique peptides in the newborn and adult venoms, however, those of serine proteinases and C-type lectins were more abundant in the adult venom. Truncated sequences from at least ten toxin classes were detected, however the catalytic and cysteine-rich domains of metalloproteinases were the most prone to proteolysis, mainly in the newborn venom. Our results underscore the pervasiveness of truncations in most toxin classes and highlight variable post-translational events in newborn and adult venoms.
Collapse
Affiliation(s)
- Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Milton Y Nishiyama
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | | | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos, SP, Brazil
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Dashevsky D, Rokyta D, Frank N, Nouwens A, Fry BG. Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus. Toxins (Basel) 2021; 13:124. [PMID: 33567660 PMCID: PMC7915963 DOI: 10.3390/toxins13020124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/17/2023] Open
Abstract
The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δδ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C. bivirgatus toxins also contains the previously named maticotoxins and is somewhat closely related to cytotoxins from other elapids. However, the toxins from this clade that have been characterized are not themselves cytotoxic. No other toxins show clear relationships to toxins of known function from other species.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia;
- Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601, Australia
| | - Darin Rokyta
- Department of Biological Sciences, Florida State University, Tallahassee, FL 24105, USA;
| | - Nathaniel Frank
- MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI 54902, USA;
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia;
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia;
| |
Collapse
|
33
|
Gorson J, Fassio G, Lau ES, Holford M. Diet Diversity in Carnivorous Terebrid Snails Is Tied to the Presence and Absence of a Venom Gland. Toxins (Basel) 2021; 13:toxins13020108. [PMID: 33540609 PMCID: PMC7912948 DOI: 10.3390/toxins13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
Predator-prey interactions are thought to play a driving role in animal evolution, especially for groups that have developed venom as their predatory strategy. However, how the diet of venomous animals influences the composition of venom arsenals remains uncertain. Two prevailing hypotheses to explain the relationship between diet and venom composition focus on prey preference and the types of compounds in venom, and a positive correlation between dietary breadth and the number of compounds in venom. Here, we examined venom complexity, phylogenetic relationship, collection depth, and biogeography of the Terebridae (auger snails) to determine if repeated innovations in terebrid foregut anatomy and venom composition correspond to diet variation. We performed the first molecular study of the diet of terebrid marine snails by metabarcoding the gut content of 71 terebrid specimens from 17 species. Our results suggest that the presence or absence of a venom gland is strongly correlated with dietary breadth. Specifically, terebrid species without a venom gland displayed greater diversity in their diet. Additionally, we propose a revision of the definition of venom complexity in conoidean snails to more accurately capture the breadth of ecological influences. These findings suggest that prey diet is an important factor in terebrid venom evolution and diversification and further investigations of other understudied organisms, like terebrids, are needed to develop robust hypotheses in this area.
Collapse
Affiliation(s)
- Juliette Gorson
- Department of Chemistry, Hunter College Belfer Research Center, City University of New York, New York, NY 10021, USA; (J.G.); (G.F.); (E.S.L.)
- Graduate Programs in Biology, Biochemistry, Chemistry, Graduate Center, City University of New York, New York, NY 10016, USA
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024, USA
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Giulia Fassio
- Department of Chemistry, Hunter College Belfer Research Center, City University of New York, New York, NY 10021, USA; (J.G.); (G.F.); (E.S.L.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, I-00185 Rome, Italy
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, I-00198 Rome, Italy
| | - Emily S. Lau
- Department of Chemistry, Hunter College Belfer Research Center, City University of New York, New York, NY 10021, USA; (J.G.); (G.F.); (E.S.L.)
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mandë Holford
- Department of Chemistry, Hunter College Belfer Research Center, City University of New York, New York, NY 10021, USA; (J.G.); (G.F.); (E.S.L.)
