1
|
Ren X, Wang Y, Zhang K, Ding Y, Zhang W, Wu M, Xiao B, Gu P. Transmission of Microcystins in Natural Systems and Resource Processes: A Review of Potential Risks to Humans Health. Toxins (Basel) 2023; 15:448. [PMID: 37505717 PMCID: PMC10467081 DOI: 10.3390/toxins15070448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
The rapid rise of microcystins (MCs) poses a serious threat to global freshwater ecosystems and has become an important issue of global public health. MCs have considerable stability and are the most widely distributed hepatotoxins. It cannot only accumulate in aquatic organisms and transfer to higher nutrients and levels, but also be degraded or transferred during the resource utilization of cyanobacteria. No matter which enrichment method, it will lead to the risk of human exposure. This review summarizes the research status of MCs, and introduces the distribution of MCs in different components of aquatic ecosystems. The distribution of MCs in different aquatic organisms was summarized, and the potential risks of MCs in the environment to human safety were summarized. MCs have polluted all areas of aquatic ecosystems. In order to protect human life from the health threats caused by MCs, this paper also proposes some future research directions to promote MCs control and reduce human exposure to MCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Gu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; (X.R.); (Y.W.); (K.Z.); (Y.D.); (W.Z.); (M.W.); (B.X.)
| |
Collapse
|
2
|
Zhang H, Chen D, Ji Q, Yang M, Ding R. miR-146a-5p Promotes the Inflammatory Response in PBMCs Induced by Microcystin-Leucine-Arginine. J Inflamm Res 2023; 16:1979-1993. [PMID: 37193070 PMCID: PMC10182803 DOI: 10.2147/jir.s403945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Background Microcystin-leucine-arginine (MC-LR) is the most abundant and most toxic variant of microcystin isomers. Various experiments have clearly shown that MC-LR has hepatotoxicity and carcinogenicity, but there are relatively few studies on its immune damage effect. In addition, numerous studies have shown that microRNAs (miRNAs) are involved in a wide range of biological processes. Do miRNAs also play a role in inflammatory response caused by microcystin exposure? This is the question to be answered in this study. Moreover, this study can also provides experimental evidence for the significance of miRNA applications. Objective To investigate the effect of MC-LR on the expressions of miR-146a and pro/anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) and to further explore the role of miR-146a in the inflammatory responses caused by MC-LR. Methods Serum samples from 1789 medical examiners were collected and detect the concentrations of MCs, and 30 serum samples with concentrations of MCs around P25, P50, and p75 were randomly selected for the detection of inflammatory factors. PBMCs from fresh peripheral blood extracted from these 90 medical examiners were subsequently tested for relative miR-146a expression. In vitro, the MC-LR were exposed to the PBMCs to detect the levels of inflammatory factors as well as the relative expression of miR-146a-5p. Then, a miRNA transfection assay was performed to verify the regulation of inflammatory factors by miR-146a-5p. Results In population samples, the expression of inflammatory factors and miR-146a-5p increased with increasing MCs concentration. In vitro experiments showed that the expression of inflammatory factors and miR-146a-5p in PBMCs increased with MC-LR exposure time or exposure dose too. In addition, inhibiting the expression of miR-146a-5p in PBMCs reduced inflammatory factor levels. Conclusion miR-146a-5p exerts a promoting effect on the MC-LR-induced inflammatory response by positively regulating inflammatory factor levels.
