1
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Painefilú JC, González C, Krock B, Bieczynski F, Luquet CM. Microcystin-LR sensitizes the Oncorhynchus mykiss intestinal epithelium and interacts with paralytic shellfish toxins to alter oxidative balance. Toxicol Appl Pharmacol 2024; 485:116891. [PMID: 38485061 DOI: 10.1016/j.taap.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In the context of harmful algal blooms, fish can be exposed to the combined effects of more than one toxin. We studied the effects of consecutive exposure to Microcystin-LR (MCLR) in vivo and paralytic shellfish toxins (PST) ex vivo/in vitro (MCLR+PST) in the rainbow trout Oncorhynchus mykiss's middle intestine. We fed juvenile fish with MCLR incorporated in the feed every 12 h and euthanized them 48 h after the first feeding. Immediately, we removed the middle intestine to make ex vivo and in vitro preparations and exposed them to PST for one hour. We analyzed glutathione (GSH) and glutathione disulfide (GSSG) contents, glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), and protein phosphatase 1 (PP1) activities in ex vivo intestinal strips; apical and basolateral ATP-biding cassette subfamily C (Abcc)-mediated transport in ex vivo everted and non- everted sacs; and reactive oxygen species (ROS) production in isolated enterocytes in vitro. MCLR+PST treatment decreased the GSH content, GSH/GSSG ratio, GST activity, and increased ROS production. GR activity remained unchanged, while CAT activity only increased in response to PST. MCLR inhibited PP1 activity and activated Abcc-mediated transport only at the basolateral side of the intestine. Our results show a combined effect of MCLR+PST on the oxidative balance in the O. mykiss middle intestine, which is not affected by the two toxins groups when applied individually. Basolateral Abcc transporters activation by MCLR treatment could lead to an increase in the absorption of toxicants (including MCLR) into the organism. Therefore, MCLR makes the O. mykiss middle intestine more sensitive to possibly co-occurring cyanotoxins like PST.
Collapse
Affiliation(s)
- Julio C Painefilú
- Laboratorio de Ictiología y Acuicultura Experimental, IPATEC (CONICET-UNCo), Quintral 1250, San Carlos de Bariloche, Argentina
| | - Carolina González
- Centro de investigaciones Agua y Saneamientos Argentinos, Tucumán 752, CABA, Argentina; Laboratorio de Limnología, Facultad de Ciencias Exactas y Naturales, UBA, Int. Güiraldes 2160, CABA, Argentina
| | - Bernd Krock
- Ökologische Chemie, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue, CITAAC (CONICET-UNCo), Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-UNCo), Ruta provincial 61, km 3, Junín de los Andes, Argentina.
| |
Collapse
|
3
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
4
|
Kim EJ, Jeon D, Park YJ, Woo H, Eyun SI. Dietary exposure of the water flea Daphnia galeata to microcystin-LR. Anim Cells Syst (Seoul) 2024; 28:25-36. [PMID: 38298818 PMCID: PMC10829830 DOI: 10.1080/19768354.2024.2302529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Harmful substances like the cyanotoxin microcystin-leucine-arginine (MC-LR) are commonly found in eutrophic freshwater environments, posing risks to aquatic organisms. The water flea, Daphnia, is a well-established model organism for environmental toxicology research. Nevertheless, there is currently insufficient research on the genes that respond to MC-LR in Daphnia galeata. This study aimed to gain insights into the notable genes that react significantly to MC-LR. In this study, we generated an extensive RNA-Seq sequences isolated from the D. galeata HK strain, Han River in Korea. This strain was nourished with a diet of the green microalga Chlorella vulgaris and treated with pure MC-LR at a concentration of 36 ug/L. The transcriptome profile in response to the MC-LR treatment was obtained and 336 differentially expressed genes were subjected to Gene Ontology (GO) and euKaryotic Orthologous Groups of proteins analyses. GO enrichment analysis showed that chemical stimulus, amino sugar metabolic and catabolic process, oxidative stress, and detoxification were highly enriched, in reverse, proteolysis and fucosylation were underpresented. Detoxification process related genes such as peroxidase-like, chorion, and thyroid peroxidase-like were enriched for eliminating or neutralizing MC_LR from an organism's body. Furthermore, functional protein classification revealed an upregulation of lipid and inorganic ion transport processes, while amino acid and carbohydrate transport processes were found to be downregulated. These findings offer insights into how organisms respond to ecotoxic stimuli, providing valuable information for understanding adaptation or defense pathways.