- Graduate Programs in Biology, Biochemistry, Chemistry, Graduate Center, City University of New York, New York, NY 10016, USA
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10024, USA
- Correspondence:
| |
Collapse
|
34
|
Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes. J HERPETOL 2021. [DOI: 10.1670/19-071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Widespread and Differential Neurotoxicity in Venoms from the Bitis Genus of Viperid Snakes. Neurotox Res 2021; 39:697-704. [PMID: 33428181 DOI: 10.1007/s12640-021-00330-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Research into the neurotoxic activity of venoms from species within the snake family Viperidae is relatively neglected compared with snakes in the Elapidae family. Previous studies into venoms from the Bitis genus of vipers have identified the presence of presynaptic phospholipase A2 neurotoxins in B. atropos and B. caudalis, as well as a postsynaptic phospholipase A2 in B. arietans. Yet, no studies have investigated how widespread neurotoxicity is across the Bitis genus or if they exhibit prey selectivity of their neurotoxins. Utilising a biolayer interferometry assay, we were able to assess the binding of crude venom from 14 species of Bitis to the neuromuscular α-1 nAChR orthosteric site across a wide range of vertebrate taxa mimotopes. Postsynaptic binding was seen for venoms from B. arietans, B. armata, B. atropos, B. caudalis, B. cornuta, B. peringueyi and B. rubida. To further explore the types of neurotoxins present, venoms from the representatives B. armata, B. caudalis, B. cornuta and B. rubida were additionally tested in the chick biventer cervicis nerve muscle preparation, which showed presynaptic and postsynaptic activity for B. caudalis and only presynaptic neurotoxicity for B. cornuta and B. rubida, with myotoxicity also evident for some species. These results, combined with the biolayer interferometry results, indicate complex neurotoxicity exerted by Bitis species, which varies dramatically by lineage tested upon. Our data also further support the importance of sampling across geographical localities, as significant intraspecific variation of postsynaptic neurotoxicity was reported across the different localities.
Collapse
|
36
|
Jackson TNW, Koludarov I. How the Toxin got its Toxicity. Front Pharmacol 2020; 11:574925. [PMID: 33381030 PMCID: PMC7767849 DOI: 10.3389/fphar.2020.574925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Venom systems are functional and ecological traits, typically used by one organism to subdue or deter another. A predominant subset of their constituent molecules—“toxins”—share this ecological function and are therefore molecules that mediate interactions between organisms. Such molecules have been referred to as “exochemicals.” There has been debate within the field of toxinology concerning the evolutionary pathways leading to the “recruitment” of a gene product for a toxic role within venom. We review these discussions and the evidence interpreted in support of alternate pathways, along with many of the most popular models describing the origin of novel molecular functions in general. We note that such functions may arise with or without gene duplication occurring and are often the consequence of a gene product encountering a novel “environment,” i.e., a range of novel partners for molecular interaction. After stressing the distinction between “activity” and “function,” we describe in detail the results of a recent study which reconstructed the evolutionary history of a multigene family that has been recruited as a toxin and argue that these results indicate that a pluralistic approach to understanding the origin of novel functions is advantageous. This leads us to recommend that an expansive approach be taken to the definition of “neofunctionalization”—simply the origins of a novel molecular function by any process—and “recruitment”—the “weaponization” of a molecule via the acquisition of a toxic function in venom, by any process. Recruitment does not occur at the molecular level or even at the level of gene expression, but only when a confluence of factors results in the ecological deployment of a physiologically active molecule as a toxin. Subsequent to recruitment, the evolutionary regime of a gene family may shift into a more dynamic form of “birth-and-death.” Thus, recruitment leads to a form of “downwards causation,” in which a change at the ecological level at which whole organisms interact leads to a change in patterns of evolution at the genomic level.
Collapse
Affiliation(s)
- Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| | - Ivan Koludarov
- Animal Venomics Group, Justus Leibig University, Giessen, Germany
| |
Collapse
|
37
|
Mebs D, Lomonte B, Fernández J, Calvete JJ, Sanz L, Mahlow K, Müller J, Köhler G, Zollweg M. The earless monitor lizard Lanthanotus borneensis - A venomous animal? Toxicon 2020; 189:73-78. [PMID: 33245962 DOI: 10.1016/j.toxicon.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023]
Abstract
Based on its mandibular gland secretion, the earless monitor lizard, Lanthanotus borneensis, has been considered a venomous animal like other members of the Toxicofera group, including Heloderma. In the present study, the gland structure and teeth of L. borneensis were examined by micro-tomography (μCT) and scanning electron microscopy (SEM), respectively, and proteomic analysis of the gland extract was performed. The mandibular gland consists of six compartments with separate ducts. The pleurodont teeth of the lower and upper jaw are not grooved but possess a sharp ridge on the anterior surface. Proteomic analysis of the gland extract confirmed previous studies that kallikrein enzymes are the major biologically active components. In view of the lizard's biology, its mandibular gland secretion is obviously not needed for prey capture or defence. It seems not justified the labelling of L. borneensis as a venomous animal. However, definitively answering this question requires toxinological studies on natural prey.
