1
|
Tang H, Wang Q, Yang M, Jia R, Yuan J, Wang R. Development of sensitive immunoassay for identification and detection of μ-KIIIA-CTX: Insights into antibody discovery, molecular recognition, and immunoassay. Int J Biol Macromol 2025; 310:143346. [PMID: 40254203 DOI: 10.1016/j.ijbiomac.2025.143346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
μ-KIIIA-Conotoxin (KIIIA) is a short, toxic peptide that selectively targets voltage-gated sodium channels, and has enormous potential in analgesic-drugs development and neuroscience research. However, no correlated immunoassays have been reported for identification and detection of KIIIA. Herein, a hybridoma 3E11 that specifically targets KIIIA was screened using hybridoma technology after animal immunization. The subtype of monoclonal antibody(mAb) 3E11 was IgG1, and it exhibited a high affinity constant (Kaff) of 5.838 × 108 L/mol. Meanwhile, the 3D structure of variable regions of mAb 3E11 was modeled, and the detailed molecular recognition mechanisms of mAb 3E11 to KIIIA were further investigated by molecular docking, alanine scanning and disulfide bond quenching. The sequence "KWCRDH" of KIIIA has been identified as the crucial and structural dependent epitope region recognized by mAb 3E11. The principal forces maintaining the interaction are hydrogen bonding, π-π stacking, nonpolar interactions and salt bridges. Consequently, mAb 3E11 exhibited different binding affinities towards epitope-similar antigens from μ-conotoxin family, including SIIIA, CIIIA, CnIIIA, MIIIA and SmIIIA. Among these μ-conotoxins, the binding affinity of mAb 3E11 to SIIIA is nearly equivalent to that observed with KIIIA. Ultimately, an indirect competitive ELISA(ic-ELISA) was developed based on mAb 3E11, and the linear range of ic-ELISA was 0.72 to 33.02 ng/mL with a lower detection limit (LOD) of 0.28 ng/mL. The recovery rates of intra-assays and inter-assays in spiked samples were 101.32 % and 102.47 %, respectively. The developed ic-ELISA demonstrated high accuracy and repeatability, indicating its potential for detecting the content of KIIIA in real samples.
Collapse
Affiliation(s)
- Hengkun Tang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minyi Yang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Rongye Jia
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Yuan
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Rongzhi Wang
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Santarpia G, Carnes E. Therapeutic Applications of Aptamers. Int J Mol Sci 2024; 25:6742. [PMID: 38928448 PMCID: PMC11204156 DOI: 10.3390/ijms25126742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Affinity reagents, or target-binding molecules, are quite versatile and are major workhorses in molecular biology and medicine. Antibodies are the most famous and frequently used type and they have been used for a wide range of applications, including laboratory techniques, diagnostics, and therapeutics. However, antibodies are not the only available affinity reagents and they do have significant drawbacks, including laborious and costly production. Aptamers are one potential alternative that have a variety of unique advantages. They are single stranded DNA or RNA molecules that can be selected for binding to many targets including proteins, carbohydrates, and small molecules-for which antibodies typically have low affinity. There are also a variety of cost-effective methods for producing and modifying nucleic acids in vitro without cells, whereas antibodies typically require cells or even whole animals. While there are also significant drawbacks to using aptamers in therapeutic applications, including low in vivo stability, aptamers have had success in clinical trials for treating a variety of diseases and two aptamer-based drugs have gained FDA approval. Aptamer development is still ongoing, which could lead to additional applications of aptamer therapeutics, including antitoxins, and combinatorial approaches with nanoparticles and other nucleic acid therapeutics that could improve efficacy.
Collapse
Affiliation(s)
- George Santarpia
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eric Carnes
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Deng W, Wang D, Dai P, Hong Y, Xiong J, Duan L, Lu R, Wan J, Du H, Hammock BD, Yang W. Development of a sensitive direct competitive chemiluminescent enzyme immunoassay for gentamicin based on the construction of a specific single-chain variable fragment-alkaline phosphatase fusion protein. Microchem J 2024; 197:109706. [PMID: 38283367 PMCID: PMC10810264 DOI: 10.1016/j.microc.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A sensitive chemiluminescent enzyme immunoassay (CLEIA) was established for the determination of gentamicin (GEN) residue levels in animal tissue. This assay is based on a fusion protein of single-chain variable fragment (scFv) and alkaline phosphatase (AP). Initially, VL and VH derived from anti-gentamicin monoclonal antibody were linked by a short peptide to construct a scFv. Subsequently, the constructed scFv sequence was accessed into the pLIP6/GN vector, and a soluble scFv-AP fusion protein was generated. The scFv-AP fusion protein was used to develop a direct competitive CLEIA (dcCLEIA) for the determination of gentamicin. In the dcCLEIA, the half inhibitory concentration (IC50) and limit of detection (LOD) were 1.073 ng/mL and 0.380 ng/mL, respectively. The average recoveries of gentamicin spiked in animal tissue samples ranged from 78% to 96%. These results showed a strong correlation with ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The above results suggest that the anti-GEN scFv-AP fusion protein is suitable for detecting gentamicin residues in edible animal tissues.