Collapse
Affiliation(s)
- Eun-jeong Kim
- Department of Life Science, Chung-ang University, Seoul, Korea
| | - Donggu Jeon
- Department of Life Science, Chung-ang University, Seoul, Korea
| | - Yeon-jeong Park
- Water Environmental Management Department, Korea Water Resources Corporation (K-water), Daejeon, Korea
| | - Hyunmin Woo
- Department of Life Science, Chung-ang University, Seoul, Korea
| | - Seong-il Eyun
- Department of Life Science, Chung-ang University, Seoul, Korea
| |
Collapse
|
5
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
6
|
Shartau RB, Turcotte LDM, Bradshaw JC, Ross ARS, Surridge BD, Nemcek N, Johnson SC. Dissolved Algal Toxins along the Southern Coast of British Columbia Canada. Toxins (Basel) 2023; 15:395. [PMID: 37368696 DOI: 10.3390/toxins15060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Harmful algal blooms (HABs) in coastal British Columbia (BC), Canada, negatively impact the salmon aquaculture industry. One disease of interest to salmon aquaculture is Net Pen Liver Disease (NPLD), which induces severe liver damage and is believed to be caused by the exposure to microcystins (MCs). To address the lack of information about algal toxins in BC marine environments and the risk they pose, this study investigated the presence of MCs and other toxins at aquaculture sites. Sampling was carried out using discrete water samples and Solid Phase Adsorption Toxin Tracking (SPATT) samplers from 2017-2019. All 283 SPATT samples and all 81 water samples tested positive for MCs. Testing for okadaic acid (OA) and domoic acid (DA) occurred in 66 and 43 samples, respectively, and all samples were positive for the toxin tested. Testing for dinophysistoxin-1 (DTX-1) (20 samples), pectenotoxin-2 (PTX-2) (20 samples), and yessotoxin (YTX) (17 samples) revealed that all samples were positive for the tested toxins. This study revealed the presence of multiple co-occurring toxins in BC's coastal waters and the levels detected in this study were below the regulatory limits for health and recreational use. This study expands our limited knowledge of algal toxins in coastal BC and shows that further studies are needed to understand the risks they pose to marine fisheries and ecosystems.
Collapse
Affiliation(s)
- Ryan B Shartau
- Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Lenora D M Turcotte
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Julia C Bradshaw
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Andrew R S Ross
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | | | - Nina Nemcek
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
7
|
Nandini S, Sarma SSS. Experimental Studies on Zooplankton-Toxic Cyanobacteria Interactions: A Review. TOXICS 2023; 11:176. [PMID: 36851051 PMCID: PMC9965014 DOI: 10.3390/toxics11020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacterial blooms have been recognized as a problem in fresh water for about 150 years. Over the past 50 years, experimental studies on the subject have gained importance considering the increasing need to control toxic cyanobacterial blooms. This article presents information on the different lines of research that have been undertaken on zooplankton-cyanobacteria interactions over the past 50 years. These include information on filtering/ingestion rates and phytoplankton preferences of small and large rotifers, cladocerans, and copepods; growth rates of zooplankton on cyanobacterial diets; feeding rates of other freshwater invertebrates on cyanobacteria; role of zooplankton in top-down biomanipulation efforts; effect of cyanotoxins on zooplankton; bioaccumulation of cyanotoxins; and physical and chemical control of cyanobacterial blooms. We also highlight measures that have led to successful lake management and improvement of water quality in selected waterbodies.
Collapse
|
8
|
Gunathilaka MDKL, Bao S, Liu X, Li Y, Pan Y. Antibiotic Pollution of Planktonic Ecosystems: A Review Focused on Community Analysis and the Causal Chain Linking Individual- and Community-Level Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1199-1213. [PMID: 36628989 DOI: 10.1021/acs.est.2c06787] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antibiotic pollution has become one of the most challenging environmental issues in aquatic ecosystems, with adverse effects on planktonic organisms that occupy the base of the aquatic food chain. However, research regarding this topic has not been systematically reviewed, especially in terms of community-level responses. In this review, we provide an overview of current antibiotic pollution in aquatic environments worldwide. Then, we summarize recent studies concerning the responses of planktonic communities to antibiotics, ranging from individual- to community-level responses. Studies have shown that extremely high concentrations of antibiotics can directly harm the growth and survival of plankton; however, such concentrations are rarely found in natural freshwater. It is more likely that environmentally relevant concentrations of antibiotics will affect the physiological, morphological, and behavioral characteristics of planktonic organisms; influence interspecific interactions among plankton species via asymmetrical responses in species traits; and thus alter the structure and function of the entire planktonic ecosystem. This review highlights the importance of community analysis in revealing antibiotic toxicity. We also encourage the establishment of the causal relationships between impacts at multiple scales in the future for predicting the community-level consequences of antibiotics based on the currently available individual-level evidence.