Collapse
Affiliation(s)
- Dietrich Mebs
- Institute of Legal Medicine, Goethe University of Frankfurt, Kennedyallee 104, D-60569, Frankfurt, Germany.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | - Libia Sanz
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | - Kristin Mahlow
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, D-10115, Berlin, Germany.
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, D-10115, Berlin, Germany.
| | - Gunther Köhler
- Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, D-60325, Frankfurt, Germany.
| | | |
Collapse
|
38
|
Lee CH, Liu CI, Leu SJ, Lee YC, Chiang JR, Chiang LC, Mao YC, Tsai BY, Hung CS, Chen CC, Yang YY. Chicken antibodies against venom proteins of Trimeresurus stejnegeri in Taiwan. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200056. [PMID: 33281887 PMCID: PMC7682652 DOI: 10.1590/1678-9199-jvatitd-2020-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. METHODS T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. RESULTS Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. CONCLUSION Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Ron Chiang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ching Chen
- Department of Pathology and Laboratory Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Manceau M, Marin J, Morlon H, Lambert A. Model-Based Inference of Punctuated Molecular Evolution. Mol Biol Evol 2020; 37:3308-3323. [PMID: 32521005 DOI: 10.1093/molbev/msaa144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In standard models of molecular evolution, DNA sequences evolve through asynchronous substitutions according to Poisson processes with a constant rate (called the molecular clock) or a rate that can vary (relaxed clock). However, DNA sequences can also undergo episodes of fast divergence that will appear as synchronous substitutions affecting several sites simultaneously at the macroevolutionary timescale. Here, we develop a model, which we call the Relaxed Clock with Spikes model, combining basal, clock-like molecular substitutions with episodes of fast divergence called spikes arising at speciation events. Given a multiple sequence alignment and its time-calibrated species phylogeny, our model is able to detect speciation events (including hidden ones) cooccurring with spike events and to estimate the probability and amplitude of these spikes on the phylogeny. We identify the conditions under which spikes can be distinguished from the natural variance of the clock-like component of molecular substitutions and from variations of the clock. We apply the method to genes underlying snake venom proteins and identify several spikes at gene-specific locations in the phylogeny. This work should pave the way for analyses relying on whole genomes to inform on modes of species diversification.
Collapse
Affiliation(s)
- Marc Manceau
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France.,IBENS, Ecole Normale Supérieure, UMR 8197 CNRS, Paris, France.,DBSSE, ETH Zürich, Basel, Switzerland
| | - Julie Marin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France
| | - Hélène Morlon
- IBENS, Ecole Normale Supérieure, UMR 8197 CNRS, Paris, France
| | - Amaury Lambert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U 1050, PSL Research University, Paris, France.,Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, CNRS UMR 8001, Paris, France
| |
Collapse
|
40
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
41
|
Lessner EJ, Holliday CM. A 3D ontogenetic atlas of Alligator mississippiensis cranial nerves and their significance for comparative neurology of reptiles. Anat Rec (Hoboken) 2020; 305:2854-2882. [PMID: 33099878 DOI: 10.1002/ar.24550] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 11/10/2022]
Abstract
Cranial nerves are key features of the nervous system and vertebrate body plan. However, little is known about the anatomical relationships and ontogeny of cranial nerves in crocodylians and other reptiles, hampering understanding of adaptations, evolution, and development of special senses, somatosensation, and motor control of cranial organs. Here we share three dimensional (3D) models an of the cranial nerves and cranial nerve targets of embryonic, juvenile, and adult American Alligators (Alligator mississippiensis) derived from iodine-contrast CT imaging, for the first time, exploring anatomical patterns of cranial nerves across ontogeny. These data reveal the tradeoffs of using contrast-enhanced CT data as well as patterns in growth and development of the alligator cranial nervous system. Though contrast-enhanced CT scanning allows for reconstruction of numerous tissue types in a nondestructive manner, it is still limited by size and resolution. The position of alligator cranial nerves varies little with respect to other cranial structures yet grow at different rates as the skull elongates. These data constrain timing of trigeminal and sympathetic ganglion fusion and reveal morphometric differences in nerve size and path during growth. As demonstrated by these data, alligator cranial nerve morphology is useful in understanding patterns of neurological diversity and distribution, evolution of sensory and muscular innervation, and developmental homology of cranial regions, which in turn, lead to inferences of physiology and behavior.
