1
|
Damm M, Karış M, Petras D, Nalbantsoy A, Göçmen B, Süssmuth RD. Venomics and Peptidomics of Palearctic Vipers: A Clade-Wide Analysis of Seven Taxa of the Genera Vipera, Montivipera, Macrovipera, and Daboia across Türkiye. J Proteome Res 2024; 23:3524-3541. [PMID: 38980134 PMCID: PMC11301686 DOI: 10.1021/acs.jproteome.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Snake venom variations are a crucial factor to understand the consequences of snakebite envenoming worldwide, and therefore it is important to know about toxin composition alterations between taxa. Palearctic vipers of the genera Vipera, Montivipera, Macrovipera, and Daboia have high medical impacts across the Old World. One hotspot for their occurrence and diversity is Türkiye, located on the border between continents, but many of their venoms remain still understudied. Here, we present the venom compositions of seven Turkish viper taxa. By complementary mass spectrometry-based bottom-up and top-down workflows, the venom profiles were investigated on proteomics and peptidomics level. This study includes the first venom descriptions of Vipera berus barani, Vipera darevskii, Montivipera bulgardaghica albizona, and Montivipera xanthina, as well as the first snake venomics profiles of Turkish Macrovipera lebetinus obtusa, and Daboia palaestinae, including an in-depth reanalysis of M. bulgardaghica bulgardaghica venom. Additionally, we identified the modular consensus sequence pEXW(PZ)1-2P(EI)/(KV)PPLE for bradykinin-potentiating peptides in viper venoms. For better insights into variations and potential impacts of medical significance, the venoms were compared against other Palearctic viper proteomes, including the first genus-wide Montivipera venom comparison. This will help the risk assessment of snakebite envenoming by these vipers and aid in predicting the venoms' pathophysiology and clinical treatments.
Collapse
Affiliation(s)
- Maik Damm
- Institut
für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- LOEWE-Centre
for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute
for Insect Biotechnology, Justus-Liebig
University Giessen, Heinrich-Buff-Ring
26-32, 35392 Gießen, Germany
| | - Mert Karış
- Program
of Laboratory Technology, Department of Chemistry and Chemical Process
Technologies, Acıgöl Vocational School of Technical Sciences, Nevşehir Hacı Bektaş Veli University, Acıgöl, 50140 Nevşehir, Türkiye
| | - Daniel Petras
- Department
of Biochemistry, University of California
Riverside, 169 Aberdeen
Dr, Riverside, California 92507, United States
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
| | - Ayse Nalbantsoy
- Department
of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Bayram Göçmen
- Zoology
Section, Department of Biology, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Roderich D. Süssmuth
- Institut
für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
2
|
Popoff MR, Faure G, Legout S, Ladant D. Animal Toxins: A Historical Outlook at the Institut Pasteur of Paris. Toxins (Basel) 2023; 15:462. [PMID: 37505731 PMCID: PMC10467091 DOI: 10.3390/toxins15070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Humans have faced poisonous animals since the most ancient times. It is recognized that certain animals, like specific plants, produce toxic substances that can be lethal, but that can also have therapeutic or psychoactive effects. The use of the term "venom", which initially designated a poison, remedy, or magic drug, is now confined to animal poisons delivered by biting. Following Louis Pasteur's work on pathogenic microorganisms, it was hypothesized that venoms could be related to bacterial toxins and that the process of pathogenicity attenuation could be applied to venoms for the prevention and treatment of envenomation. Cesaire Phisalix and Gabriel Bertrand from the National Museum of Natural History as well as Albert Calmette from the Institut Pasteur in Paris were pioneers in the development of antivenomous serotherapy. Gaston Ramon refined the process of venom attenuation for the immunization of horses using a formalin treatment method that was successful for diphtheria and tetanus toxins. This paved the way for the production of antivenomous sera at the Institut Pasteur, as well as for research on venom constituents and the characterization of their biological activities. The specific activities of certain venom components, such as those involved in blood coagulation or the regulation of chloride ion channels, raises the possibility of developing novel therapeutic drugs that could serve as anticoagulants or as a treatment for cystic fibrosis, for example. Scientists of the Institut Pasteur of Paris have significantly contributed to the study of snake venoms, a topic that is reported in this review.