Collapse
Affiliation(s)
- Huiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Daojun Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
- School of Medical Technology, Anhui Medical College, Hefei, Anhui, 230601, People’s Republic of China
- Correspondence: Daojun Chen, Email
| | - Qianqian Ji
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Meiyan Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| |
Collapse
|
3
|
Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S, Vulin A, Palanački Malešević T, Codd GA, Meriluoto J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829-2863. [PMID: 35997789 PMCID: PMC9395816 DOI: 10.1007/s00204-022-03354-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Collapse
Affiliation(s)
- Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Kinga Sántha
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Stamenko Šušak
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Vulin
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jussi Meriluoto
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
4
|
Li J, Sun H, Wang C, Li S, Cai Y. Subchronic Toxicity of Microcystin-LR on Young Frogs (Xenopus laevis) and Their Gut Microbiota. Front Microbiol 2022; 13:895383. [PMID: 35633706 PMCID: PMC9134123 DOI: 10.3389/fmicb.2022.895383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Although toxic effects of microcystins (MCs) in mammals and fish have been extensively studied, the effects of MCs on the immune system and gut microbiota of amphibians have not received sufficient attention. As MCs cause general damage to the vertebrate liver and immune system and trigger an inflammatory response, and the gut microbiota is closely related to host metabolism and immunity, we speculated that MCs can cause changes in the immune system and gut microbiota of amphibians. To verify this, we examined the intestinal and liver injury of Xenopus laevis exposed to different microcystin-leucine-arginine (MC-LR) concentrations and the effects on the gut microbiota through high-throughput sequencing of 16S rDNA of the gut microbiota combined with histopathological analysis, enzyme activity determination, and qRT-PCR. Our results showed that MC-LR caused focal infiltration of inflammatory cells and increased the number of T cells and local congestion and vacuolization in X. laevis liver, but reduced the number, density, height, and regularity of villi. These liver and intestinal injuries became more obvious with an increase in MC-LR concentration. MC-LR significantly decreased the activities of malondialdehyde and alkaline phosphatase and the expression of TGF-β in the liver. Moreover, MC-LR significantly altered the gut microbiota of X. laevis. The relative abundance of Firmicutes and Bacteroidetes in high-concentration MC-LR groups was significantly reduced compared to that in low-concentration MC-LR groups, whereas Fusobacteria was significantly enriched. The metabolic gene composition of the gut microbiota in low-concentration MC-LR (≤5 μg/L) groups was significantly different from that in high-concentration MC-LR (≥20 μg/L) groups. These results deepen our understanding of the toxicity of MCs to aquatic organisms and assessment of the ecological risk of MCs in amphibians.
Collapse
Affiliation(s)
- Jinjin Li
- School of Life Sciences, Qilu Normal University, Jinan, China
- *Correspondence: Jinjin Li,
| | - Hongzhao Sun
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China
| | - Shangchun Li
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Yunfei Cai
- School of Life Sciences, Qilu Normal University, Jinan, China
| |
Collapse
|
5
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
6
|
Palikova M, Kopp R, Kohoutek J, Blaha L, Mares J, Ondrackova P, Papezikova I, Minarova H, Pojezdal L, Adamovsky O. Cyanobacteria Microcystis aeruginosa Contributes to the Severity of Fish Diseases: A Study on Spring Viraemia of Carp. Toxins (Basel) 2021; 13:601. [PMID: 34564605 PMCID: PMC8473110 DOI: 10.3390/toxins13090601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Fish are exposed to numerous stressors in the environment including pollution, bacterial and viral agents, and toxic substances. Our study with common carps leveraged an integrated approach (i.e., histology, biochemical and hematological measurements, and analytical chemistry) to understand how cyanobacteria interfere with the impact of a model viral agent, Carp sprivivirus (SVCV), on fish. In addition to the specific effects of a single stressor (SVCV or cyanobacteria), the combination of both stressors worsens markers related to the immune system and liver health. Solely combined exposure resulted in the rise in the production of immunoglobulins, changes in glucose and cholesterol levels, and an elevated marker of impaired liver, alanine aminotransferase (ALT). Analytical determination of the cyanobacterial toxin microcystin-LR (MC-LR) and its structurally similar congener MC-RR and their conjugates showed that SVCV affects neither the levels of MC in the liver nor the detoxification capacity of the liver. MC-LR and MC-RR were depurated from liver mostly in the form of cysteine conjugates (MC-LR-Cys, MC-RR-Cys) in comparison to glutathione conjugates (LR-GSH, RR-GSH). Our study brought new evidence that cyanobacteria worsen the effect of viral agents. Such inclusion of multiple stressor concept helps us to understand how and to what extent the relevant environmental stressors co-influence the health of the fish population.
