1
|
Costa TGF, de Assis TCS, Caetano Costa JM, Saavedra-Langer R, Santo TS, Bonilla Ferreira CA, Machado-de-Ávila RA, Felicori L, Guerra-Duarte C, Lopes-de-Souza L, Chávez-Olórtegui C. Development of a neutralizing monoclonal antibody targeting Bothrops atrox venom metalloproteinases. Int J Biol Macromol 2025; 311:143608. [PMID: 40300685 DOI: 10.1016/j.ijbiomac.2025.143608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Snakebites are classified as a neglected tropical disease by the World Health Organization. In South America's tropical rainforests, Bothrops genus, particularly Bothrops atrox, is responsible for most incidents. Severe local effects, such as hemorrhage, are primarily caused by snake venom metalloproteinases (SVMPs), which are not fully neutralized by conventional therapy. Here, we report the production of a neutralizing monoclonal antibody (mAb) against the hemorrhagic activity of B. atrox venom metalloproteinases. mAbs were produced by immunization of BALB/c mice using the B. atrox venom (BaV). The resulting hybridomas were screened by ELISA using BaV as antigen. The selected clone 4H4D11 (mAb-BaSVMP) showed cross-reactivity with other medically important species of Bothrops snakes in Brazil and Peru. Western blot assays revealed that the produced mAb binds to proteins with molecular masses of approximately 50 kDa and 20 kDa in BaV and recognizes native Atroxlysin-III and Atroxlysin-I by ELISA. mAb-BaSVMP did not bind to a cellulose membrane containing the primary sequence of a metalloproteinase, suggesting that it may recognize a conformational epitope. Additionally, mAb-BaSVMP neutralizes the in vivo hemorrhagic activity caused by BaV in mice. These results highlight the potential usefulness of mAb-BaSVMP for developing effective antivenoms for passive immunotherapy against bothropic envenomation.
Collapse
Affiliation(s)
| | | | - Julia M Caetano Costa
- Departamento de Medicina Veterinária Preventiva, Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Saavedra-Langer
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thalita Silverio Santo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Liza Felicori
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Leticia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Polli NLC, Ferreira MEDF, Schluga PHC, Antunes BC, Justa HCD, Theodoro JL, Zazula MF, Naliwaiko K, Minozzo JC, Senff-Ribeiro A, Wille ACM, Veiga SS, Gremski LH. Novel insights into the application of recombinant mutated phospholipases D as antigens for developing new strategies against Loxoscelism. Acta Trop 2024; 258:107354. [PMID: 39106916 DOI: 10.1016/j.actatropica.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
Loxoscelism is the pathological condition triggered by a brown spider bite. The venom of these spiders is rich in phospholipases D (PLDs), which can induce virtually all local and systemic manifestations. Recombinant mutated PLDs from clinically relevant Loxosceles species in South America have been investigated as potential antigens to develop novel therapeutic strategies for loxoscelism. However, certain gaps need to be addressed before a clinical approach can be implemented. In this study, we examined the potential of these recombinant mutated PLDs as antigens by testing some variations in the immunization scheme. Furthermore, we evaluated the efficacy of the produced antibodies in neutralizing the nephrotoxicity and sphingomyelinase activity of brown spider venoms. Our findings indicate that the number of immunizations has a greater impact on the effectiveness of neutralization compared to the amount of antigen. Specifically, two or three doses were equally effective in reducing dermonecrosis and edema. Additionally, three immunizations proved to be more effective in neutralizing mice lethality than one or two. Moreover, immunizations mitigated the signs of kidney injury, a crucial aspect given that acute renal failure is a serious systemic complication. In vitro inhibition of the sphingomyelinase activity of Loxosceles venoms, a key factor in vivo toxicity, was nearly complete after incubation with antibodies raised against these antigens. These findings underscore the importance of implementing an effective immunization scheme with multiple immunizations, without the need for high antigen doses, and enhances the spectrum of neutralization exhibited by antibodies generated with these antigens. In summary, these results highlight the strong potential of these antigens for the development of new therapeutic strategies against cutaneous and systemic manifestations of loxoscelism.
Collapse
Affiliation(s)
| | | | | | - Bruno Cesar Antunes
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara, 83302-200, PR, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Matheus Felipe Zazula
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Katya Naliwaiko
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara, 83302-200, PR, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, 84030-900, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil.