Collapse
Affiliation(s)
- Michel R. Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| | - Grazyna Faure
- Unité Récepteurs-Canaux, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, F-75015 Paris, France;
| | - Sandra Legout
- Centre de Ressources et Information Scientifique, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, F-75015 Paris, France;
| |
Collapse
|
3
|
Osipov A, Utkin Y. What Are the Neurotoxins in Hemotoxic Snake Venoms? Int J Mol Sci 2023; 24:ijms24032919. [PMID: 36769242 PMCID: PMC9917609 DOI: 10.3390/ijms24032919] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Snake venoms as tools for hunting are primarily aimed at the most vital systems of the prey, especially the nervous and circulatory systems. In general, snakes of the Elapidae family produce neurotoxic venoms comprising of toxins targeting the nervous system, while snakes of the Viperidae family and most rear-fanged snakes produce hemotoxic venoms directed mainly on blood coagulation. However, it is not all so clear. Some bites by viperids results in neurotoxic signs and it is now known that hemotoxic venoms do contain neurotoxic components. For example, viperid phospholipases A2 may manifest pre- or/and postsynaptic activity and be involved in pain and analgesia. There are other neurotoxins belonging to diverse families ranging from large multi-subunit proteins (e.g., C-type lectin-like proteins) to short peptide neurotoxins (e.g., waglerins and azemiopsin), which are found in hemotoxic venoms. Other neurotoxins from hemotoxic venoms include baptides, crotamine, cysteine-rich secretory proteins, Kunitz-type protease inhibitors, sarafotoxins and three-finger toxins. Some of these toxins exhibit postsynaptic activity, while others affect the functioning of voltage-dependent ion channels. This review represents the first attempt to systematize data on the neurotoxins from "non-neurotoxic" snake venom. The structural and functional characteristic of these neurotoxins affecting diverse targets in the nervous system are considered.
Collapse
|
4
|
Immunorecognition and Neutralization of Crotalus durissus cumanensis Venom by a Commercial Antivenom Produced in Colombia. Toxins (Basel) 2022; 14:toxins14040235. [PMID: 35448844 PMCID: PMC9025410 DOI: 10.3390/toxins14040235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
In Colombia, on average 2.9% of the nearly 5600 snakebite events that occur annually involve the rattlesnake Crotalus durissus cumanensis. The envenomation by this snake is mainly characterized by neurotoxicity and the main toxin is crotoxin (~64.7% of the total venom). The Instituto Nacional de Salud (INS) produces a polyvalent antivenom aimed at the treatment of bothropic, crotalid, and lachesic envenomations; nonetheless, its immune reactivity profile and neutralizing capacity over biological activities of the C. d. cumanensis venom has been poorly evaluated. In this sense, the study aims: (1) to describe an in-depth exploration of its immunoreactivity through second-generation antivenomics and HPLC fraction-specific ELISA immunoprofiles; and (2) to evaluate the neutralization pattern of the rattlesnake venom in vitro and in vivo biological activities. The results obtained showed a variable recognition of crotoxin subunits, in addition to a molecular mass-dependent immunoreactivity pattern in which the disintegrins were not recognized, and snake venom metalloproteinases and L-amino acid oxidases were the most recognized. Additionally, a high neutralization of proteolytic and coagulant activities was observed, but not over the PLA2 activity. Further, the median effective dose against C. d. cumanensis venom lethality was 962 μL of antivenom per mg of venom. In conclusion, (1) the antivenom recognition over the crotoxin and the disintegrins of the C. d. cumanensis should be improved, thus aiming upcoming efforts for the exploration of new techniques and approaches in antivenom production in Colombia, and (2) the neutralization activity of the antivenom seems to follow the molecular mass-dependent recognition pattern, although other explanations should be explored.