Collapse
Affiliation(s)
- Weijie Deng
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Peng Dai
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianhua Xiong
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luying Duan
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ruimin Lu
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianchun Wan
- Technology Center of Nanchang Customs District, Nanchang 330038, China
| | - Huaying Du
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Wuying Yang
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| |
Collapse
|
4
|
Wang D, Ai X, Duan Y, Xian N, Fang RH, Gao W, Zhang L. Neuronal Cellular Nanosponges for Effective Detoxification of Neurotoxins. ACS NANO 2022; 16:19145-19154. [PMID: 36354967 DOI: 10.1021/acsnano.2c08319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurotoxins attack and destruct the nervous system, which can cause serious health problems and security threats. Existing detoxification approaches, such as antibodies and small molecule antidotes, rely on neurotoxin's molecular structure as design cues and require toxin-specific development for each type of toxins. However, the enormous diversity of neurotoxins makes such structure-based development of antitoxin particularly challenging and inefficient. Here, we report on the development and use of neuronal membrane-coated nanosponges (denoted "Neuron-NS") as an effective approach to detoxifying neurotoxins. Specifically, Neuron-NS act as neuron decoys to lure neurotoxins, bind with and neutralize the toxins, and thus block them from attacking the host neuron cells. These nanosponges detoxify neurotoxins regardless of their molecular structures and therefore can overcome the challenge posed by toxin structural diversity. In the study, we fabricate Neuron-NS by coating the membrane of Neuro-2a cells onto polymeric cores. Meanwhile, we select tetrodotoxin (TTX) as a model neurotoxin and demonstrate the detoxification efficacy of the Neuron-NS in a cytotoxicity assay, a calcium flux assay, and a cell osmotic swelling assay in vitro. Additionally, in mouse models of TTX intoxication, the Neuron-NS significantly enhance mouse survival in therapeutic and prophylactic regimens without showing acute toxicity. Overall, the Neuron-NS contribute to the current detoxification arsenal with the potential to treat various injuries and diseases caused by neurotoxins.
Collapse
Affiliation(s)
- Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Xiangzhao Ai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Yaou Duan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Nianfei Xian
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Tian Y, Yuan L, Zhang M, He Y, Lin X. Sensitive detection of the okadaic acid marine toxin in shellfish by Au@Pt NPs/horseradish peroxidase dual catalysis immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1261-1267. [PMID: 35266934 DOI: 10.1039/d1ay01973b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on the catalysis enhancement strategy of Au@Pt nanoparticles (Au@Pt NPs) and horseradish peroxidase (HRP) related to the TMB-H2O2 indicator, a sensitive colorimetric immunoassay was established for trace okadaic acid (OA) detection. The anti-OA monoclonal antibody (McAb) with a high Kaff constant was prepared and modified on Au@Pt NPs. Through grafting the HRP conjugated goat anti-mouse IgG antibody (IgG) on Au@Pt/McAb, bifunctional composites with Au@Pt-Ab and HRP were prepared and adopted. Characteristics including morphology, specificity and catalytic performance were evaluated. Under the optimal conditions, the sensitivity of the resultant enzyme immunoassay was significantly improved, and a low limit of detection (LOD) of OA was achieved at 0.04 ng mL-1 (equivalent to 0.6 μg kg-1 in mussel tissue), which was better than that of most HRP or Au/HRP enzyme-linked immunosorbent assays. When applied to fortified shellfish samples (e.g. oysters, mussels and clams), the recoveries ranging from 98.3 ± 2.3% to 106.0 ± 9.0% were acceptable and comparable with those of the LC-MS method. Acceptable precision was achieved with a variation coefficient (CV) of 2.3-8.4%. The method provides a promising alternative for the highly sensitive detection of the OA marine toxin at trace levels.
Collapse
Affiliation(s)
- Yinqi Tian
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Lin Yuan
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Min Zhang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Youfen He
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
6
|
Chen J, Zhao Y, Feng W. Selection, preparation and characterization of scFv against human lipocalin 6 by phage display technology. Protein Expr Purif 2020; 171:105627. [PMID: 32205279 DOI: 10.1016/j.pep.2020.105627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/15/2022]
Abstract
Human lipocalin 6 (hLCN6) is a newly discovered epididymal-specific secreted protein, capable of binding to the head and tail of spermatozoa and involved in sperm maturation. Anti-hLCN6 monoclonal antibody coupled immunomagnetic beads (IMBs) can be effectively used for the separation and forensic identification of sperm cells from mixed stains. But the source of monoclonal antibody is limited. In this study, an immunized mouse phage display antibody library was constructed and the single-chain variable fragments (scFvs) against hLCN6 were screened. The selection was performed using four rounds of biopanning and positive clones were validated by phage ELISA. Two anti-hLCN6 scFv clones with highest affinity were selected and sequencing result showed that the two sequences were identical. After prokaryotic expression and purification, the purified scFv could specifically recognize the hLCN6 in the lysate of human sperm cells and epididymis by western blot analysis, without any cross-reactivity with cellular antigens in female epithelial cells. The dissociation constant (Kd) of anti-hLCN6 scFv was 6.69 × 10-7 mol/L measured by indirect ELISA. Therefore, our work not only provides a useful tool for further exploration of the biological functions of hLCN6, but also opens up new research avenues for the separation of sperm cells from mixed stains based on immuno-binding reaction.