Collapse
Affiliation(s)
- Miroslava Palikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Radovan Kopp
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Jiri Kohoutek
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| | - Ludek Blaha
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Petra Ondrackova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Ivana Papezikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy, Mendel University in Brno, 61300 Brno, Czech Republic; (R.K.); (J.M.)
| | - Hana Minarova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (M.P.); (I.P.); (H.M.)
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Lubomir Pojezdal
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 62100 Brno, Czech Republic; (P.O.); (L.P.)
| | - Ondrej Adamovsky
- RECETOX (Research Centre for Toxic Compounds in the Environment), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (J.K.); (L.B.)
| |
Collapse
|
7
|
Chen L, Giesy JP, Adamovsky O, Svirčev Z, Meriluoto J, Codd GA, Mijovic B, Shi T, Tuo X, Li SC, Pan BZ, Chen J, Xie P. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142319. [PMID: 33069479 DOI: 10.1016/j.scitotenv.2020.142319] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 μg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Biljana Mijovic
- Faculty of Medicine, University of East Sarajevo, Studentska 5, 73 300 Foča, Republika Srpska, Bosnia and Herzegovina
| | - Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shang-Chun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
8
|
Cao L, Massey IY, Feng H, Yang F. A Review of Cardiovascular Toxicity of Microcystins. Toxins (Basel) 2019; 11:toxins11090507. [PMID: 31480273 PMCID: PMC6783932 DOI: 10.3390/toxins11090507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mortality rate of cardiovascular diseases (CVD) in China is on the rise. The increasing burden of CVD in China has become a major public health problem. Cyanobacterial blooms have been recently considered a global environmental concern. Microcystins (MCs) are the secondary products of cyanobacteria metabolism and the most harmful cyanotoxin found in water bodies. Recent studies provide strong evidence of positive associations between MC exposure and cardiotoxicity, representing a threat to human cardiovascular health. This review focuses on the effects of MCs on the cardiovascular system and provides some evidence that CVD could be induced by MCs. We summarized the current knowledge of the cardiovascular toxicity of MCs, with regard to direct cardiovascular toxicity and indirect cardiovascular toxicity. Toxicity of MCs is mainly governed by the increasing level of reactive oxygen species (ROS), oxidative stress in mitochondria and endoplasmic reticulum, the inhibition activities of serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) and the destruction of cytoskeletons, which finally induce the occurrence of CVD. To protect human health from the threat of MCs, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
9
|
Dar HY, Lone Y, Koiri RK, Mishra PK, Srivastava RK. Microcystin-leucine arginine (MC-LR) induces bone loss and impairs bone micro-architecture by modulating host immunity in mice: Implications for bone health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:792-802. [PMID: 29626823 DOI: 10.1016/j.envpol.2018.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis or enhanced bone loss is one of the most commonly occurring bone conditions in the world, responsible for higher incidence of fractures leading to increased morbidity and mortality in adults. Bone loss is affected by various environmental factors including diet, age, drugs, toxins etc. Microcystins are toxins produced by cyanobacteria with microcystin-LR being the most abundantly found around the world effecting both human and animal health. The present study demonstrates that MC-LR treatment induces bone loss and impairs both trabecular and cortical bone microarchitecture along with decreasing the mineral density and heterogeneity of bones in mice. This effect of MC-LR was found due to its immunomodulatory effects on the host immune system, wherein MC-LR skews both T cell (CD4+ and CD8+ T cells) and B cell populations in various lymphoid tissues. MC-LR further was found to significantly enhance the levels of osteoclastogenic cytokines (IL-6, IL-17 and TNF-α) along with simultaneously decreasing the levels of anti-osteoclastogenic cytokines (IL-10 and IFN-γ). Taken together, our study for the first time establishes a direct link between MC-LR intake and enhanced bone loss thereby giving a strong impetus to the naïve field of "osteo-toxicology", to delineate the effects of various toxins (including cyanotoxins) on bone health.