Collapse
|
5
|
Nemecz D, Ostrowski M, Ravatin M, Saul F, Faure G. Crystal Structure of Isoform CBd of the Basic Phospholipase A 2 Subunit of Crotoxin: Description of the Structural Framework of CB for Interaction with Protein Targets. Molecules 2020; 25:molecules25225290. [PMID: 33202772 PMCID: PMC7696373 DOI: 10.3390/molecules25225290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Crotoxin, from the venom of the South American rattlesnake Crotalus durissus terrificus, is a potent heterodimeric presynaptic β-neurotoxin that exists in individual snake venom as a mixture of isoforms of a basic phospholipase A2 (PLA2) subunit (CBa2, CBb, CBc, and CBd) and acidic subunit (CA1-4). Specific natural mutations in CB isoforms are implicated in functional differences between crotoxin isoforms. The three-dimensional structure of two individual CB isoforms (CBa2, CBc), and one isoform in a crotoxin (CA2CBb) complex, have been previously reported. This study concerns CBd, which by interaction with various protein targets exhibits many physiological or pharmacological functions. It binds with high affinity to presynaptic receptors showing neurotoxicity, but also interacts with human coagulation factor Xa (hFXa), exhibiting anticoagulant effect, and acts as a positive allosteric modulator and corrector of mutated chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR), implicated in cystic fibrosis. Thus, CBd represents a novel family of agents that have potential in identifying new drug leads related to anticoagulant and anti-cystic fibrosis function. We determined here the X-ray structure of CBd and compare it with the three other natural isoforms of CB. The structural role of specific amino acid variations between CB isoforms are analyzed and the structural framework of CB for interaction with protein targets is described.
Collapse
Affiliation(s)
- Dorota Nemecz
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Biochemistry Department, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Maciej Ostrowski
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Biochemistry Department, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Marc Ravatin
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Sanofi R&D, Integrated Drug Discovery-High Content Biology, 94400 Vitry-sur-Seine, France
| | - Frederick Saul
- Institut Pasteur, Plateforme de Cristallographie-C2RT, CNRS UMR 3528, 75015 Paris, France;
| | - Grazyna Faure
- Institut Pasteur, Récepteurs-Canaux, CNRS UMR 3571, Département de Neuroscience, 25, rue du Dr. Roux, F-75015 Paris, France; (D.N.); (M.O.); (M.R.)
- Correspondence: ; Tel.: +33-14-568-86-86; Fax: +33-14-568-88-36
| |
Collapse
|
6
|
Evaluation of the Effectiveness of Crotoxin as an Antiseptic against Candida spp. Biofilms. Toxins (Basel) 2020; 12:toxins12090532. [PMID: 32825220 PMCID: PMC7551583 DOI: 10.3390/toxins12090532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The growing number of oral infections caused by the Candida species are becoming harder to treat as the commonly used antibiotics become less effective. This drawback has led to the search for alternative strategies of treatment, which include the use of antifungal molecules derived from natural products. Herein, crotoxin (CTX), the main toxin of Crotalus durissus terrificus venom, was challenged against Candida tropicalis (CBS94) and Candida dubliniensis (CBS7987) strains by in vitro antimicrobial susceptibility tests. Minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and inhibition of biofilm formation were evaluated after CTX treatment. In addition, CTX-induced cytotoxicity in HaCaT cells was assessed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colorimetric assay. Native CTX showed a higher antimicrobial activity (MIC = 47 μg/mL) when compared to CTX-containing mouthwash (MIC = 750 μg/mL) and nystatin (MIC = 375 μg/mL). Candida spp biofilm formation was more sensitive to both CTX and CTX-containing mouthwash (IC100 = 12 μg/mL) when compared to nystatin (IC100 > 47 μg/mL). Moreover, significant membrane permeabilization at concentrations of 1.5 and 47 µg/mL was observed. Native CTX was less cytotoxic to HaCaT cells than CTX-containing mouthwash or nystatin between 24 and 48 h. These preliminary findings highlight the potential use of CTX in the treatment of oral candidiasis caused by resistant strains.