Collapse
Affiliation(s)
- M D K Lakmali Gunathilaka
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
- Department of Geography, University of Colombo, Colombo 00300, Sri Lanka
| | - Siyi Bao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Xiaoxuan Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China
| | - Ya Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| | - Ying Pan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management and Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan 650091, China
| |
Collapse
|
9
|
Soldán P. Improvement of online monitoring of drinking water quality for the city of Prague and the surrounding areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:758. [PMID: 34718880 PMCID: PMC8714628 DOI: 10.1007/s10661-021-09534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In the article, a new method of continuous monitoring of the biological quality of raw and treated waters at the Želivka Water Treatment Plant is suggested and assessed. This water treatment plant is one of the largest water treatment plants in Europe and the largest water treatment plant in the Czech Republic with a maximum projected peak output of 7 m3.s-1 and current output of around 3 m3.s-1 of drinking water. It is the largest water treatment plant for Prague which is the capital city of the Czech Republic. Additionally, this water treatment plant also supplies drinking water to the Central Bohemia and Vysočina regions. The main intention of the research was to suggest a new system of monitoring, which can guarantee a more reliable continuous control of the safe drinking water supply for the city of Prague and the surrounding area. The suggested method represents a completely new approach to monitoring the biological quality of drinking water in the Czech Republic using the DaphTox apparatus, only two of which exist in the Czech Republic. The article describes the experience and knowledge gained during the operation of such a monitoring system, including a description of the necessary measures to ensure its proper operation with a focus on the pre-treatment of raw and chlorinated waters. Recommended simple pre-treatment methods secure optimal living conditions for monitoring organisms and have no impact on the original biological quality of monitored water which is a necessary condition for proper monitoring of biological quality.
Collapse
Affiliation(s)
- Přemysl Soldán
- T. G. Masaryk Water Research Institute, Macharova 5, 702 00, Ostrava, Czech Republic.
| |
Collapse
|
10
|
Wan X, Cheng C, Gu Y, Shu X, Xie L, Zhao Y. Acute and chronic toxicity of microcystin-LR and phenanthrene alone or in combination to the cladoceran (Daphnia magna). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112405. [PMID: 34130182 DOI: 10.1016/j.ecoenv.2021.112405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Hazardous substances, such as microcystin-LR (MC-LR) and phenanthrene (Phe) are ubiquitous co-contaminants in eutrophic freshwaters, which cause harms to aquatic organisms. However, the risks associated with the co-exposure of aquatic biota to these two chemicals in the environment have received little attention. In this study, the single and mixture toxic effects of MC-LR and Phe mixtures were investigated in Daphnia magna after acute and chronic exposure. Acute tests showed that the median effective concentrations (48 h) for MC-LR, Phe and their mixtures were 13.46, 0.57 and 8.84 mg/L, respectively. Mixture toxicity prediction results indicated that the independent action model was more applicable than the concentration addition model. Moreover, combination index method suggested that the mixture toxicity was concentration dependent. Synergism was elicited at low concentrations of MC-LR and Phe exposure (≤4.04 + 0.17 mg/L), whereas antagonistic or additive effects were induced at higher concentrations. The involved mechanism of antagonism was presumably attributable to the protective effects of detoxification genes activated by high concentrations of MC-LR in mixtures. Additionally, chronic results also showed that exposure to a MC-LR and Phe mixture at low concentrations (≤50 +2 μg/L) resulted in greater toxic effects on D. magna life history than either chemical acting alone. The significant inhibition on detoxification genes and increased accumulation of MC-LR could be accounted for their synergistic toxic effects on D. magna. Our findings revealed the exacerbated ecological hazard of MC-LR and Phe at environmental concentrations (≤50 +2 μg/L), and provided new insights to the potential toxic mechanisms of MC-LR and Phe in aquatic animals.
Collapse
Affiliation(s)
- Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Yurong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Xiubo Shu
- Hangzhou Water Group Co. Ltd., 168 South Jianguo Road, Hangzhou 310009, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
11
|
Omidi A, Pflugmacher S, Kaplan A, Kim YJ, Esterhuizen M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021; 9:1583. [PMID: 34442662 PMCID: PMC8401979 DOI: 10.3390/microorganisms9081583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
Collapse
Affiliation(s)
- Azam Omidi
- Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg., 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada;
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Young Jun Kim
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
| | - Maranda Esterhuizen
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
- Finland and Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Bojadzija Savic G, Colinet H, Bormans M, Edwards C, Lawton LA, Briand E, Wiegand C. Cell free Microcystis aeruginosa spent medium affects Daphnia magna survival and stress response. Toxicon 2021; 195:37-47. [PMID: 33716069 DOI: 10.1016/j.toxicon.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/01/2022]
Abstract
Primary consumers in freshwater ecosystems, such as the zooplankton organism Daphnia magna, are highly affected by cyanobacteria, both as they may use it as a food source but also by cyanobacterial metabolites present in the water. Here, we investigate the impacts of cyanobacterial metabolites focussing on the environmental realistic scenario of the naturally released mixture without crushing cyanobacterial cells or their uptake as food. Therefore, D. magna were exposed to two concentrations of cell free cyanobacterial spent medium from Microcystis aeruginosa PCC 7806 to represent higher and lower ecologically-relevant concentrations of cyanobacterial metabolites. Including microcystin-LR, 11 metabolites have been detected of which 5 were quantified. Hypothesising concentration and time dependent negative impact, survival, gene expression marking digestion and metabolism, oxidative stress response, cell cycle and molting as well as activities of detoxification and antioxidant enzymes were followed for 7 days. D. magna suffered from oxidative stress as both catalase and glutathione S-transferase enzyme activities significantly decreased, suggesting enzyme exhaustibility after 3 and 7 days. Moreover, gene-expressions of the 4 stress markers (glutathione S-transferase, glutathione peroxidase, catalase and thioredoxin) were merely downregulated after 7 days of exposure. Energy allocation (expression of glyceraldehyde-3-phosphate dehydrogenase) was increased after 3 days but decreased as well after 7 days exposure. Cell cycle was impacted time dependently but differently by the two concentrations, along with an increasing downregulation of myosin heavy chain responsible for cell arrangement and muscular movements. Deregulation of nuclear hormone receptor genes indicate that D. magna hormonal steering including molting seemed impaired despite no detection of microviridin J in the extracts. As a consequence of all those responses and presumably of more than investigated molecular and physiological changes, D. magna survival was impaired over time, in a concentration dependent manner. Our results confirm that besides microcystin-LR, other secondary metabolites contribute to negative impact on D. magna survival and stress response.