Collapse
Affiliation(s)
- Emily J Lessner
- Program in Integrative Anatomy, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Casey M Holliday
- Program in Integrative Anatomy, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
42
|
Calvete JJ, Bonilla F, Granados-Martínez S, Sanz L, Lomonte B, Sasa M. Venomics of the Duvernoy's gland secretion of the false coral snake Rhinobothryum bovallii (Andersson, 1916) and assessment of venom lethality towards synapsid and diapsid animal models. J Proteomics 2020; 225:103882. [DOI: 10.1016/j.jprot.2020.103882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
|
43
|
Hanf ZR, Chavez AS. A Comprehensive Multi-Omic Approach Reveals a Relatively Simple Venom in a Diet Generalist, the Northern Short-Tailed Shrew, Blarina brevicauda. Genome Biol Evol 2020; 12:1148-1166. [PMID: 32520994 PMCID: PMC7486961 DOI: 10.1093/gbe/evaa115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Animals that use venom to feed on a wide diversity of prey may evolve a complex mixture of toxins to target a variety of physiological processes and prey-defense mechanisms. Blarina brevicauda, the northern short-tailed shrew, is one of few venomous mammals, and is also known to eat evolutionarily divergent prey. Despite their complex diet, earlier proteomic and transcriptomic studies of this shrew's venom have only identified two venom proteins. Here, we investigated with comprehensive molecular approaches whether B. brevicauda venom is more complex than previously understood. We generated de novo assemblies of a B. brevicauda genome and submaxillary-gland transcriptome, as well as sequenced the salivary proteome. Our findings show that B. brevicauda's venom composition is simple relative to their broad diet and is likely limited to seven proteins from six gene families. Additionally, we explored expression levels and rate of evolution of these venom genes and the origins of key duplications that led to toxin neofunctionalization. We also found three proteins that may be involved in endogenous self-defense. The possible synergism of the toxins suggests that vertebrate prey may be the main target of the venom. Further functional assays for all venom proteins on both vertebrate and invertebrate prey would provide further insight into the ecological relevance of venom in this species.
Collapse
Affiliation(s)
- Zachery R Hanf
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University
| | - Andreas S Chavez
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University
- Translational Data Analytics Institute, The Ohio State University
| |
Collapse
|
44
|
Casewell NR, Jackson TNW, Laustsen AH, Sunagar K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol Sci 2020; 41:570-581. [PMID: 32564899 PMCID: PMC7116101 DOI: 10.1016/j.tips.2020.05.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 11/30/2022]
Abstract
Snake venoms are mixtures of toxins that vary extensively between and within snake species. This variability has serious consequences for the management of the world’s 1.8 million annual snakebite victims. Advances in ‘omic’ technologies have empowered toxinologists to comprehensively characterize snake venom compositions, unravel the molecular mechanisms that underpin venom variation, and elucidate the ensuing functional consequences. In this review, we describe how such mechanistic processes have resulted in suites of toxin isoforms that cause diverse pathologies in human snakebite victims and we detail how variation in venom composition can result in treatment failure. Finally, we outline current therapeutic approaches designed to circumvent venom variation and deliver next-generation treatments for the world’s most lethal neglected tropical disease.