Collapse
|
7
|
Sousa ID, Barbosa AR, Salvador GH, Frihling BE, Santa-Rita PH, Soares AM, Pessôa HL, Marchi-Salvador DP. Secondary hemostasis studies of crude venom and isolated proteins from the snake Crotalus durissus terrificus. Int J Biol Macromol 2019; 131:127-133. [DOI: 10.1016/j.ijbiomac.2019.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
8
|
Venom characterization of the three species of Ophryacus and proteomic profiling of O. sphenophrys unveils Sphenotoxin, a novel Crotoxin-like heterodimeric β-neurotoxin. J Proteomics 2019; 192:196-207. [DOI: 10.1016/j.jprot.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 01/11/2023]
|
9
|
Muller SP, Silva VAO, Silvestrini AVP, de Macedo LH, Caetano GF, Reis RM, Mazzi MV. Crotoxin from Crotalus durissus terrificus venom: In vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon 2018; 156:13-22. [DOI: 10.1016/j.toxicon.2018.10.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/03/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
10
|
Translational Venomics: Third-Generation Antivenomics of Anti-Siamese Russell's Viper, Daboia siamensis, Antivenom Manufactured in Taiwan CDC's Vaccine Center. Trop Med Infect Dis 2018; 3:tropicalmed3020066. [PMID: 30274462 PMCID: PMC6073718 DOI: 10.3390/tropicalmed3020066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
The venom proteome of Siamese Russell’s viper from Taiwan, alongside complementary in vivo lethality neutralization assay and in vitro third-generation antivenomics assessment of the preclinical efficacy of the homologous antivenom manufactured in Taiwan CDC’s Vaccine Center, are here reported. Taiwanese Russell’s viper venom proteome comprised 25 distinct gene products, with the heterodimeric PLA2 viperotoxin-F representing the most abundant toxin (47.5% of total venom proteome). Coagulation FV-activating serine proteinase (RVV-V, 14%), the PIV-SVMP activator of FX (RVV-FX, 8.5%), and less abundant toxins from nine protein families, make up its venom proteome. Venom composition-pathology correlations of D. siamensis envenomings in Taiwan are discussed. The lethal effect of Taiwanese D. siamensis venom was 0.47 mg/g mouse. Antivenomics-guided assessment of the toxin recognition landscape of the Taiwanese Russell’s viper antivenom, in conjunction with complementary in vivo neutralization analysis, informed the antivenom’s maximal toxin immunorecognition ability (14 mg total venom proteins/vial), neutralization capacity (6.5 mg venom/vial), and relative content of lethality neutralizing antibodies (46.5% of the toxin-binding F(ab’)2 antibodies). The antivenomics analysis also revealed suboptimal aspects of the CDC-Taiwan antivenom. Strategies to improve them are suggested.
Collapse
|
11
|
Shimizu JF, Pereira CM, Bittar C, Batista MN, Campos GRF, da Silva S, Cintra ACO, Zothner C, Harris M, Sampaio SV, Aquino VH, Rahal P, Jardim ACG. Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle. PLoS One 2017; 12:e0187857. [PMID: 29141010 PMCID: PMC5687739 DOI: 10.1371/journal.pone.0187857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/28/2017] [Indexed: 01/12/2023] Open
Abstract
Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle.
Collapse
Affiliation(s)
- Jacqueline Farinha Shimizu
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
- Laboratory of Virology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Carina Machado Pereira
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
| | - Cintia Bittar
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
| | - Mariana Nogueira Batista
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
| | | | - Suely da Silva
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
- Laboratory of Virology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Carsten Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Suely Vilela Sampaio
- Laboratory of Toxinology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Victor Hugo Aquino
- Laboratory of Virology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Paula Rahal
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
| | - Ana Carolina Gomes Jardim
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
13
|
Geron M, Kumar R, Matzner H, Lahiani A, Gincberg G, Cohen G, Lazarovici P, Priel A. Protein toxins of the Echis coloratus viper venom directly activate TRPV1. Biochim Biophys Acta Gen Subj 2017; 1861:615-623. [PMID: 28063984 DOI: 10.1016/j.bbagen.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Peptide and protein toxins are essential tools to dissect and probe the biology of their target receptors. Venoms target vital physiological processes to evoke pain. Snake venoms contain various factors with the ability to evoke, enhance and sustain pain sensation. While a number of venom-derived toxins were shown to directly target TRPV1 channels expressed on somatosensory nerve terminals to evoke pain response, such toxins were yet to be identified in snake venoms. METHODS We screened Echis coloratus saw-scaled viper venom's protein fractions isolated by reversed phase HPLC for their ability to activate TRPV1 channels. To this end, we employed heterologous systems to analyze TRPV1 and NGF pathways by imaging and electrophysiology, combined with molecular biology, biochemical, and pharmacological tools. RESULTS We identified TRPV1 activating proteins in the venom of Echis coloratus that produce a channel-dependent increase in intracellular calcium and outwardly rectifying currents in neurons and heterologous systems. Interestingly, channel activation was not mediated by any of its known toxin binding sites. Moreover, although NGF neurotropic activity was detected in this venom, TRPV1 activation was independent of NGF receptors. CONCLUSIONS Echis coloratus venom contains proteins with the ability to directly activate TRPV1. This activity is independent of the NGF pathway and is not mediated by known TRPV1 toxins' binding sites. GENERAL SIGNIFICANCE Our results could facilitate the discovery of new toxins targeting TRPV1 to enhance current understanding of this receptor activation mechanism. Furthermore, the findings of this study provide insight into the mechanism through which snakes' venom elicit pain.