Collapse
Affiliation(s)
- Jiong Chen
- Department of Forensic Biology, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Yue Zhao
- CITIC Heavy Industries Co., Ltd, Luoyang, 471003, China
| | - Wei Feng
- Department of Forensic Biology, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
7
|
Site-directed mutations of anti-amantadine scFv antibody by molecular dynamics simulation: prediction and validation. J Mol Model 2020; 26:49. [PMID: 32020367 DOI: 10.1007/s00894-020-4286-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
A recombinant single-chain variable fragment (scFv) antibody was produced from a hybridoma cell strain secreting the monoclonal antibody for amantadine (AMD), and then its recognition mechanisms for AMD were studied using the molecular docking and molecular dynamics. Complex dockings revealed that three regions are involved in antibody recognition; framework 2 of the VL chain (LFR2) GLU40 and TYR42, complementarity-determining region of the VL chain (LCDR3) TYR116, and framework 2 of the VH chain (HFR2) HIS40 and TRP52 were the key amino acid residues. The results of molecular dynamics show that the most important amino acid residues in the interaction between AMD and scFv are HIS40 and TYR116. On the basis of the results of virtual mutation, the scFv antibody was evolved by directional mutagenesis of amino acid residue GLY107 to PHE. Indirect competitive ELISA (icELISA) results indicated that the scFv mutant had highly increased affinity for AMD with up to 3.9-fold improved sensitivity. Thus, the scFv antibody can be applied for mechanistic studies of intermolecular interactions, and our work offered affinity maturated antibodies by site mutations, which were beneficial for valuable anti-AMD antibody design and preparation in future.
Collapse
|
8
|
Vlasenko AE, Kuznetsov VG, Petrova IY, Magarlamov TY. Development of a polyclonal antibody-based indirect competitive ELISA for the determination of tetrodotoxins in marine ribbon worms (NEMERTEA) and its comparison with high performance liquid chromatography-tandem mass spectrometry. Toxicon 2020; 176:30-33. [PMID: 31975690 DOI: 10.1016/j.toxicon.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin frequently occurring in marine organisms along with its numerous analogues. To determine the total TTX content, we developed an enzyme-linked immunosorbent assay (ELISA) technique utilizing polyclonal antibodies against TTX. The technique was tested using extracts of marine worms of the phylum Nemertea and confirmed by HPLC-MS/MS. It proved to be suitable for a preliminary assessment of the toxicity of marine organisms.
Collapse
Affiliation(s)
- A E Vlasenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - V G Kuznetsov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia; School of Natural Sciences, Far Eastern Federal University, Vladivostok, 690092, Russia
| | - I Yu Petrova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - T Yu Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia; School of Biomedicine, Far Eastern Federal University, Vladivostok, 690092, Russia.
| |
Collapse
|
9
|
Wang R, Zhong Y, Wang J, Yang H, Yuan J, Wang S. Development of an ic-ELISA and immunochromatographic strip based on IgG antibody for detection of ω-conotoxin MVIIA. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120510. [PMID: 31226588 DOI: 10.1016/j.jhazmat.2019.03.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/06/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
ω-conotoxin MVIIA(ω-CTX MVIIA) is a peptide consisting of 25 amino acid residues secreted mainly by Conus magus. In view of the toxin threat to humans and animals and defined application in analgesic therapy, it is necessary to develop a rapid, effective and accuracy method for the quantification and analysis of ω-CTX MVIIA in real samples. In the present study, a hybridoma cell named 2E5 stable secreting IgG antibody against ω-CTX MVIIA was selected successfully, and the subtype of Mab 2E5 was IgG1. The purified monoclonal antibody(Mab) 2E5 has high affinity (about 2.79 × 109 L/mol), and shows high specificity to ω-CTX MVIIA antigen. The linear range of ic-ELISA to detect ω-CTX MVIIA was 0.20˜7.22 μg/mL, with a lower detection limit (LOD) of 0.14 ng/mL. The average recovery of intra- and inter-assay were (85.45 ± 2.28)% and (88.03 ± 4.80)% respectively, with a coefficient of variation from 2.59% to 5.42%. The LOD of colloidal strip by naked eye was 1 μg/mL, and the detection time was less than 10 min without any equipment. The developed ELISA and colloidal test strips based on this IgG antibody could be used to detect ω-CTX MVIIA residue in real Conus samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanfang Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juncheng Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Zhang X, He K, Zhang D, Huang Z. Production and characterization of a monoclonal antibody for Pefloxacin and mechanism study of antibody recognition. Biosci Biotechnol Biochem 2019; 83:633-640. [DOI: 10.1080/09168451.2018.1562876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
In this report, an artificial antigen (PFLX–BSA: Pefloxacin connected bovine serum albumin) was successfully prepared. The monoclonal antibody against pefloxacin was produced and characterized using a direct competitive ELISA. The linear range of detection was 0.115–6.564 µg/L. The limit of detection defined as IC15 was 0.170 ± 0.05 µg/L and the IC50 was 0.902 ± 0.03 µg/L. The antibody variable region genes were amplified, assembled, and sequenced. A three–dimensional structural model of the variable region was constructed to study the mechanism of antibody recognition using molecular docking analysis. Three predicted essential amino acids, Thr53, Arg97 of heavy chain and Thr52 of light chain, were mutated to verify the theoretical model. Three mutants lost binding activity significantly against pefloxacin as predicted. These may provide useful insights for studying antigen–antibody interaction mechanisms to improve antibody affinity maturation in vitro.