Collapse
Affiliation(s)
- Hamid Y Dar
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 70003, India
| | - Yaqoob Lone
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 70003, India
| | - Raj Kumar Koiri
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 70003, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, MP, 462001, India
| | - Rupesh K Srivastava
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 70003, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
10
|
Microcystin-LR Induced Immunotoxicity in Mammals. J Toxicol 2016; 2016:8048125. [PMID: 26925102 PMCID: PMC4746376 DOI: 10.1155/2016/8048125] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/06/2016] [Indexed: 01/07/2023] Open
Abstract
Microcystins are toxic molecules produced by cyanobacterial blooms due to water eutrophication. Exposure to microcystins is a global health problem because of its association with various other pathological effects and people all over the world are exposed to microcystins on a regular basis. Evidence shows that microcystin-LR (MC-LR) may adversely affect the immune system, but its specific effects on immune functions are lacking. In the present review, immunotoxicological effects associated with MC-LR in animals, humans, and in vitro models have been reported. Overall, the data shows that chronic exposure to MC-LR has the potential to impair vital immune responses which could lead to increased risk of various diseases including cancers. Studies in animal and in vitro models have provided some pivotal understanding into the potential mechanisms of MC-LR related immunotoxicity suggesting that further investigation, particularly in humans, is required to better understand the relationship between development of disease and the MC-LR exposure.
Collapse
|
11
|
Bláhová L, Adamovský O, Kubala L, Švihálková Šindlerová L, Zounková R, Bláha L. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. Toxicon 2013; 76:187-96. [PMID: 24140921 DOI: 10.1016/j.toxicon.2013.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 02/05/2023]
Abstract
Massive toxic blooms of cyanobacteria represent a major threat to water supplies worldwide, yet serious gaps exist in understanding their complex toxic effects, including the role of lipopolysaccharides (LPS). The present comparative study focused on the levels and biological activities of LPS isolated from Microcystis aeruginosa, which is one of the most globally distributed toxic species. Using hot phenol extraction, LPS was isolated from 3 laboratory cultures and 11 natural water blooms. It formed 0.2-0.7% of the original dry biomass of the cyanobacteria, based on gravimetry. Additional analyses by commercial anti-LPS ELISA were correlated with gravimetry but showed concentrations that were about 7-times lower, which indicated either impurities in isolated LPS or the poor cross-reactivity of the antibodies used. LPS isolates from M. aeruginosa were potent pyrogens in the traditional Limulus amebocyte lysate (LAL)-test, but comparison with the PyroGene test demonstrated the limited selectivity of LAL with several interferences. The determined pyrogenicity (endotoxin units, EU) ranged from very low values in laboratory cultures (less than 0.003 up to 0.008-EU per 100 pg LPS) to higher values in complex bloom samples (0.01-0.078 EU per 100 pg of LPS), which suggested the role of bloom-associated bacteria in the overall effects. Potent pro-inflammatory effects of the studied LPS from both cultures and bloom samples were observed in a highly-relevant ex vivo human blood model by studying reactive oxygen species production in phagocytes as well as increased productions of interleukin 8, IL-8, and tumor necrosis factor α, TNF-α. LPS from M. aeruginosa seem to modulate several pathways involved in the regulation of both innate immunity and specific responses. In comparison to the standard pathogenic bacterial LPS (World Health Organization Escherichia coli O113:10 endotoxin; activity 1 EU per 100 pg), the studied cyanobacterial samples had pyrogenicity potencies that were at least 12-times lower. However, the health risks associated with LPS from M. aeruginosa should not be underestimated, especially with respect to diverse biological effects observed ex vivo and in the case of massive blooms in drinking water reservoirs, where the estimated pyrogenicity can reach up to 46,000 EU per mL of water.
Collapse
Affiliation(s)
- Lucie Bláhová
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|