| |
Collapse
|
3
|
de Miranda ALS, Antunes BC, Minozzo JC, Lima SDA, Botelho AFM, Campos MTG, Chávez-Olórtegui C, Soto-Blanco B. The Health Status of Horses Used for at Least Six Complete Cycles of Loxoscelic Antivenom Production. Toxins (Basel) 2023; 15:589. [PMID: 37888620 PMCID: PMC10610985 DOI: 10.3390/toxins15100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Antivenom production against Loxosceles venom relies on horses being immunized and bled for plasma harvest. One horse can partake in several cycles of antivenom production, which will require years of constant venom and adjuvant inoculation and bleeding. The actual impact on the health of horses that participate in several antivenom-producing cycles is unknown. Therefore, this study aimed to evaluate the general health status of horses that underwent at least six cycles of loxoscelic antivenom production. Seven crossbred horses that had partaken in six to eight complete antivenom-producing cycles were used and established as the immunized group (IG). Under the same handling and general management, eleven horses were established as the control group (CG). The horses were evaluated regarding their general clinical status and had their blood sampled, and an ECG recorded. The IG presented lower RBC and PCV, despite keeping values within inferior limits for the species. Renal function was not impaired, and liver-related enzymes were higher than those in the CG, probably due to liver exertion from immunoglobulin synthesis. ECG showed some abnormalities in the IG, such as atrioventricular block and a wandering atrial pacemaker, corroborated by an increase in CK-MB. The cardiovascular abnormalities were mainly found in the horses that participated in several antivenom-producing cycles. The overall results indicate that these horses had some impairment of their general health status. Once available, some alternative, less toxic antigens should replace the venom for immunization of horses used for antivenom production.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| | - Bruno Cesar Antunes
- Department of Health of the State of Paraná, Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Rua Piquiri 170, Piraquara 80230-140, PR, Brazil; (B.C.A.); (J.C.M.)
| | - João Carlos Minozzo
- Department of Health of the State of Paraná, Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Rua Piquiri 170, Piraquara 80230-140, PR, Brazil; (B.C.A.); (J.C.M.)
| | - Sabrina de Almeida Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil; (S.d.A.L.); (C.C.-O.)
| | - Ana Flávia Machado Botelho
- Department of Veterinary Medicine, Veterinary College, Universidade Federal de Goiás (UFG), Campus Samambaia, Goiânia 74690-900, GO, Brazil;
| | - Marco Túlio Gomes Campos
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil; (S.d.A.L.); (C.C.-O.)
| | - Benito Soto-Blanco
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| |
Collapse
|
4
|
Production and Functional Evaluation of Anti- Loxosceles Sera Raised by Immunizations of Rabbits with Mutated Recombinant Phospholipases-D. Biomedicines 2022; 11:biomedicines11010079. [PMID: 36672587 PMCID: PMC9856178 DOI: 10.3390/biomedicines11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 12/30/2022] Open
Abstract
Loxoscelism is the clinical condition triggered after the bite of spiders of the genus Loxosceles. The main species involved in accidents in South America are L. intermedia, L. laeta, and L. gaucho. The only specific treatment is the anti-Loxosceles serum produced with crude venoms. As phospholipases D (PLDs) trigger most of the effects observed in accidents, we developed and evaluated second-generation sera using mutated PLDs as antigens. Three isoforms of PLDs with site-directed mutations without biological activities were used for rabbit immunizations: D32A-E34A (L. gaucho), W230A (L. intermedia), and H12A-H47A (L. laeta). Sera were produced using crude venoms of three species of Loxosceles enriched with mutated recombinant PLDs (MIX) or using only mutated PLDs (REC). Immunizations stimulated the immune system from the second immunization with higher antibody production in the REC group. In vivo neutralization assays demonstrated that both sera reduced edema and dermonecrosis caused by Loxosceles intermedia crude venom. Follow-up of animals during the immunization protocols and in the neutralization assays demonstrated that the mutated proteins and the sera are safe. Results demonstrate the potential of using mutated recombinant PLDs in total or partial replacement of Loxosceles venoms in animal immunizations to produce anti-Loxosceles sera for treatments of Loxoscelism.
Collapse
|
5
|
Corrêa-Netto C, Strauch MA, Monteiro-Machado M, Teixeira-Araújo R, Fonseca JG, Leitão-Araújo M, Machado-Alves ML, Sanz L, Calvete JJ, Melo PA, Zingali RB. Monoclonal-Based Antivenomics Reveals Conserved Neutralizing Epitopes in Type I PLA 2 Molecules from Coral Snakes. Toxins (Basel) 2022; 15:toxins15010015. [PMID: 36668835 PMCID: PMC9863321 DOI: 10.3390/toxins15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
For over a century, polyclonal antibodies have been used to treat snakebite envenoming and are still considered by the WHO as the only scientifically validated treatment for snakebites. Nevertheless, moderate innovations have been introduced to this immunotherapy. New strategies and approaches to understanding how antibodies recognize and neutralize snake toxins represent a challenge for next-generation antivenoms. The neurotoxic activity of Micrurus venom is mainly due to two distinct protein families, three-finger toxins (3FTx) and phospholipases A2 (PLA2). Structural conservation among protein family members may represent an opportunity to generate neutralizing monoclonal antibodies (mAbs) against family-conserved epitopes. In this work, we sought to produce a set of monoclonal antibodies against the most toxic components of M. altirostris venom. To this end, the crude venom was fractionated, and its major toxic proteins were identified and used to generate a panel of five mAbs. The specificity of these mAbs was characterized by ELISA and antivenomics approaches. Two of the generated mAbs recognized PLA2 epitopes. They inhibited PLA2 catalytic activity and showed paraspecific neutralization against the myotoxicity from the lethal effect of Micrurus and Naja venoms' PLA2s. Epitope conservation among venom PLA2 molecules suggests the possibility of generating pan-PLA2 neutralizing antibodies.