Collapse
Affiliation(s)
| | - Hervé Colinet
- UMR ECOBIO, 6553 CNRS, Université de Rennes 1, Campus de Beaulieu, Rennes, France.
| | - Myriam Bormans
- UMR ECOBIO, 6553 CNRS, Université de Rennes 1, Campus de Beaulieu, Rennes, France.
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom.
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, United Kingdom.
| | - Enora Briand
- IFREMER, Phycotoxins Laboratory, F-44311, Nantes, France.
| | - Claudia Wiegand
- UMR ECOBIO, 6553 CNRS, Université de Rennes 1, Campus de Beaulieu, Rennes, France.
| |
Collapse
|
13
|
Lei L, Huang H, Peng L, Yang Y, Xiao L, Han BP. Life-history responses of Daphnia sinensis simultaneously exposed to Microcystis aeruginosa and Cylindrospermopsis raciborskii. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:771-779. [PMID: 32385599 DOI: 10.1007/s10646-020-02220-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Many cyanobacterial species co-occur commonly in a freshwater ecosystem and can be consumed simultaneously by zooplankton. Both Microcystis aeruginosa and Cylindrospermopsis raciborskii are the dominant species and coexist in eutrophic tropical waters, and they together are assumed to have exert a stronger effect on the life history traits of cladocerans than a single cyanobacterial species. In the present study, we tested the hypothesis with life-history experiments of Daphnia sienesis, a large cladoceran species in tropics. In the experiments, M. aeruginosa and C. raciborskii were used as a mixture of food with Chlorella pyrenoidosa for the experimental animals. D. sienesis showed excellent growth and survival on sole diets of C. pyrenoidosa (CP). By contrast, Daphnia's growth decreased significantly and reproduction was completely inhibited when cyanobacteria comprised 100% of the food offered. The supplementation of C. pyrenoidosa into cyanobacterial diets significantly decreased their harmful effects on Daphnia, who improved the life history traits with the reduction of cyanobacterial percentage in mixed foods, irrespective of cyanobacterial species. Compared with the cultures of D. sienesis fed with a single cyanobacteria species, the animals in the treatments fed both M.aeruginosa-FACHB469 (F469) and C. raciborskii N8 (N8) had a lower growth rate in all the proportion of C. pyrenoidosa (25% CP, 50% CP or 75% CP). The strongest synergistic inhibition by the two cyanobacterial strains was found in the treatments with the 25% CP (i.e., 25% CP + 37.5% F469 + 37.5% N8), and no animal survived to maturity and reproduced. Thus, the simultaneous exposure to the two cyanobacterial species should be taken into account in assessing the ecological risks of cyanobacterial blooms, since multiple cyanobacterial coexistence can result in strong synergistic inhibition on growth and reproduction of zooplankton.
Collapse
Affiliation(s)
- Lamei Lei
- Department of Ecology and Institute of Hydrobiology, Jinan University, 510632, Guangzhou, China.