Collapse
Affiliation(s)
- Matan Geron
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Rakesh Kumar
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Henry Matzner
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Adi Lahiani
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Galit Gincberg
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Gadi Cohen
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Philip Lazarovici
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Avi Priel
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
14
|
Ostrowski M, Porowinska D, Prochnicki T, Prevost M, Raynal B, Baron B, Sauguet L, Corringer PJ, Faure G. Neurotoxic phospholipase A2 from rattlesnake as a new ligand and new regulator of prokaryotic receptor GLIC (proton-gated ion channel from G. violaceus). Toxicon 2016; 116:63-71. [PMID: 26854368 DOI: 10.1016/j.toxicon.2016.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/26/2022]
Abstract
Neurotoxic phospholipases A2 (sPLA2) from snake venoms interact with various protein targets with high specificity and potency. They regulate function of multiple receptors or channels essential to life processes including neuronal or neuromuscular chemoelectric signal transduction. These toxic sPLA2 exhibit high pharmacological potential and determination of PLA2-receptor binding sites represents challenging part in the receptor-channel biochemistry and pharmacology. To investigate the mechanism of interaction of neurotoxic PLA2 with its neuronal receptor at the molecular level, we used as a model crotoxin, a heterodimeric sPLA2 from rattlesnake venom and proton-gated ion channel GLIC, a bacterial homolog of pentameric ligand-gated ion channels. The three-dimensional structures of both partners, crotoxin and GLIC have been solved by X-ray crystallography and production of full-length pentameric GLIC (with ECD and TM domains) is well established. In the present study, for the first time, we demonstrated physical and functional interaction of full-length purified and solubilized GLIC with CB, (PLA2 subunit of crotoxin). We identified GLIC as a new protein target of CB and CB as a new ligand of GLIC, and showed that this non covalent interaction (PLA2-GLIC) involves the extracellular domain of GLIC. We also determined a novel function of CB as an inhibitor of proton-gated ion channel activity. In agreement with conformational changes observed upon formation of the complex, CB appears to be negative allosteric modulator (NAM) of GLIC. Finally, we proposed a possible stoichiometric model for CB - GLIC interaction based on analytical ultracentrifugation.
Collapse
Affiliation(s)
- Maciej Ostrowski
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowinska
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France; Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Prochnicki
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Marie Prevost
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Bertrand Raynal
- Institu Pasteur, Plate-Forme de Biophysique des Macromolecules et de leurs Interactions, 75015 Paris, France
| | - Bruno Baron
- Institu Pasteur, Plate-Forme de Biophysique des Macromolecules et de leurs Interactions, 75015 Paris, France
| | - Ludovic Sauguet
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France
| | - Grazyna Faure
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25, rue du Dr. Roux, F-75015 Paris, France.
| |
Collapse
|
15
|
Goyffon M, Saul F, Faure G. [Relationships between venomous function and innate immune function]. Biol Aujourdhui 2016; 209:195-210. [PMID: 26820828 DOI: 10.1051/jbio/2015018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 06/05/2023]
Abstract
Venomous function is investigated in relation to innate immune function in two cases selected from scorpion venom and serpent venom. In the first case, structural analysis of scorpion toxins and defensins reveals a close interrelation between both functions (toxic and innate immune system function). In the second case, structural and functional studies of natural inhibitors of toxic snake venom phospholipases A2 reveal homology with components of the innate immune system, leading to a similar conclusion. Although there is a clear functional distinction between neurotoxins, which act by targeting membrane ion channels, and the circulating defensins which protect the organism from pathogens, the scorpion short toxins and defensins share a common protein folding scaffold with a conserved cysteine-stabilized alpha-beta motif of three disulfide bridges linking a short alpha helix and an antiparallel beta sheet. Genomic analysis suggests that these proteins share a common ancestor (long venom toxins were separated from an early gene family which gave rise to separate short toxin and defensin families). Furthermore, a scorpion toxin has been experimentally synthetized from an insect defensin, and an antibacterial scorpion peptide, androctonin (whose structure is similar to that of a cone snail venom toxin), was shown to have a similar high affinity for the postsynaptic acetylcholine receptor of Torpedo sp. Natural inhibitors of phospholipase A2 found in the blood of snakes are associated with the resistance of venomous snakes to their own highly neurotoxic venom proteins. Three classes of phospholipases A2 inhibitors (PLI-α, PLI-β, PLI-γ) have been identified. These inhibitors display diverse structural motifs related to innate immune proteins including carbohydrate recognition domains (CRD), leucine rich repeat domains (found in Toll-like receptors) and three finger domains, which clearly differentiate them from components of the adaptive immune system. Thus, in structure, function and phylogeny, venomous function in both vertebrates and invertebrates are clearly interrelated with innate immune function.