Collapse
Affiliation(s)
- Carlos Corrêa-Netto
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| | - Marcelo A. Strauch
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Marcos Monteiro-Machado
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ricardo Teixeira-Araújo
- Instituto Vital Brazil, Rio de Janeiro 24230-410, RJ, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Moema Leitão-Araújo
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Maria Lúcia Machado-Alves
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Porto Alegre 90690-000, RS, Brazil
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, 46010 Valencia, Spain
| | - Paulo A. Melo
- Programa de Farmacologia e Química Medicinal-UFRJ, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.C.-N.); (R.B.Z.); Tel.: +55-213-938-6782 (R.B.Z.)
| |
Collapse
|
6
|
A protective vaccine against the toxic activities following Brown spider accidents based on recombinant mutated phospholipases D as antigens. Int J Biol Macromol 2021; 192:757-770. [PMID: 34634338 DOI: 10.1016/j.ijbiomac.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Accidents involving Brown spiders are reported throughout the world. In the venom, the major toxins involved in the deleterious effects are phospholipases D (PLDs). In this work, recombinant mutated phospholipases D from three endemic species medically relevant in South America (Loxosceles intermedia, L. laeta and L. gaucho) were tested as antigens in a vaccination protocol. In such isoforms, key amino acid residues involved in catalysis, magnesium-ion coordination, and binding to substrates were replaced by Alanine (H12A-H47A, E32A-D34A and W230A). These mutations eliminated the phospholipase activity and reduced the generation of skin necrosis and edema to residual levels. Molecular modeling of mutated isoforms indicated that the three-dimensional structures, topologies, and surface charges did not undergo significant changes. Mutated isoforms were recognized by sera against the crude venoms. Vaccination protocols in rabbits using mutated isoforms generated a serum that recognized the native PLDs of crude venoms and neutralized dermonecrosis and edema induced by L. intermedia venom. Vaccination of mice prevented the lethal effects of L. intermedia crude venom. Furthermore, vaccination of rabbits prevented the cutaneous lesion triggered by the three venoms. These results indicate a great potential for mutated recombinant PLDs to be employed as antigens in developing protective vaccines for Loxoscelism.
Collapse
|
7
|
Saavedra-Langer R, Costa TGF, Lima SA, Costal-Oliveira F, Martins CA, Machado-de-Ávila RA, Minozzo JC, Soccol VT, Guerra-Duarte C, Kalapothakis E, Chávez-Olórtegui C. A prokaryote system optimization for rMEPLox expression: A promising non-toxic antigen for Loxosceles antivenom production. Int J Biol Macromol 2021; 187:66-75. [PMID: 34246677 DOI: 10.1016/j.ijbiomac.2021.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Loxoscelism is the most dangerous araneism form in Brazil and antivenom therapy is the recommended treatment. Antivenom is produced by horse immunization with Loxosceles spider venom, which is toxic for the producer animal. Moreover, due to the high amount of venom required for horse hyperimmunization, new strategies for antigens obtention have been proposed. In this sense, our research group has previously produced a non-toxic recombinant multiepitopic protein derived from Loxosceles toxins (rMEPLox). rMEPLox was a successful immunogen, being able to induce the production of neutralizing antibodies, which could be used in the Loxoscelism treatment. However, rMEPLox obtention procedure requires optimization, as its production needs to be scaled up to suit antivenom manufacture. Therefore, an effective protocol development for rMEPlox production would be advantageous. To achieve this objective, we evaluated the influence of different cultivation conditions for rMEPLox optimum expression. The optimum conditions to obtain large amounts of rMEPlox were defined as the use of C43(DE3)pLysS as a host strain, 2xTY medium, 0.6 mM IPTG, biomass pre induction of OD600nm = 0.4 and incubation at 30 °C for 16 h. Following the optimized protocol, 39.84 mg/L of soluble rMEPLox was obtained and tested as immunogen. The results show that the obtained rMEPLox preserved the previously described immunogenicity, and it was able to generate antibodies that recognize different epitopes of the main Loxosceles venom toxins, which makes it a promising candidate for the antivenom production for loxoscelism treatment.