| | - Haitang Huang
- Department of Ecology and Institute of Hydrobiology, Jinan University, 510632, Guangzhou, China
| | - Liang Peng
- Department of Ecology and Institute of Hydrobiology, Jinan University, 510632, Guangzhou, China
| | - Yang Yang
- Department of Ecology and Institute of Hydrobiology, Jinan University, 510632, Guangzhou, China
| | - Lijuan Xiao
- Department of Ecology and Institute of Hydrobiology, Jinan University, 510632, Guangzhou, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
14
|
Rzymski P, Klimaszyk P, Jurczak T, Poniedziałek B. Oxidative Stress, Programmed Cell Death and Microcystin Release in Microcystis aeruginosa in Response to Daphnia Grazers. Front Microbiol 2020; 11:1201. [PMID: 32625177 PMCID: PMC7311652 DOI: 10.3389/fmicb.2020.01201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that programmed cell death (PCD) in cyanobacteria is triggered by oxidative stress and that it contributes to the survival of the cyanobacterial population such as Microcystis aeruginosa. At the same time, microcystins (MCs) released during cell lysis have been implicated in colony formation (enabled by the release of polysaccharides) in M. aeruginosa – a strategy that allows the effect of a stressor, including grazing to be avoided or decreased. This experimental research has explored whether extracts of Daphnia magna and Daphnia cucullata (corresponding to 5, 25, 50, and 100 individuals per liter) reveal the effect on the growth, intracellular reactive oxygen species (ROS) content, lipid peroxidation, PCD, MC-LR release, and bound exopolysaccharide (EPS) level in M. aeruginosa during 7 days of exposure. As demonstrated, extracts of both daphnids induced dose-dependent growth inhibition, increase in ROS levels, lipid peroxidation, and PCD. Moreover, the release of MC-LR and an increase in the bound EPS fraction were observed in treated cultures. Generally, the greatest effects were observed under the influence of D. magna extracts. The study indicates that grazer presence can potentially trigger a series of events in the Microcystis population, with cells undergoing oxidative stress-induced PCD associated with MC release, which in turn increases EPS production by intact cells. As argued, this strategy is likely to have evolved in response to abiotic stressors, since both PCD and synthesis of MC in cyanobacteria predate the metazoan lineage. Nevertheless, it may still provide a benefit for the survival of the MC-producing M. aeruginosa population under grazer pressure.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan´, Poland
| | - Piotr Klimaszyk
- Department of Water Protection, Adam Mickiewicz University, Poznan´, Poland
| | - Tomasz Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, University of Lodz, Łódz´, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan´, Poland
| |
Collapse
|
15
|
Shahmohamadloo RS, Poirier DG, Ortiz Almirall X, Bhavsar SP, Sibley PK. Assessing the toxicity of cell-bound microcystins on freshwater pelagic and benthic invertebrates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109945. [PMID: 31753309 DOI: 10.1016/j.ecoenv.2019.109945] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacterial harmful algal blooms dominated by Microcystis frequently produce microcystins, a family of toxins capable of inflicting harm to pelagic and benthic freshwater invertebrates. Research on the effect of microcystins on invertebrates is inconclusive; from one perspective, studies suggest invertebrates can coexist in toxic blooms; however, studies have also measured negative food-associated effects from microcystins. To test the latter perspective, we examined the reproduction, growth, and survival of laboratory-cultured Ceriodaphnia dubia, Daphnia magna, and Hexagenia spp. exposed to cell-bound microcystins through a series of life-cycle bioassays. Test organisms were exposed to a concentration gradient ranging from 0.5 μg L-1 to 300 μg L-1 microcystins, which corresponds to values typically found in freshwaters during bloom season. Lethal concentrations in C. dubia (LC50 = 5.53 μg L-1) and D. magna (LC50 = 85.72 μg L-1) exposed to microcystins were among the lowest recorded to date, and reproductive effects were observed at concentrations as low as 2.5 μg L-1. Length of D. magna was significantly impacted in microcystin treatments great than 2.5 μg L-1. No lethality or growth impairments were observed in Hexagenia. This information will improve our understanding of the risks posed by microcystins to food webs in freshwaters.
Collapse
Affiliation(s)
| | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Roegner A, Truong L, Weirich C, Pírez-Schirmer M, Brena B, Miller TR, Tanguay R. Combined Danio rerio embryo morbidity, mortality and photomotor response assay: A tool for developmental risk assessment from chronic cyanoHAB exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134210. [PMID: 32380631 PMCID: PMC7111134 DOI: 10.1016/j.scitotenv.2019.134210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 05/28/2023]
Abstract
Freshwater harmful algal blooms produce a broad array of bioactive compounds, with variable polarity. Acute exposure to cyanotoxins can impact the liver, nervous system, gastrointestinal tract, skin, and immune function. Increasing evidence suggests chronic effects from low-level exposures of cyanotoxins and other associated bioactive metabolites of cyanobacterial origin. These sundry compounds persist in drinking and recreational waters and challenge resource managers in detection and removal. A systematic approach to assess the developmental toxicity of cyanobacterial metabolite standards was employed utilizing a robust and high throughput developmental Danio rerio embryo platform that incorporated a neurobehavioral endpoint, photomotor response. Subsequently, we applied the platform to cyanobacterial bloom surface water samples taken from temperate recreational beaches and tropical lake subsistence drinking water sources as a model approach. Dechorionated Danio rerio embryos were statically immersed beginning at four to six hours post fertilization at environmentally relevant concentrations, and then assessed at 24 h and 5 days for morbidity, morphological changes, and photomotor response. At least one assessed endpoint deviated significantly for exposed embryos for 22 out of 25 metabolites examined. Notably, the alkaloid lyngbyatoxin-a resulted in profound, dose-dependent morbidity and mortality beginning at 5 μg/L. In addition, hydrophobic components of extracts from beach monitoring resulted in potent morbidity and mortality despite only trace cyanotoxins detected. The hydrophilic extracts with several order of magnitude higher concentrations of microcystins resulted in no morbidity or mortality. Developmental photomotor response was consistently altered in environmental bloom samples, independent of the presence or concentration of toxins detected in extracts. While limited with respect to more polar compounds, this novel screening approach complements specific fingerprinting of acutely toxic metabolites with robust assessment of developmental toxicity, critical for chronic exposure scenarios.