Collapse
Affiliation(s)
- Xiuyuan Zhang
- Food Safety Centre of Hebei North University, Hebei North University, Zhangjiakou, China
- College of Food Engineering, Henan University of Animal Husbandry & Economy, Zhenzhou, China
| | - Kuo He
- Food Safety Centre of Hebei North University, Hebei North University, Zhangjiakou, China
| | - Donghao Zhang
- Food Safety Centre of Hebei North University, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Food Safety Centre of Hebei North University, Hebei North University, Zhangjiakou, China
| |
Collapse
|
11
|
Construction of an immunized rabbit phage display antibody library for screening microcystin-LR high sensitive single-chain antibody. Int J Biol Macromol 2019; 123:369-378. [DOI: 10.1016/j.ijbiomac.2018.11.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/19/2023]
|
12
|
Xu C, Liu X, Liu Y, Zhang X, Zhang C, Li J, Liu X. High sensitive single chain variable fragment screening from a microcystin-LR immunized mouse phage antibody library and its application in immunoassay. Talanta 2019; 197:397-405. [PMID: 30771953 DOI: 10.1016/j.talanta.2019.01.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 12/23/2022]
Abstract
Microcystin-LR (MC-LR) is one of common high-toxic biotoxins produced by cyanobacteria in waterbody. A high sensitive and convenient detection method is necessary for monitoring for MC-LR. To establish a high sensitive indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) based on single chain variable fragment (scFv) for detecting MC-LR, 16 positive anti-MC-LR phage scFv particles were screened out from a MC-LR-immunized mouse phage scFv library, which was successfully constructed with the capacity of 8.67 × 107 CFU/mL. The most positive anti-MC-LR phage scFv (MscFv7) was successfully expressed in Escherichia coli (E.coli) HB2151. The molecular weight (M.W.) of expressed protein was about 30 kDa, and the concentration of purified protein was 512.6 μg/mL analyzed by SDS-PAGE and protein quantitative respectively. The IC-ELISA based on MscFv7-scFv for MC-LR shows a half-maximum inhibition (IC50) of 0.471 μg/L and a limit of detection (LOD) of 0.044 μg/L, which is below the maximum residue limit standard (MRLs) of 1.0 μg/L in drinking water. The MscFv7-scFv has a strong cross-recognition for MC-RR and MC-YR with cross-reactivity (CRs) of 93.1% and 85.9%, respectively, but weak for MC-LW with that of 9.7%, even non-recognition for MC-WR, MC-LF and MC-LY. The recovery rates of IC-ELISA to detect MC-LR spiked in different cleanliness of water samples were 81.2-106.3% with CVs of 2.62-10.22% at intra-assay and inter-assay. The results showed that we obtained a high sensitive anti-MC-LR scFv, and the established IC-ELISA based on MscFv7-scFv should be promising for ultrasensitive monitoring MC-LR, MC-RR and MC-YR in water samples.
Collapse
Affiliation(s)
- Chongxin Xu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoqin Liu
- Huaihua Vocational and Technical College, Huaihua 418007, China
| | - Yuan Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianhong Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xianjin Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
13
|
Preparation of Anti-Human Podoplanin Monoclonal Antibody and its application in Immunohistochemical Diagnosis. Sci Rep 2018; 8:10162. [PMID: 29976954 PMCID: PMC6033854 DOI: 10.1038/s41598-018-28549-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/19/2018] [Indexed: 11/25/2022] Open
Abstract
Podoplanin (PDPN), a 38 kDa transmembrane sialoglycoprotein from human, is expressed in lymphatic endothelial cells but not in vascular endothelial cells, and has been considered as a specific marker of lymph. In this study, the gene encoding the extracellular part of PDPN (ePDPN) was synthesized and used to expressed fusion protein ePDPN-His and GST-ePDPN, respectively, in E.coli. The purified GST-ePDPN fusion protein was mixed with QuickAntibody-Mouse5W adjuvant to immune mice, and the antiserum titer was determined by indirect ELISA. A stable cell line named 5B3 generating anti-PDPN monoclonal antibody (mAb) was obtained by hybridoma technology. The isotype of 5B3 cell line was IgG2b, and the chromosome number was 102 ± 4. The 5B3 mAb was purified successfully from ascites fluid through Protein G column, and its affinity constant was 2.94 × 108 L/mol. Besides, excellent specificity of the 5B3 mAb was further demonstrated in ELISA, western blot and immunohistochemistry experiments, suggesting that 5B3 mAb displays similar application value to D2-40, a commercial available antibody. Hence, the current study provides conclusive guidelines for preparation of other mAbs and their applications in immunohistochemistry diagnosis.
Collapse
|
14
|
Zhang D, Xie C, Wang R, Yang Q, Chen H, Ling S, Wang S, Jia K. Effective preparation of a monoclonal antibody against human chromogranin A for immunohistochemical diagnosis. BMC Biotechnol 2018; 18:25. [PMID: 29728076 PMCID: PMC5935939 DOI: 10.1186/s12896-018-0436-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human chromogranin A (CgA) is a ~ 49 kDa secreted protein mainly from neuroendocrine cells and endocrine cells. The CgA values in the diagnosis of tumor, and in the potential role in prognostic and predictive tumor as a biomarker. RESULTS The synthesized gene of CgA coding area was cloned and expressed as fusion protein CgA-His in procaryotic system. Then the purified CgA-His protein was mixed with QuickAntibody-Mouse5W adjuvant, and injected into mice. The CgA-His protein was also used as coating antigen to determine the antiserum titer. By screening, a stable cell line named 4E5, which can generate anti-CgA monoclonal antibody (mAb), was obtained. The isotype of 4E5 mAb was IgG2b, and the chromosome number was 102 ± 4. Anti-CgA mAb was purified from ascites fluid, and the affinity constant reached 9.23 × 109 L/mol. Furthermore, the specificity of the mAb was determined with ELISA, western blot and immunohistochemistry. Results indicated that the mAb 4E5 was able to detect chromogranin A specifically and sensitively. CONCLUSIONS A sensitive and reliable method was successfully developed for rapid production of anti-CgA mAb for immunohistochemistry diagnosis in this study, and the current study also provides conclusive guidelines for preparation of mAbs and implements in immunohistochemistry diagnosis.