Collapse
Affiliation(s)
- Rafael Saavedra-Langer
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tamara G F Costa
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sabrina A Lima
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Christina A Martins
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - João C Minozzo
- Centro de Pesquisa e Produção de Imunobiologicos of Paraná State (CPPI), Brazil
| | | | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010 Belo Horizonte, MG, Brazil
| | - Evanguedes Kalapothakis
- Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamentos de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Gremski LH, Matsubara FH, Polli NLC, Antunes BC, Schluga PHDC, da Justa HC, Minozzo JC, Wille ACM, Senff-Ribeiro A, Veiga SS. Prospective Use of Brown Spider Venom Toxins as Therapeutic and Biotechnological Inputs. Front Mol Biosci 2021; 8:706704. [PMID: 34222343 PMCID: PMC8247472 DOI: 10.3389/fmolb.2021.706704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Brown spider (genus Loxosceles) venoms are mainly composed of protein toxins used for predation and defense. Bites of these spiders most commonly produce a local dermonecrotic lesion with gravitational spread, edema and hemorrhage, which together are defined as cutaneous loxoscelism. Systemic loxoscelism, such as hematological abnormalities and renal injury, are less frequent but more lethal. Some Loxosceles venom toxins have already been isolated and extensively studied, such as phospholipases D (PLDs), which have been recombinantly expressed and were proven to reproduce toxic activities associated to the whole venom. PLDs have a notable potential to be engineered and converted in non-toxic antigens to produce a new generation of antivenoms or vaccines. PLDs also can serve as tools to discover inhibitors to be used as therapeutic agents. Other Loxosceles toxins have been identified and functionally characterized, such as hyaluronidases, allergen factor, serpin, TCTP and knottins (ICK peptides). All these toxins were produced as recombinant molecules and are biologically active molecules that can be used as tools for the potential development of chemical candidates to tackle many medical and biological threats, acting, for instance, as antitumoral, insecticides, analgesic, antigens for allergy tests and biochemical reagents for cell studies. In addition, these recombinant toxins may be useful to develop a rational therapy for loxoscelism. This review summarizes the main candidates for the development of drugs and biotechnological inputs that have been described in Brown spider venoms.
Collapse
Affiliation(s)
| | | | | | - Bruno Cesar Antunes
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil.,Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | | | | | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | |
Collapse
|
9
|
Miranda ALSD, Guerra-Duarte C, Lima SDA, Chávez-Olórtegui C, Soto-Blanco B. History, challenges and perspectives on Loxosceles (brown spiders) antivenom production in Brazil. Toxicon 2021; 192:40-45. [PMID: 33465358 DOI: 10.1016/j.toxicon.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Antivenom is the only effective therapy for treating any envenomation. Despite its obvious public health importance, the laborious process of procuring, distributing and controlling the quality of such immunobiologicals is being neglected. Brazil is fully self-sufficient in the production of antivenoms. Since the 1950s, Loxoscelism, a syndrome with an onset after a spider bite from specimens of the Loxosceles genus occurs, is considered a public health issue. The Brazilian history in developing antivenom therapy, its production hindrances, and other challenges are discussed in this paper, as well as some promising novelties that can improve production and processing of Loxosceles antivenom.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Sabrina de Almeida Lima
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Molecular cloning and functional characterization of recombinant Loxtox from Loxosceles similis venom. Int J Biol Macromol 2020; 164:1112-1123. [PMID: 32702423 DOI: 10.1016/j.ijbiomac.2020.07.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022]
Abstract
Loxoscelism is a recognized public health problem in Brazil, but the venom from Loxosceles similis, which is widespread in Brazil due to its adaptability to the urban environment, remains poorly characterized. Loxtox is a family of phospholipase D enzymes (PLDs), which are the major components of Loxosceles venom and are responsible for the clinical effects of loxoscelism. Loxtox toxins correspond to 15% of L. similis venom gland transcripts, but the Loxtox family of L. similis has yet to be fully described. In this study, we cloned and functionally characterized recLoxtox s1A and recLoxtox s11A. These recombinant toxins exhibited different in vitro activities depending on pH, and recLoxtox s1A had more intense effects on rabbit skin than did recLoxtox s11A in vivo. Both recombinant toxins were used in immunization protocols, and mapping of their epitopes revealed different immunological reactions for the produced immune serums. Additionally, polyclonal antibodies raised against recLoxtox s1A had greater capacity to significantly reduce the in vitro and in vivo effects of L. similis venom. In summary, we obtained and characterized two novel Loxtox isoforms from L. similis venom, which may be valuable biotechnological and immunological tools against loxoscelism.