Collapse
Affiliation(s)
- Amber Roegner
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, 28645 East Highway 34, Corvallis, OR 97333, USA
| | - Chelsea Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Macarena Pírez-Schirmer
- Departamento de Biociencias, Cátedra de Inmunología, Facultad de Química, Universidad de la República, Instituto de Higiene, A. Navarro 3051, 11600 Montevideo, Uruguay
| | - Beatriz Brena
- Departamento de Biociencias, Cátedra de Inmunología, Facultad de Química, Universidad de la República, Instituto de Higiene, A. Navarro 3051, 11600 Montevideo, Uruguay; Departamento de Biociencias, Cátedra de Bioquímica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| | - Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Robert Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, 28645 East Highway 34, Corvallis, OR 97333, USA
| |
Collapse
|
17
|
Du B, Liu G, Ke M, Zhang Z, Zheng M, Lu T, Sun L, Qian H. Proteomic analysis of the hepatotoxicity of Microcystis aeruginosa in adult zebrafish (Danio rerio) and its potential mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113019. [PMID: 31419664 DOI: 10.1016/j.envpol.2019.113019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Microcystis aeruginosa is one of the main species of cyanobacteria that causes water blooms. M. aeruginosa can release into the water several types of microcystins (MCs), which are harmful to aquatic organisms and even humans. However, few studies have investigated the hepatotoxicity of M. aeruginosa itself in zebrafish in environments that simulate natural aquatic systems. The objective of this study was to evaluate the hepatotoxicity of M. aeruginosa in adult zebrafish (Danio rerio) after short-term (96 h) exposure and to elucidate the potential underlying mechanisms. Distinct histological changes in the liver, such as enlargement of the peripheral nuclei and sinusoids and the appearance of fibroblasts, were observed in zebrafish grown in M. aeruginosa culture. In addition, antioxidant enzyme activity was activated and protein phosphatase (PP) activity was significantly decreased with increasing microalgal density. A proteomic analysis revealed alterations in a number of protein pathways, including ribosome translation, immune response, energy metabolism and oxidative phosphorylation pathways. Western blot and real-time PCR analyses confirmed the results of the proteomic analysis. All results indicated that M. aeruginosa could disrupt hepatic functions in adult zebrafish, thus highlighting the necessity of ecotoxicity assessments for M. aeruginosa at environmentally relevant densities.
Collapse
Affiliation(s)
- Benben Du
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
18
|
Calado SLDM, Santos GS, Leite TPB, Wojciechowski J, Nadaline M, Bozza DC, Magalhães VFD, Cestari MM, Prodocimo V, Silva de Assis HC. Depuration time and sublethal effects of microcystins in a freshwater fish from water supply reservoir. CHEMOSPHERE 2018; 210:805-815. [PMID: 30041158 DOI: 10.1016/j.chemosphere.2018.07.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Microcystins (MCs) are hepatotoxins that have been considered to be a worldwide problem due the effects that they can cause to environmental and human health systems. The Iraí Reservoir, located in the South of Brazil, is used as a water supply and MCs concentrations have been reported in this ecosystem. This study aimed to determine the MCs concentrations in the Iraí Reservoir and to evaluate the MCs depuration time and the health of Geophagus brasiliensis using biomarkers. Water and fish samples were collected in the Iraí Reservoir from August 2015 to May 2016. Phytoplankton and chemical analyses were conducted using water samples and the fish were divided into two groups; the Immediate Group (IMM) and the Depuration Group (DEP). In the IMM group, the blood, liver, muscle, brain and gills were collected, in order to evaluate the genotoxic, biochemical and chemical biomarkers. The DEP group was used in the depuration experiment for 90 days, and after this period the fish were submitted to the same procedure as the IMM group. Our results suggested that fish accumulated MCs and it may have caused oxidative stress, neurotoxicity and molecular damage. Furthermore, MCs concentrations increased during the depuration time and it resulted in molecular damage over the first 30 days. After 90 days, the recovery of the antioxidant system occurred. The depuration started on the 15th day, however, the toxins were still present in the samples. Therefore, the effects and the persistence of MCs are a risk to environmental systems and human health.