Collapse
Affiliation(s)
- Danping Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengjie Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinghai Yang
- Fuzhou Maixin Biotech. Co., Ltd, Fuzhou, 350100, China
| | - Huiling Chen
- Fuzhou Maixin Biotech. Co., Ltd, Fuzhou, 350100, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Yang H, Zhong Y, Wang J, Zhang Q, Li X, Ling S, Wang S, Wang R. Screening of a ScFv Antibody With High Affinity for Application in Human IFN-γ Immunoassay. Front Microbiol 2018; 9:261. [PMID: 29563896 PMCID: PMC5850876 DOI: 10.3389/fmicb.2018.00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
Interferon gamma (IFN-γ), a signal proinflammatory cytokine secreted by immune cell, and plays a critical role in the pathogenesis and progression of many diseases. It has been regarded as an important marker for determination of disease-specific immune responses. Therefore, it is urgent to develop a feasible and accurate method to detect IFN-γ in clinic real blood samples. Until now, the immunoassay based on singe chain variable fragment (scFv) antibody for human IFN-γ is still not reported. In the present study, an scFv antibody named scFv-A8 with high specificity was obtained by phage display and biopanning, with the affinity 2.6 × 109 L/mol. Maltose binding protein (MBP) was used to improve the solubility of scFv by inserting an linker DNA between scFv and MBP tag, and the resulted fusion protein (MBP-LK-scFv) has high solubility and antigen biding activity. The expressed and purified MBP-LK-scFv antibody was used to develop the indirect competitive enzyme-linked immunosorbent assay (ELISA) (ic-ELISA) for detection of human IFN-γ, and the result indicated that the linear range to detect IFN-γ was 6–60 pg/mL with IC50 of 25 pg/mL. The limit of detection was 2 pg/mL (1.3 fm), and the average recovery was 85.05%, further demonstrating that the detection method based on scFv has higher recovery and accuracy. Hence, the developed ic-ELISA can be used to detect IFN-γ in real samples, and it may be further provided a scientific basis for disease diagnosis.
Collapse
|
16
|
Bandehpour M, Ahangarzadeh S, Yarian F, Lari A, Farnia P. In silicoevaluation of the interactions among two selected single chain variable fragments (scFvs) and ESAT-6 antigen ofMycobacterium tuberculosis. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nowadays antibody engineering is an important approach in the design and manufacture of therapeutic and diagnostic antibodies. The study of interactions between antibodies and antigens is the critical step in the design of antibodies with desirable properties. Computational docking is a useful tool for structural characterization of bimolecular interactions. Docking is the process of predicting bound conformations and binding enthalpy of antibody–antigen complexes. In this study, the three-dimensional structures of two ribosome displayed-selected scFv antibodies were constructed by Kotai Antibody Builder. By using ClusPro 2.0 web server, the ESAT-6 antigen (a tuberculosis-specific antigen) structure was docked to both scFv models to obtain the structures of the binding complexes and molecular dynamics (MD) simulations were performed using GROMACS 4.5.3 package. By analyzing of the ESAT-scFv complexes, important amino acids involved in antigen–antibody interactions were identified which were Asn164 in VL3, Ser164 in VL7 and Asn55 in VH7. All three amino acids belonged to the CDRs. In conclusion, results achieved from this bioinformatics study can help in the design and development of novel antibodies with improved affinities for tuberculosis diagnosis.
Collapse
Affiliation(s)
- Mojgan Bandehpour
- Cellular & Molecular Biology Research Center Shahid Beheshti, University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Ahangarzadeh
- Cellular & Molecular Biology Research Center Shahid Beheshti, University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yarian
- Cellular & Molecular Biology Research Center Shahid Beheshti, University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Lari
- Systems Biomedicine, Pasteur Institute of Iran, Tehran, Iran
| | - Poopak Farnia
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Okochi M, Muto M, Yanai K, Tanaka M, Onodera T, Wang J, Ueda H, Toko K. Array-Based Rational Design of Short Peptide Probe-Derived from an Anti-TNT Monoclonal Antibody. ACS COMBINATORIAL SCIENCE 2017; 19:625-632. [PMID: 28845964 DOI: 10.1021/acscombsci.7b00035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complementarity-determining regions (CDRs) are sites on the variable chains of antibodies responsible for binding to specific antigens. In this study, a short peptide probe for recognition of 2,4,6-trinitrotoluene (TNT), was identified by testing sequences derived from the CDRs of an anti-TNT monoclonal antibody. The major TNT-binding site in this antibody was identified in the heavy chain CDR3 by antigen docking simulation and confirmed by an immunoassay using a spot-synthesis based peptide array comprising amino acid sequences of six CDRs in the variable region. A peptide derived from heavy chain CDR3 (RGYSSFIYWF) bound to TNT with a dissociation constant of 1.3 μM measured by surface plasmon resonance. Substitution of selected amino acids with basic residues increased TNT binding while substitution with acidic amino acids decreased affinity, an isoleucine to arginine change showed the greatest improvement of 1.8-fold. The ability to create simple peptide binders of volatile organic compounds from sequence information provided by the immune system in the creation of an immune response will be beneficial for sensor developments in the future.