Collapse
Affiliation(s)
- Max Goyffon
- UMR CNRS 7245, Département RDDM, Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005 Paris, France
| | - Frederick Saul
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, 25 rue du Docteur Roux, 75015 Paris, France
| | - Grazyna Faure
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
16
|
Martín C, Nogué S. Novedades en el envenenamiento por mordedura de víbora. Med Clin (Barc) 2015; 144:132-6. [DOI: 10.1016/j.medcli.2014.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 10/24/2022]
|
17
|
Calixto P, Fagundes D, Oliveira J. Estrutura Tridimensional da Major Surface Protease de Leishmania guyanensis Resolvida por Modelagem Comparativa. BIOTA AMAZÔNIA 2014. [DOI: 10.18561/2179-5746/biotaamazonia.v4n1p74-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
18
|
Ostrowski M, Žnidaršič PP, Raynal B, Saul F, Faure G. Human coagulation factor Xa prevents oligomerization of anti-coagulant phospholipases A2. TOXIN REV 2013. [DOI: 10.3109/15569543.2013.860170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics 2013; 14:234. [PMID: 23575160 PMCID: PMC3660174 DOI: 10.1186/1471-2164-14-234] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/14/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Understanding the processes that drive the evolution of snake venom is a topic of great research interest in molecular and evolutionary toxinology. Recent studies suggest that ontogenetic changes in venom composition are genetically controlled rather than environmentally induced. However, the molecular mechanisms underlying these changes remain elusive. Here we have explored the basis and level of regulation of the ontogenetic shift in the venom composition of the Central American rattlesnake, Crotalus s. simus using a combined proteomics and transcriptomics approach. RESULTS Proteomic analysis showed that the ontogenetic shift in the venom composition of C. s. simus is essentially characterized by a gradual reduction in the expression of serine proteinases and PLA2 molecules, particularly crotoxin, a β-neurotoxic heterodimeric PLA2, concominantly with an increment of PI and PIII metalloproteinases at age 9-18 months. Comparison of the transcriptional activity of the venom glands of neonate and adult C. s. simus specimens indicated that their transcriptomes exhibit indistinguisable toxin family profiles, suggesting that the elusive mechanism by which shared transcriptomes generate divergent venom phenotypes may operate post-transcriptionally. Specifically, miRNAs with frequency count of 1000 or greater exhibited an uneven distribution between the newborn and adult datasets. Of note, 590 copies of a miRNA targeting crotoxin B-subunit was exclusively found in the transcriptome of the adult snake, whereas 1185 copies of a miRNA complementary to a PIII-SVMP mRNA was uniquely present in the newborn dataset. These results support the view that age-dependent changes in the concentration of miRNA modulating the transition from a crotoxin-rich to a SVMP-rich venom from birth through adulthood can potentially explain what is observed in the proteomic analysis of the ontogenetic changes in the venom composition of C. s. simus. CONCLUSIONS Existing snake venom toxins are the result of early recruitment events in the Toxicofera clade of reptiles by which ordinary genes were duplicated, and the new genes selectively expressed in the venom gland and amplified to multigene families with extensive neofunctionalization throughout the approximately 112-125 million years of ophidian evolution. Our findings support the view that understanding the phenotypic diversity of snake venoms requires a deep knowledge of the mechanisms regulating the transcriptional and translational activity of the venom gland. Our results suggest a functional role for miRNAs. The impact of specific miRNAs in the modulation of venom composition, and the integration of the mechanisms responsible for the generation of these miRNAs in the evolutionary landscape of the snake's venom gland, are further challenges for future research.
Collapse
Affiliation(s)
- Jordi Durban
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, Valencia 46010, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|