Collapse
|
11
|
Costa TGF, Costal-Oliveira F, de Assis TCS, Lima SA, Martins CA, Finco AB, Veiga SS, Soccol VT, Machado-de-Ávila RA, Figueiredo LFM, Minozzo JC, Kalapothakis E, Guerra-Duarte C, Alvarenga LM, Chávez-Olórtegui C. Engineered antigen containing epitopes from Loxosceles spp. spider toxins induces a monoclonal antibody (Lox-mAb3) against astacin-like metalloproteases. Int J Biol Macromol 2020; 162:490-500. [PMID: 32574737 DOI: 10.1016/j.ijbiomac.2020.06.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/24/2022]
Abstract
Loxoscelism pose a health issue in the South America. The treatment for these accidents is based on the administration of antivenom produced in animals immunized with Loxosceles venom. In this work, a previously produced non-toxic multiepitopic chimeric protein (rMEPlox), composed of epitopes derived from the main toxins families (sphyngomielinase-D, metalloproteases, and hyaluronidases) of Loxosceles spider venoms, was used as antigen to produce monoclonal antibodies (mAbs). A selected anti-rMEPlox mAb (Lox-mAb3) reacted with metalloprotease from L. intermedia venom and showed cross-reactivity with metalloproteses from Brazilian and Peruvian Loxosceles laeta and Loxosceles gaucho venoms in immunoassays. The sequence recognized by Lox-mAb3 (184ENNTRTIGPFDYDSIMLYGAY205) corresponds to the C-terminal region of Astacin-like metalloprotease 1 and the amino acid sequence IGPFDYDSI, conserved among the homologs metalloproteases sequences, is important for antibody recognition. Lox-mAb3 neutralizes the fibrinogenolytic activity caused by metalloprotease from L. intermedia spider venom in vitro, which may lead to a decrease in hemorrhagic disturbances caused by Loxosceles envenomation. Our results show, for the first time, the use of a non-toxic multiepitopic protein for the production of a neutralizing monoclonal antibody against a metalloprotease of medically important Loxosceles venoms. These results contribute for the production improvement of therapeutic antivenom against loxoscelism.
Collapse
Affiliation(s)
- Tamara G F Costa
- Departamento de Bioquímica e Imunologia and Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia and Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thamyres C S de Assis
- Departamento de Bioquímica e Imunologia and Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sabrina A Lima
- Departamento de Bioquímica e Imunologia and Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Christina A Martins
- Departamento de Bioquímica e Imunologia and Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Sílvio S Veiga
- Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | - João C Minozzo
- Centro de Pesquisa e Produção de Imunobiológicos (CPPI), Curitiba, PR, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Bioquímica e Imunologia and Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010 Belo Horizonte, MG, Brazil
| | | | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia and Genética, Ecologia e Evolução, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Fingermann M, de Roodt AR, Cascone O, Miranda MV. Biotechnological potential of Phospholipase D for Loxosceles antivenom development. Toxicon X 2020; 6:100036. [PMID: 32550591 PMCID: PMC7286061 DOI: 10.1016/j.toxcx.2020.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Loxoscelism is one of the most important forms of araneism in South America. The Health Authorities from countries with the highest incidence and longer history in registering loxoscelism cases indicate that specific antivenom should be administered during the first hours after the accident, especially in the presence or at risk of the most severe clinical outcome. Current antivenoms are based on immunoglobulins or their fragments, obtained from plasma of hyperimmunized horses. Antivenom has been produced using the same traditional techniques for more than 120 years. Although the whole composition of the spider venom remains unknown, the discovery and biotechnological production of the phospholipase D enzymes represented a milestone for the knowledge of the physiopathology of envenomation and for the introduction of new innovative tools in antivenom production. The fact that this protein is a principal toxin of the venom opens the possibility of replacing the use of whole venom as an immunogen, an attractive alternative considering the laborious techniques and low yields associated with venom extraction. This challenge warrants technological innovation to facilitate production and obtain more effective antidotes. In this review, we compile the reported studies, examining the advances in the expression and application of phospholipase D as a new immunogen and how the new biotechnological tools have introduced some degree of innovation in this field.
Collapse
Affiliation(s)
- Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina
| | - Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Área de Zootoxicología, Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, 2155, (1113) Buenos Aires, Argentina
| | - Osvaldo Cascone
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| | - María Victoria Miranda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| |
Collapse
|
13
|
Loxoscelism: Advances and Challenges in the Design of Antibody Fragments with Therapeutic Potential. Toxins (Basel) 2020; 12:toxins12040256. [PMID: 32316084 PMCID: PMC7232456 DOI: 10.3390/toxins12040256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Envenoming due to Loxosceles spider bites still remains a neglected disease of particular medical concern in the Americas. To date, there is no consensus for the treatment of envenomed patients, yet horse polyclonal antivenoms are usually infused to patients with identified severe medical conditions. It is widely known that venom proteins in the 30–35 kDa range with sphingomyelinase D (SMasesD) activity, reproduce most of the toxic effects observed in loxoscelism. Hence, we believe that monoclonal antibody fragments targeting such toxins might pose an alternative safe and effective treatment. In the present study, starting from the monoclonal antibody LimAb7, previously shown to target SMasesD from the venom of L. intermedia and neutralize its dermonecrotic activity, we designed humanized antibody V-domains, then produced and purified as recombinant single-chain antibody fragments (scFvs). These molecules were characterized in terms of humanness, structural stability, antigen-binding activity, and venom-neutralizing potential. Throughout this process, we identified some blocking points that can impact the Abs antigen-binding activity and neutralizing capacity. In silico analysis of the antigen/antibody amino acid interactions also contributed to a better understanding of the antibody’s neutralization mechanism and led to reformatting the humanized antibody fragment which, ultimately, recovered the functional characteristics for efficient in vitro venom neutralization.