Collapse
Affiliation(s)
- Mina Okochi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaki Muto
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Kentaro Yanai
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masayoshi Tanaka
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Takeshi Onodera
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
- Research
and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jin Wang
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
- Research
and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Ueda
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-18, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kiyoshi Toko
- JST, ImPACT, Sanban-cho
5, Chiyoda-ku, Tokyo 102-0075, Japan
- Research
and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate
School of Information Science and Electrical Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Reverté L, Rambla-Alegre M, Leonardo S, Bellés C, Campbell K, Elliott CT, Gerssen A, Klijnstra MD, Diogène J, Campàs M. Development and validation of a maleimide-based enzyme-linked immunosorbent assay for the detection of tetrodotoxin in oysters and mussels. Talanta 2017; 176:659-666. [PMID: 28917804 DOI: 10.1016/j.talanta.2017.08.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/30/2022]
Abstract
The recent detection of tetrodotoxins (TTXs) in puffer fish and shellfish in Europe highlights the necessity to monitor the levels of TTXs in seafood by rapid, specific, sensitive and reliable methods in order to protect human consumers. A previous immunoassay for TTX detection in puffer fish, based on the use of self-assembled monolayers (SAMs) for the immobilization of TTX on maleimide plates (mELISA), has been modified and adapted to the analysis of oyster and mussel samples. Changing dithiol for cysteamine-based SAMs enabled reductions in the assay time and cost, while maintaining the sensitivity of the assay. The mELISA showed high selectivity for TTX since the antibody did not cross-react with co-occurring paralytic shellfish poisoning (PSP) toxins and no interferences were observed from arginine (Arg). Moreover, TTX-coated maleimide plates stored for 3 months at -20°C and 4°C were stable, thus when pre-prepared, the time to perform the assay is reduced. When analyzing shellfish samples, matrix effects and toxin recovery values strongly depended on the shellfish type and the sample treatment. Blank oyster extracts could be directly analyzed without solid-phase extraction (SPE) clean-up, whereas blank mussel extracts showed strong matrix effects and SPE and subsequent solvent evaporation were required for removal. However, the SPE clean-up and evaporation resulted in toxin loss. Toxin recovery values were taken as correction factors (CFs) and were applied to the quantification of TTX contents in the analysis of naturally-contaminated shellfish samples by mELISA. The lowest effective limits of detection (eLODs) were about 20 and 50µg/kg for oyster extracts without and with SPE clean-up, respectively, and about 30µg/kg for mussel extracts with both protocols, all of them substantially below the eLOD attained in the previous mELISA for puffer fish (230µg/kg). Analysis of naturally-contaminated samples by mELISA and comparison with LC-MS/MS quantifications demonstrated the viability of the approach. This mELISA is a selective and sensitive tool for the rapid detection of TTX in oyster and mussel samples showing promise to be implemented in routine monitoring programs to protect human health.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Maria Rambla-Alegre
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Sandra Leonardo
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Carlos Bellés
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK
| | - Arjen Gerssen
- RIKILT (Institute of Food Safety) - Wageningen University and Research, 6700 AE, Wageningen, The Netherlands
| | - Mirjam D Klijnstra
- RIKILT (Institute of Food Safety) - Wageningen University and Research, 6700 AE, Wageningen, The Netherlands
| | - Jorge Diogène
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain.
| |
Collapse
|
19
|
Saeed AFUH, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017; 8:495. [PMID: 28400756 PMCID: PMC5368232 DOI: 10.3389/fmicb.2017.00495] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
20
|
Zhang X, He K, Zhao R, Feng T, Wei D. Development of a Single Chain Variable Fragment Antibody and Application as Amatoxin Recognition Molecule in Surface Plasmon Resonance Sensors. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0509-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Wang R, Gu X, Zhuang Z, Zhong Y, Yang H, Wang S. Screening and Molecular Evolution of a Single Chain Variable Fragment Antibody (scFv) against Citreoviridin Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7640-7648. [PMID: 27622814 DOI: 10.1021/acs.jafc.6b02637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Citreoviridin (CIT), a small food-borne mycotoxin produced by Penicillium citreonigrum, is generally distributed in various cereal grains and farm crop products around the world and has caused cytotoxicity as an uncompetitive inhibitor of ATP hydrolysis. A high affinity single chain variable fragment (scFv) antibody that can detect the citreoviridin in samples is still not available; therefore, it is very urgent to prepare an antibody for CIT detection and therapy. In this study, an amplified and assembled scFv from hybridoma was used to construct the mutant phage library by error-prone PCR, generating a 2 × 108 capacity mutated phage display library. After six rounds of biopanning, the selected scFv-5A10 displayed higher affinity and specificity to CIT antigen, with an increased affinity of 13.25-fold (Kaff = 5.7 × 109 L/mol) compared to that of the original wild-type scFv. Two critical amino acids (P100 and T151) distributed in H-CDR3 and L-FR regions that were responsible for scFv-5A10 to CIT were found and verified by oligonucleotide-directed mutagenesis, and the resulting three mutants except for the mutant (P100K) lost binding activity significantly against CIT, as predicated. Indirect competitive ELISA (ic-ELISA) indicated that the linear range to detect CIT was 25-562 ng/mL with IC50 at 120 ng/mL. The limit of detection was 14.7 ng/mL, and the recovery average was (90.612 ± 3.889)%. Hence, the expressed and purified anti-CIT MBP-linker-scFv can be used to detect CIT in corn and related samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Xiaosong Gu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Zhenghong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Yanfang Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Hang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| |
Collapse
|
22
|