Collapse
Affiliation(s)
- Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kartik Sunagar
- Evolutionary Venomics Laboratory, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
45
|
Hashmi SU, Alvi A, Munir I, Perveen M, Fazal A, Jackson TNW, Ali SA. Functional venomics of the Big-4 snakes of Pakistan. Toxicon 2020; 179:60-71. [PMID: 32173354 DOI: 10.1016/j.toxicon.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 11/19/2022]
Abstract
In South Asia, the "Big-4" venomous snakes Naja naja, Bungarus caeruleus, Daboia russelii, and Echis carinatus are so-called because they are the most medically important snakes in the region. Antivenom is the only effective treatment option for snakebite envenoming but antivenom is not produced domestically in Pakistan making the country reliant on polyvalent products imported from India and Saudi Arabia. The present study investigated the toxin composition and activity of the venoms of Pakistani specimens by means of proteomic and physio/pharmacological experiments. To evaluate the composition of venoms, 1D/2D-PAGE of crude venoms and RP-HPLC followed by SDS-PAGE were performed. Enzymatic, hemolytic, coagulant and platelet aggregating activities of crude venoms were assayed and were concordant with expectations based on the abundance of protein species in each. Neutralization assays were performed using Bharat polyvalent antivenom (BPAV), a product raised against venoms from Big-4 specimens from southern India. BPAV exhibited cross-reactivity against the Pakistani venoms, however, neutralization of clinically relevant activities was variable and rarely complete. Cumulatively, the presented data not only highlight geographical variations present in the venoms of the Big-4 snakes of South Asia, but also demonstrate the neutralization potential of Indian polyvalent against the venom of Pakistani specimens. Given the partial neutralization observed, it is clear that whilst BPAV is a life-saving product in Pakistan, in future it is hoped that a region-specific product might be manufactured domestically, using venoms of local snakes in the immunising mixture.
Collapse
Affiliation(s)
- Syeda U Hashmi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Areej Alvi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Iqra Munir
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Mehvish Perveen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Amaila Fazal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Australia
| | - Syed A Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
46
|
Venomics of the Central American Lyre Snake Trimorphodon quadruplex (Colubridae: Smith, 1941) from Costa Rica. J Proteomics 2020; 220:103778. [DOI: 10.1016/j.jprot.2020.103778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
|
47
|
Tadokoro T, M. Modahl C, Maenaka K, Aoki-Shioi N. Cysteine-Rich Secretory Proteins (CRISPs) From Venomous Snakes: An Overview of the Functional Diversity in A Large and Underappreciated Superfamily. Toxins (Basel) 2020; 12:E175. [PMID: 32178374 PMCID: PMC7150914 DOI: 10.3390/toxins12030175] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (T.T.); (K.M.)
| | - Cassandra M. Modahl
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (T.T.); (K.M.)
| | - Narumi Aoki-Shioi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Department of Chemistry, Faculty of Science, Fukuoka University, 19-1, 8-chomeNanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
48
|
Mason AJ, Margres MJ, Strickland JL, Rokyta DR, Sasa M, Parkinson CL. Trait differentiation and modular toxin expression in palm-pitvipers. BMC Genomics 2020; 21:147. [PMID: 32046632 PMCID: PMC7014597 DOI: 10.1186/s12864-020-6545-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Background Modularity is the tendency for systems to organize into semi-independent units and can be a key to the evolution and diversification of complex biological systems. Snake venoms are highly variable modular systems that exhibit extreme diversification even across very short time scales. One well-studied venom phenotype dichotomy is a trade-off between neurotoxicity versus hemotoxicity that occurs through the high expression of a heterodimeric neurotoxic phospholipase A2 (PLA2) or snake venom metalloproteinases (SVMPs). We tested whether the variation in these venom phenotypes could occur via variation in regulatory sub-modules through comparative venom gland transcriptomics of representative Black-Speckled Palm-Pitvipers (Bothriechis nigroviridis) and Talamancan Palm-Pitvipers (B. nubestris). Results We assembled 1517 coding sequences, including 43 toxins for B. nigroviridis and 1787 coding sequences including 42 toxins for B. nubestris. The venom gland transcriptomes were extremely divergent between these two species with one B. nigroviridis exhibiting a primarily neurotoxic pattern of expression, both B. nubestris expressing primarily hemorrhagic toxins, and a second B. nigroviridis exhibiting a mixed expression phenotype. Weighted gene coexpression analyses identified six submodules of transcript expression variation, one of which was highly associated with SVMPs and a second which contained both subunits of the neurotoxic PLA2 complex. The sub-module association of these toxins suggest common regulatory pathways underlie the variation in their expression and is consistent with known patterns of inheritance of similar haplotypes in other species. We also find evidence that module associated toxin families show fewer gene duplications and transcript losses between species, but module association did not appear to affect sequence diversification. Conclusion Sub-modular regulation of expression likely contributes to the diversification of venom phenotypes within and among species and underscores the role of modularity in facilitating rapid evolution of complex traits.