Collapse
Affiliation(s)
- Sabrina Loise de Morais Calado
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Gustavo Souza Santos
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Talitha Pires Borges Leite
- Department of Pharmacology, Federal University of Paraná (UFPR), Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Juliana Wojciechowski
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Mário Nadaline
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Deivyson Cattine Bozza
- Department of Physiology, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | | | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Viviane Prodocimo
- Department of Physiology, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | | |
Collapse
|
19
|
Herrera N, Herrera C, Ortíz I, Orozco L, Robledo S, Agudelo D, Echeverri F. Genotoxicity and cytotoxicity of three microcystin-LR containing cyanobacterial samples from Antioquia, Colombia. Toxicon 2018; 154:50-59. [PMID: 30273704 DOI: 10.1016/j.toxicon.2018.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
The presence of cyanobacterial blooms and cyanotoxins in water presents a global problem due to the deterioration of ecosystems and the possibility of poisoning in human and animals. Microcystin LR is the most widely distributed cyanotoxin and liver cells are its main target. In the present study, HepG2 cells were used to determine DNA damage of three crude extracts of cyanobacterial blooms containing MC-LR, through comet assay. The results show that all extracts at a concentration of 500 μg mL-1 caused low damage in hepatocytes exposed for 24 h, but produced total mortality even at low concentrations at 48 h. Moreover, balloons corresponding to cell apoptosis were found. Through HPLC/MS, MC-LR was detected in all samples of cyanobacterial blooms at concentrations of (5,65 μg ml-1) in sample 1, (1,24 μg ml-1) in sample 2 and (57,29 μg ml-1) in sample 3. In addition, in all samples high molecular weights peaks were detected, that may correspond to other microcystins. Besides, the cytotoxic effect of a cyanobacterial bloom and some of its chromatographic fractions from the crude extracts were evaluated in U-937, J774, Hela and Vero cell lines, using the enzymatic micromethod (MTT). The highest toxicity was detected in U-937 cells (LC50 = 29.7 μg mL-1) and Vero cells (LC50 = 39.7 μg mL-1). Based on these results, it is important to remark that genotoxic and cytotoxicity assays are valuable methods to predict potential biological risks in waters contaminated with blooms of cyanobacteria, since chemical analysis can only describe the presence of cyanotoxins, but not their biological effects.
Collapse
Affiliation(s)
- Natalia Herrera
- Grupo de Química Organica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53-10, Medellín, 050010, Colombia.
| | - Carolina Herrera
- Grupo de Química Organica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53-10, Medellín, 050010, Colombia
| | - Isabel Ortíz
- Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luz Orozco
- Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Diana Agudelo
- Grupo de investigación en Gestión y Modelación Ambiental (GAIA), Universidad de Antioquia, Medellín, Colombia
| | - Fernando Echeverri
- Grupo de Química Organica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53-10, Medellín, 050010, Colombia.
| |
Collapse
|
20
|
Xiao M, Li M, Reynolds CS. Colony formation in the cyanobacterium
Microcystis. Biol Rev Camb Philos Soc 2018; 93:1399-1420. [DOI: 10.1111/brv.12401] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Man Xiao
- College of Natural Resources and Environment Northwest A & F University Yangling 712100 China
- Australian Rivers Institute, School of Environment and Science Griffith University Nathan Queensland 4111 Australia
| | - Ming Li
- College of Natural Resources and Environment Northwest A & F University Yangling 712100 China
| | | |
Collapse
|
21
|
Scherer PI, Absmeier C, Urban M, Raeder U, Geist J, Zwirglmaier K. Influence of cyanobacteria, mixotrophic flagellates, and virioplankton size fraction on transcription of microcystin synthesis genes in the toxic cyanobacterium Microcystis aeruginosa. Microbiologyopen 2018; 7:e00538. [PMID: 28944994 PMCID: PMC5822348 DOI: 10.1002/mbo3.538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023] Open
Abstract
Toxic cyanobacteria such as Microcystis aeruginosa are a worldwide concern in freshwater reservoirs. Problems associated with their mass occurrence are predicted to increase in the future due to global warming. The hepatotoxic secondary metabolite microcystin is of particular concern in this context. This study aimed to determine whether co-occurring microorganisms influence the expression of microcystin biosynthesis genes. To this end, we performed cocultivation experiments and measured mcyB and mcyD transcripts in M. aeruginosa using RT-qPCR. We utilized representatives from three different plankton groups: the picocyanobacterium Synechococcus elongatus, the unicellular flagellate grazer Ochromonas danica, and virioplankton from two different lakes. The presence of S. elongatus significantly increased mcyB and mcyD transcription in M. aeruginosa. Cocultivation with the mixotrophic chrysophyte O. danica did not increase the transcription of mcyB and mcyD; in fact, mcyD transcripts decreased significantly. The virioplankton size fraction of environmental water samples induced a significant increase in mcyB and mcyD transcription when obtained from lakes with cyanobacterial blooms. Our results show that co-occurring microorganisms influence the expression of microcystin biosynthesis genes in M. aeruginosa.