Zhang X, He K, Zhao R, Wang L, Jin Y. Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water. CHEMOSPHERE 2016; 160:230-236. [PMID: 27380224 DOI: 10.1016/j.chemosphere.2016.06.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Single chain variable fragment (scFv), containing of heavy and light chains (VH and VL) joined by a short peptide linker, has been used widely for immunodetection. Nevertheless, cloning functional variable genes is still a bottle neck for the scFv generation technology. Here, a rational strategy for cloning and selecting variable region genes from an anti-microcystin-LR hybridoma was devised, then the functional VH and VL genes were recloned and assembled to scFv using splicing overlap extension PCR. The resulting scFv gene was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein (scFv-AP) by vector PLIP6/GN. Then an indirect competitive chemiluminescent enzyme immunoassay (ic-CLEIA) for detection of microcystin-LR was developed. The half-maximum inhibition concentrations (IC50) and limits of detection (LODs, IC15) were 0.81 ± 0.04 μgL(-1) and 0.13 ± 0.03 μgL(-1), respectively. With the mean coefficient of variation lowing 8%, the mean recovery in intra-assay and inter-assay were 100.06% and 96.46%, The proposed strategy should be useful for generation scFv in a rapid and simple way.
Collapse
Affiliation(s)
- Xiuyuan Zhang
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Kuo He
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China.
| | - Ruiping Zhao
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China
| | - Lixia Wang
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China
| | - Yandan Jin
- Hebei North University, Food Safety Research Centre of Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
23
|
Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 2016; 87:285-298. [PMID: 27568847 DOI: 10.1016/j.bios.2016.06.083] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Biological and synthetic recognition elements are at the heart of the majority of modern bioreceptor assays. Traditionally, enzymes and antibodies have been integrated in the biosensor designs as a popular choice for the detection of toxin molecules. But since 1970s, alternative biological and synthetic binders have been emerged as a promising alternative to conventional biorecognition elements in detection systems for laboratory and field-based applications. Recent research has witnessed immense interest in the use of recombinant enzymatic methodologies and nanozymes to circumvent the drawbacks associated with natural enzymes. In the area of antibody production, technologies based on the modification of in vivo synthesized materials and in vitro approaches with development of "display "systems have been introduced in the recent years. Subsequently, molecularly-imprinted polymers and Peptide nucleic acid (PNAs) were developed as an attractive receptor with applications in the area of sample preparation and detection systems. In this article, we discuss all alternatives to conventional biomolecules employed in the detection of various toxin molecules We review recent developments in modified enzymes, nanozymes, nanobodies, aptamers, peptides, protein scaffolds and DNazymes. With the advent of nanostructures and new interface materials, these recognition elements will be major players in future biosensor development.
Collapse
Affiliation(s)
- Ingrid Bazin
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France.
| | - Scherrine A Tria
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France
| | - Akhtar Hayat
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
24
|
Kuhn P, Fühner V, Unkauf T, Moreira GMSG, Frenzel A, Miethe S, Hust M. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clin Appl 2016; 10:922-948. [PMID: 27198131 PMCID: PMC7168043 DOI: 10.1002/prca.201600002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Antibodies are valuable molecules for the diagnostic and treatment of diseases caused by pathogens and toxins. Traditionally, these antibodies are generated by hybridoma technology. An alternative to hybridoma technology is the use of antibody phage display to generate recombinant antibodies. This in vitro technology circumvents the limitations of the immune system and allows—in theory—the generation of antibodies against all conceivable molecules. Phage display technology enables obtaining human antibodies from naïve antibody gene libraries when either patients are not available or immunization is not ethically feasible. On the other hand, if patients or immunized/infected animals are available, it is common to construct immune phage display libraries to select in vivo affinity‐matured antibodies. Because the phage packaged DNA sequence encoding the antibodies is directly available, the antibodies can be smoothly engineered according to the requirements of the final application. In this review, an overview of phage display derived recombinant antibodies against bacterial, viral, and eukaryotic pathogens as well as toxins for diagnostics and therapy is given.
Collapse
Affiliation(s)
- Philipp Kuhn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Tobias Unkauf
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | | | - André Frenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Braunschweig, Germany.
| |
Collapse
|
25
|
He K, Zhang X, Zhao R, Wang L, Feng T, Wei D. An enzyme-linked immunosorbent assay and a gold-nanoparticle based immunochromatographic test for amatoxins using recombinant antibody. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1856-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
He K, Du X, Sheng W, Zhou X, Wang J, Wang S. Crystal Structure of the Fab Fragment of an Anti-ofloxacin Antibody and Exploration of Its Specific Binding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2627-2634. [PMID: 26963935 DOI: 10.1021/acs.jafc.5b05882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The limited knowledge on the mechanism of interactions between small contaminants and the corresponding antibodies greatly inhibits the development of enzyme-linked immunosorbent assay methods. In this study, the crystal structure of a Fab fragment specific for ofloxacin was obtained. On the basis of the crystal characteristics, the modeling of the interactions between ofloxacin and the Fab revealed that TYR31 and HIS99 of the heavy chain and MET20 and GLN79 of the light chain formed a hydrophobic region and that SER52 and ALA97 of the heavy chain and TYR35 of the light chain formed a salt bridge and two hydrogen bonds for specific binding. The key roles of SER52 and ALA97 were further confirmed by site-directed mutation. A specificity analysis using 14 ofloxacin analogues indicates that the length of the bond formed between the piperazine ring and the antibody plays key roles in specific recognition. This work helps to clarify the mechanisms through which antibodies recognize small molecules and improve immune detection methods.