Collapse
|
14
|
From taxonomy to molecular characterization of brown spider venom: An overview focused on Loxosceles similis. Toxicon 2020; 173:5-19. [DOI: 10.1016/j.toxicon.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022]
|
15
|
de Castro KLP, Lopes-de-Souza L, de Oliveira D, Machado-de-Ávila RA, Paiva ALB, de Freitas CF, Ho PL, Chávez-Olórtegui C, Guerra-Duarte C. A Combined Strategy to Improve the Development of a Coral Antivenom Against Micrurus spp. Front Immunol 2019; 10:2422. [PMID: 31695693 PMCID: PMC6816313 DOI: 10.3389/fimmu.2019.02422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023] Open
Abstract
Accidents involving Micrurus snakes are not the most common ones but are noteworthy due to their severity. Victims envenomed by Micrurus snakes are at high risk of death and therefore must be treated with coral antivenom. In Brazil, the immunization mixture used to fabricate coral antivenom contains Micrurus frontalis and Micrurus corallinus venoms, which are difficult to be obtained in adequate amounts. Different approaches to solve the venom limitation problem have been attempted, including the use of synthetic and recombinant antigens as substitutes. The present work proposes a combined immunization protocol, using priming doses of M. frontalis venom and booster doses of synthetic B-cell epitopes derived from M. corallinus toxins (four three-finger toxins-3FTX; and one phospholipase A2-PLA2) to obtain coral antivenom in a rabbit model. Immunized animals elicited a humoral response against both M. frontalis and M. corallinus venoms, as detected by sera reactivity in ELISA and Western Blot. Relevant cross-reactivity of the obtained sera with other Micrurus species (Micrurus altirostris, Micrurus lemniscatus, Micrurus spixii, Micrurus surinamensis) venoms was also observed. The elicited antibodies were able to neutralize PLA2 activity of both M. frontalis and M. corallinus venoms. In vivo, immunized rabbit sera completely protected mice from a challenge with 1.5 median lethal dose (LD50) of M. corallinus venom and 50% of mice challenged with 1.5 LD50 of M. frontalis venom. These results show that this combined protocol may be a suitable alternative to reduce the amount of venom used in coral antivenom production in Brazil.
Collapse
Affiliation(s)
| | - Letícia Lopes-de-Souza
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
16
|
Brown Spider ( Loxosceles) Venom Toxins as Potential Biotools for the Development of Novel Therapeutics. Toxins (Basel) 2019; 11:toxins11060355. [PMID: 31248109 PMCID: PMC6628458 DOI: 10.3390/toxins11060355] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Brown spider envenomation results in dermonecrosis with gravitational spreading characterized by a marked inflammatory reaction and with lower prevalence of systemic manifestations such as renal failure and hematological disturbances. Several toxins make up the venom of these species, and they are mainly peptides and proteins ranging from 5–40 kDa. The venoms have three major families of toxins: phospholipases-D, astacin-like metalloproteases, and the inhibitor cystine knot (ICK) peptides. Serine proteases, serpins, hyaluronidases, venom allergens, and a translationally controlled tumor protein (TCTP) are also present. Toxins hold essential biological properties that enable interactions with a range of distinct molecular targets. Therefore, the application of toxins as research tools and clinical products motivates repurposing their uses of interest. This review aims to discuss possibilities for brown spider venom toxins as putative models for designing molecules likely for therapeutics based on the status quo of brown spider venoms. Herein, we explore new possibilities for the venom components in the context of their biochemical and biological features, likewise their cellular targets, three-dimensional structures, and mechanisms of action.
Collapse
|
17
|
Design and Production of a Recombinant Hybrid Toxin to Raise Protective Antibodies Against Loxosceles Spider Venom. Toxins (Basel) 2019; 11:toxins11020108. [PMID: 30759862 PMCID: PMC6409891 DOI: 10.3390/toxins11020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022] Open
Abstract
Human accidents with spiders of the genus Loxosceles are an important health problem affecting thousands of people worldwide. Patients evolve to severe local injuries and, in many cases, to systemic disturbances as acute renal failure, in which cases antivenoms are considered to be the most effective treatment. However, for antivenom production, the extraction of the venom used in the immunization process is laborious and the yield is very low. Thus, many groups have been exploring the use of recombinant Loxosceles toxins, particularly phospholipases D (PLDs), to produce the antivenom. Nonetheless, some important venom activities are not neutralized by anti-PLD antibodies. Astacin-like metalloproteases (ALMPs) are the second most expressed toxin acting on the extracellular matrix, indicating the importance of its inclusion in the antigen’s formulation to provide a better antivenom. Here we show the construction of a hybrid recombinant immunogen, called LgRec1ALP1, composed of hydrophilic regions of the PLD and the ALMP toxins from Loxosceles gaucho. Although the LgRec1ALP1 was expressed as inclusion bodies, it resulted in good yields and it was effective to produce neutralizing antibodies in mice. The antiserum neutralized fibrinogenolytic, platelet aggregation and dermonecrotic activities elicited by L. gaucho, L. laeta, and L. intermedia venoms, indicating that the hybrid recombinant antigen may be a valuable source for the production of protective antibodies against Loxosceles ssp. venoms. In addition, the hybrid recombinant toxin approach may enrich and expand the alternative antigens for antisera production for other venoms.