Collapse
Affiliation(s)
- Andrew J Mason
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Mark J Margres
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Jason L Strickland
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Darin R Rokyta
- Department of Biological Sciences, Florida State University, Tallahassee, FL, 24105, USA
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San Jose, Costa Rica
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA. .,Department of Forestry, and Environmental Conservation, Clemson University, Clemson, SC, USA.
| |
Collapse
|
49
|
Lyons K, Dugon MM, Healy K. Diet Breadth Mediates the Prey Specificity of Venom Potency in Snakes. Toxins (Basel) 2020; 12:toxins12020074. [PMID: 31979380 PMCID: PMC7076792 DOI: 10.3390/toxins12020074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
Venoms are best known for their ability to incapacitate prey. In predatory groups, venom potency is predicted to reflect ecological and evolutionary drivers relating to diet. While venoms have been found to have preyspecific potencies, the role of diet breadth on venom potencies has yet to be tested at large macroecological scales. Here, using a comparative analysis of 100 snake species, we show that the evolution of prey-specific venom potencies is contingent on the breadth of a species' diet. We find that while snake venom is more potent when tested on species closely related to natural prey items, we only find this prey-specific pattern in species with taxonomically narrow diets. While we find that the taxonomic diversity of a snakes' diet mediates the prey specificity of its venom, the species richness of its diet was not found to affect these prey-specific potency patterns. This indicates that the physiological diversity of a species' diet is an important driver of the evolution of generalist venom potencies. These findings suggest that the venoms of species with taxonomically diverse diets may be better suited to incapacitating novel prey species and hence play an important role for species within changing environments.
Collapse
Affiliation(s)
- Keith Lyons
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| | | | - Kevin Healy
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| |
Collapse
|
50
|
Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Mol Biol Evol 2019; 36:2748-2763. [PMID: 31396628 PMCID: PMC6878950 DOI: 10.1093/molbev/msz181] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Centipedes are among the most ancient groups of venomous predatory arthropods. Extant species belong to five orders, but our understanding of the composition and evolution of centipede venoms is based almost exclusively on one order, Scolopendromorpha. To gain a broader and less biased understanding we performed a comparative proteotranscriptomic analysis of centipede venoms from all five orders, including the first venom profiles for the orders Lithobiomorpha, Craterostigmomorpha, and Geophilomorpha. Our results reveal an astonishing structural diversity of venom components, with 93 phylogenetically distinct protein and peptide families. Proteomically-annotated gene trees of these putative toxin families show that centipede venom composition is highly dynamic across macroevolutionary timescales, with numerous gene duplications as well as functional recruitments and losses of toxin gene families. Strikingly, not a single family is found in the venoms of representatives of all five orders, with 67 families being unique for single orders. Ancestral state reconstructions reveal that centipede venom originated as a simple cocktail comprising just four toxin families, with very little compositional evolution happening during the approximately 50 My before the living orders had diverged. Venom complexity then increased in parallel within the orders, with scolopendromorphs evolving particularly complex venoms. Our results show that even venoms composed of toxins evolving under the strong constraint of negative selection can have striking evolutionary plasticity on the compositional level. We show that the functional recruitments and losses of toxin families that shape centipede venom arsenals are not concentrated early in their evolutionary history, but happen frequently throughout.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bjoern M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Animal Venomics, Giessen, Germany
| | - Lahcen I Campbell
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, Hinxton, United Kingdom
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
- Centre for Ecology and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|