Collapse
Affiliation(s)
- Kuo He
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
- Hebei North University , Zhangjiakou, Hebei 075000, People's Republic of China
| | - Xinjun Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Xiaonan Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| |
Collapse
|
27
|
Yang JL, Liu DX, Zhen SJ, Zhou YG, Zhang DJ, Yang LY, Chen HB, Feng Q. A novel anti-p21Ras scFv antibody reacting specifically with human tumour cell lines and primary tumour tissues. BMC Cancer 2016; 16:131. [PMID: 26897358 PMCID: PMC4761205 DOI: 10.1186/s12885-016-2168-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ras genes play an important role in the development and progression of human tumours. Neutralizing Ras proteins in the cytoplasm could be an effective approach to blocking ras signalling. In this study, we prepared anti-p21Ras single chain fragment variable antibody (scFv) and investigated its immunoreactivity with human tumours. METHODS The coding sequences of H-ras, K-ras, and N-ras were separately ligated into the vector pET-28a(+). Then, recombinant expressing plasmids were induced by IPTG for p21Ras expression in E. coli. Hybridoma cell lines producing anti-p21Ras monoclonal antibodies were isolated using wildtype p21Ras proteins as immunogens. Anti-p21Ras scFv antibody was prepared from the hybridoma by the phage scFv display method. The immunoreactivity of the anti-p21Ras monoclonal antibody and the scFv antibody was identified by ELISA and immunocytochemistry. RESULTS We prokaryotically expressed wildtype H-p21Ras, K-p21Ras and N-p21Ras and generated the hybridoma cell line KGH-R1, producing anti-p21Ras monoclonal antibodies. It was demonstrated that KGH-R1 monoclonal antibody could recognize wildtype and mutated H-p21Ras, K-p21Ras and N-p21Ras in human tumour cell lines. In all 14 types of primary human cancer tissues tested, the monoclonal antibody presented strong immunoreactivity but showed weak or negative immunoreactivity in the corresponding normal tissues. Subsequently, we prepared anti-p21Ras scFv from hybridoma KGH-R1, which showed the same immunoreactivity as the original monoclonal antibody. Sequence analysis demonstrated that the nucleotides and amino acids of the scFv exhibited an approximately 50 % difference from the anti-p21Ras scFv reported previously. CONCLUSIONS This study presents a novel anti-p21Ras scFv antibody. Our data suggest that the scFv may be useful for ras signalling blockage and may be a potential therapeutic antibody for ras-derived tumours.
Collapse
Affiliation(s)
- Ju-Lun Yang
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China.
| | - Du-Xian Liu
- Department of Molecular Biology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Shi-Jian Zhen
- Department of Molecular Biology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Yun-Gang Zhou
- Department of Molecular Biology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Dai-Jun Zhang
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Li-Ying Yang
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Hao-Bing Chen
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Qiang Feng
- Department of Pathology, Kunming General Hospital/Kunming Medical University, Kunming, 650032, Yunnan Province, China
| |
Collapse
|
28
|
Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding. Anal Biochem 2016; 503:21-7. [PMID: 26772159 DOI: 10.1016/j.ab.2015.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/09/2015] [Accepted: 12/29/2015] [Indexed: 11/21/2022]
Abstract
Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection.
Collapse
|
29
|
Reverté L, de la Iglesia P, del Río V, Campbell K, Elliott CT, Kawatsu K, Katikou P, Diogène J, Campàs M. Detection of Tetrodotoxins in Puffer Fish by a Self-Assembled Monolayer-Based Immunoassay and Comparison with Surface Plasmon Resonance, LC-MS/MS, and Mouse Bioassay. Anal Chem 2015; 87:10839-47. [PMID: 26424329 DOI: 10.1021/acs.analchem.5b02158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Pablo de la Iglesia
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Vanessa del Río
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University , Stranmillis Road, Belfast BT9 5AG, Northern Ireland
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University , Stranmillis Road, Belfast BT9 5AG, Northern Ireland
| | - Kentaro Kawatsu
- Division of Bacteriology, Osaka Prefectural Institute of Public Health , 3-69, Nakamichi 1-chome, Higashinari-ku, Osaka 537-0025, Japan
| | - Panagiota Katikou
- National Reference Laboratory on Marine Biotoxins, Ministry of Rural Development and Food , 54627 Thessaloniki, Greece
| | - Jorge Diogène
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Mònica Campàs
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| |
Collapse
|
30
|
Reverté L, Soliño L, Carnicer O, Diogène J, Campàs M. Alternative methods for the detection of emerging marine toxins: biosensors, biochemical assays and cell-based assays. Mar Drugs 2014; 12:5719-63. [PMID: 25431968 PMCID: PMC4278199 DOI: 10.3390/md12125719] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/02/2022] Open
Abstract
The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Lucía Soliño
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Olga Carnicer
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Jorge Diogène
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|