Collapse
|
18
|
Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins (Basel) 2018; 10:toxins10110452. [PMID: 30400220 PMCID: PMC6265855 DOI: 10.3390/toxins10110452] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Snakes, scorpions, and spiders are venomous animals that pose a threat to human health, and severe envenomings from the bites or stings of these animals must be treated with antivenom. Current antivenoms are based on plasma-derived immunoglobulins or immunoglobulin fragments from hyper-immunized animals. Although these medicines have been life-saving for more than 120 years, opportunities to improve envenoming therapy exist. In the later decades, new biotechnological tools have been applied with the aim of improving the efficacy, safety, and affordability of antivenoms. Within the avenues explored, novel immunization strategies using synthetic peptide epitopes, recombinant toxins (or toxoids), or DNA strings as immunogens have demonstrated potential for generating antivenoms with high therapeutic antibody titers and broad neutralizing capacity. Furthermore, these approaches circumvent the need for venom in the production process of antivenoms, thereby limiting some of the complications associated with animal captivity and venom collection. Finally, an important benefit of innovative immunization approaches is that they are often compatible with existing antivenom manufacturing setups. In this review, we compile all reported studies examining venom-independent innovative immunization strategies for antivenom development. In addition, a brief description of toxin families of medical relevance found in snake, scorpion, and spider venoms is presented, as well as how biochemical, bioinformatic, and omics tools could aid the development of next-generation antivenoms.
Collapse
Affiliation(s)
| | - Albert Fuglsang-Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
- Department of Biology, University of Copenhagen, DK-2200 København N, Denmark.
| | - Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
19
|
Immunoprotection elicited in rabbit by a chimeric protein containing B-cell epitopes of Sphingomyelinases D from Loxosceles spp. spiders. Vaccine 2018; 36:7324-7330. [PMID: 30352745 DOI: 10.1016/j.vaccine.2018.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 01/21/2023]
Abstract
Accidents with venomous animals pose a health issue in Brazil, and those involving brown spiders (Loxosceles sp.) figure between the most frequent ones. The accidental envenomation by brown spiders causes a strong local dermonecrotic effect, which can be followed by systemic manifestations that in some cases lead to death. The production of antivenoms for the treatments of such accidents relies on a variety of animal experiments, from the spider venom extraction to the production of antivenom in horses. In the present work, there is an attempt to reduce and optimize animal experiments with the construction and production of a chimeric protein, named Lil, containing immunodominant epitopes previously mapped from the main proteins of the Loxosceles venom, the Sphingomyelinases D. The Lil protein contains epitopes from Sphinomyelinases D of the three-main species found in Brazil and this chimeric protein was found capable of inducing antibodies with the potential to partially neutralize the toxic effects of Loxosceles intermedia venom in an animal model. Therefore, in order to reduce spider usage and to improve the lifespan of the horses used for immunization we suggest the Lil protein as a potential candidate to replace the venom usage in the antivenom production protocols.
Collapse
|
20
|
Lima SDA, Guerra-Duarte C, Costal-Oliveira F, Mendes TM, Figueiredo LFM, Oliveira D, Machado de Avila RA, Ferrer VP, Trevisan-Silva D, Veiga SS, Minozzo JC, Kalapothakis E, Chávez-Olórtegui C. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits. Front Immunol 2018; 9:653. [PMID: 29666624 PMCID: PMC5891610 DOI: 10.3389/fimmu.2018.00653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/16/2018] [Indexed: 01/20/2023] Open
Abstract
Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.
Collapse
Affiliation(s)
- Sabrina de Almeida Lima
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Clara Guerra-Duarte
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Costal-Oliveira
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Melo Mendes
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luís F M Figueiredo
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daysiane Oliveira
- Programa de Pós-Graduação em Ciências da Saúde - PPGCS, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Ricardo A Machado de Avila
- Programa de Pós-Graduação em Ciências da Saúde - PPGCS, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | | | | | | | - João C Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos - CPPI, Piraquara, Brazil
| | - Evanguedes Kalapothakis
- Departamentos de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Chávez-Olórtegui
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Chaves-Moreira D, Senff-Ribeiro A, Wille ACM, Gremski LH, Chaim OM, Veiga SS. Highlights in the knowledge of brown spider toxins. J Venom Anim Toxins Incl Trop Dis 2017; 23:6. [PMID: 28194160 PMCID: PMC5299669 DOI: 10.1186/s40409-017-0097-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
Brown spiders are venomous arthropods that use their venom for predation and defense. In humans, bites of these animals provoke injuries including dermonecrosis with gravitational spread of lesions, hematological abnormalities and impaired renal function. The signs and symptoms observed following a brown spider bite are called loxoscelism. Brown spider venom is a complex mixture of toxins enriched in low molecular mass proteins (4-40 kDa). Characterization of the venom confirmed the presence of three highly expressed protein classes: phospholipases D, metalloproteases (astacins) and insecticidal peptides (knottins). Recently, toxins with low levels of expression have also been found in Loxosceles venom, such as serine proteases, protease inhibitors (serpins), hyaluronidases, allergen-like toxins and histamine-releasing factors. The toxin belonging to the phospholipase-D family (also known as the dermonecrotic toxin) is the most studied class of brown spider toxins. This class of toxins single-handedly can induce inflammatory response, dermonecrosis, hemolysis, thrombocytopenia and renal failure. The functional role of the hyaluronidase toxin as a spreading factor in loxoscelism has also been demonstrated. However, the biological characterization of other toxins remains unclear and the mechanism by which Loxosceles toxins exert their noxious effects is yet to be fully elucidated. The aim of this review is to provide an insight into brown spider venom toxins and toxicology, including a description of historical data already available in the literature. In this review article, the identification processes of novel Loxosceles toxins by molecular biology and proteomic approaches, their biological characterization and structural description based on x-ray crystallography and putative biotechnological uses are described along with the future perspectives in this field.