Collapse
Affiliation(s)
- Pia I. Scherer
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
| | - Carolin Absmeier
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
| | - Maria Urban
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
- Bundeswehr Institute of MicrobiologyMunichGermany
| | - Uta Raeder
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
| | - Juergen Geist
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
| | - Katrin Zwirglmaier
- Aquatic Systems Biology UnitDepartment of Life Sciences WeihenstephanLimnological Research Station IffeldorfTechnical University of MunichMunichGermany
- Bundeswehr Institute of MicrobiologyMunichGermany
| |
Collapse
|
22
|
Niu Z, Du L, Li J, Zhang Y, Lv Z. Ecological risk assessment of microcystin-LR in the upstream section of the Haihe River based on a species sensitivity distribution model. CHEMOSPHERE 2018; 193:403-411. [PMID: 29154115 DOI: 10.1016/j.chemosphere.2017.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 10/11/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
The eutrophication of surface water has been the main problem of water quality management in recent decades, and the ecological risk of microcystin-LR (MC-LR), which is the by-product of eutrophication, has drawn more attention worldwide. The aims of our study were to determine the predicted no effect concentration (PNEC) of MC-LR and to assess the ecological risk of MC-LR in the upstream section of the Haihe River. HC5 (hazardous concentration for 5% of biological species) and PNEC were obtained from a species sensitivity distribution (SSD) model, which was constructed with the acute toxicity data of MC-LR on aquatic organisms. The concentrations of MC-LR in the upstream section of the Haihe River from April to August of 2015 were analysed, and the ecological risk characteristics of MC-LR were evaluated based on the SSD model. The results showed that the HC5 of MC-LR in freshwater was 17.18 μg/L and PNEC was 5.73 μg/L. The concentrations of MC-LR ranged from 0.68 μg/L to 32.21 μg/L and were obviously higher in summer than in spring. The values of the risk quotient (RQ) ranged from 0.12 to 5.62, suggesting that the risk of MC-LR for aquatic organisms in the river was at a medium or high level during the study period. Compared with other waterbodies in the world, the pollution level of MC-LR in the Haihe River was at a moderate level. This research could promote the study of the ecological risk of MC-LR at the ecosystem level.
Collapse
Affiliation(s)
- Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Lei Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhiwei Lv
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
23
|
Microcystins Presence in Mussels (M. galloprovincialis) and Water of Two Productive Mediterranean's Lagoons (Sardinia, Italy). BIOMED RESEARCH INTERNATIONAL 2017; 2017:3769245. [PMID: 29359150 PMCID: PMC5735587 DOI: 10.1155/2017/3769245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/15/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022]
Abstract
Microcystins (MCs) are hepatotoxins harmful for animal and human health. The most toxic type between them is MC-LR whose presence has been investigated in different reservoirs all around the world. In this work microcystins were monitored in spring and summer in water and mussels (Mytilus galloprovincialis) of two Sardinia lagoons: Cabras and Calich lagoons. A Solid Phase Extraction method was developed to clean and concentrate samples before the Enzyme Linked Immunosorbent Assay (ELISA) and the following Mass Spectrometry detection. MCs presence was detected using the screening ELISA test in both lagoons. MCs peak was revealed in July for water and mussels belonging to Cabras lagoon (0.75 ± 0.07 ng/L in water and 0.12 ± 0.04 ng/g ww in mussels). In water of Calich lagoon there was a constant trend in the concentration of MCs during the considered months, while there was a MCs peak in July (0.6 ± 0.5 ng/g ww) in mussels. The following LC-MS/MS analysis did not reveal MC-LR presence in all analyzed samples. These results can be useful to enrich knowledge on public health and consumer's safeguard.
Collapse
|
24
|
Romero-Oliva CS, Contardo-Jara V, Pflugmacher S. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon 2015; 105:62-73. [PMID: 26325293 DOI: 10.1016/j.toxicon.2015.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 01/10/2023]
Abstract
Recent studies evidence that macrophytes can uptake and bioaccumulate microcystins (MC) from contaminated environments, suggesting their use in phytoremediation. In the present study Ceratophyllum demersum, Egeria densa and Hydrilla verticillata were exposed to cell free crude extracts (CE) containing three MC congeners MC-LR, MC-RR and MC-YR at a total MC concentration of 104.4 ± 7.6 μg/L from Lake Amatitlán, Guatemala. Time dependent total glutathione (tGSH), glutathione disulfide (GSSG), disappearance of MC from exposure medium and macrophyte uptake as well as calculated uptake and biotransformation rates and bioconcentration factors (BCF) were monitored after 1, 4, 8 hours (h) and 1, 3, 7 and 14 days (d). Results showed that tGSH concentrations in all exposed macrophytes were enhanced by CE. Disappearance of 62.1 ± 13, 40.8 ± 3.1 and 37.8 ± 3.5 μg/L total MCs from exposure mediums with E. densa, H. verticillata and C. demersum were observed after 1 h. Followed by the total elimination of MCs in exposure medium from H. verticillata after 14 d. Highest MC bioaccumulation capacity (BCF), was observed in E. densa followed by C. demersum and H. verticillata. The here presented results imply the strong MC phytoremediation potential of the evaluated macrophytes.
Collapse
Affiliation(s)
- Claudia Suseth Romero-Oliva
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Valeska Contardo-Jara
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| | - Stephan Pflugmacher
- Technische Universität Berlin, Department of Ecotoxicological Impact Research and Ecotoxicology, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
| |
Collapse
|