Collapse
Affiliation(s)
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil
| | - Ana Carolina Martins Wille
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil.,Department of Structural and Molecular Biology, State University of Ponta Grossa (UEPG), Ponta Grossa, PR Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil
| | - Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR Brazil
| |
Collapse
|
22
|
Oliveira CFB, Vilela A, Coura LAM, Rodrigues FTG, Nagem RAP, Chávez-Olortegui C, Maioli TU, Felicori LF. Protective antibodies against a sphingomyelinase D from Loxosceles intermedia spider venom elicited in mice with different genetic background. Vaccine 2016; 34:3828-34. [PMID: 27265457 DOI: 10.1016/j.vaccine.2016.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 01/27/2023]
Abstract
In the present investigation we used a recombinant LiD1 toxin, named rLiD1his, from Loxosceles intermedia brown spider to elicit specific antibodies in mice carrying different Human Leukocyte Antigens class II (HLAII) {DRB1.0401 (DR4), DQB1.0601 (DQ6) and DQB1.0302 (DQ8)} as well as in BALB/C and C57BL/6 control mice. All mice strains produced high antibody titers against rLiD1his but DR4 mice antibodies (the lower responder mice) were not able to recognize L. intermedia crude venom. The anti-rLiD1his sera, except from DR4 mice, were able to neutralize dermonecrotic, hemorrhagic and edematogenic effects of rLiD1his in naïve rabbits. Overlapping peptides from the amino acid sequence of LiD1 toxin were prepared by SPOT method and differences in LiD1 epitope recognition were observed using different mice anti-rLiD1his sera. The region (160)DKVGHDFSGNDDISDVGK(177) was recognized by transgenic DQ8 and DQ6 mice sera. Other epitopes were recognized by at least two different animals' sera including (10)MGHMVNAIGQIDEFVNLG(27), (37)FDDNANPEYTYHGIP(51), (70)GLRSATTPGNSKYQEKLV(87) and (259)AAYKKKFRVATYDDN(273). Among these epitopes, the epitopes 37-51 and 160-177 have already been shown in previously studies as good candidates to be used alone or combined with other peptides to induce protective immune response against Loxosceles venoms. The results presented here highlight the importance of HLAII in antibody response and recognition of specific B-cell epitopes of rLiD1his spider toxin according to HLAII type and impact in the epitopic vaccine development against this spider.
Collapse
Affiliation(s)
| | - Andrea Vilela
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, UFMG, Brazil
| | - Luis Augusto M Coura
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, UFMG, Brazil
| | | | | | - Carlos Chávez-Olortegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, UFMG, Brazil
| | - Tatiani U Maioli
- Departamento de Nutrição, Escola de Enfermagem - EE, UFMG, Brazil
| | - Liza F Felicori
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, UFMG, Brazil
| |
Collapse
|
23
|
Brown spider (Loxosceles genus) venom toxins: Evaluation of biological conservation by immune cross-reactivity. Toxicon 2015; 108:154-66. [DOI: 10.1016/j.toxicon.2015.09.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/02/2015] [Accepted: 09/29/2015] [Indexed: 11/20/2022]
|
24
|
Duarte C, Bonilla C, Guimarães G, Machado de Avila R, Mendes T, Silva W, Tintaya B, Yarleque A, Chávez-Olórtegui C. Anti-loxoscelic horse serum produced against a recombinant dermonecrotic protein of Brazilian Loxosceles intermedia spider neutralize lethal effects of Loxosceles laeta venom from Peru. Toxicon 2015; 93:37-40. [DOI: 10.1016/j.toxicon.2014.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
25
|
Identification and characterization of B-cell epitopes of 3FTx and PLA2 toxins from Micrurus corallinus snake venom. Toxicon 2015; 93:51-60. [DOI: 10.1016/j.toxicon.2014.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022]
|