1
|
Perez-Riverol A, Hideki Izuka Moraes G, Dos Santos-Pinto JRA, Fernandes LGR, Lasa AM, Dorn B, Biló MB, de Lima Zollner R, Jakob T, Palma MS. An Allergomic Study Reveals Two Novel Venom Allergens, Phospholipase A1 and Antigen 5, From the Social Wasp Apoica pallens. Clin Exp Allergy 2025; 55:250-252. [PMID: 39844010 DOI: 10.1111/cea.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Affiliation(s)
- Amilcar Perez-Riverol
- Department of Basic and Applied Biology, Institute for Biosciences, University of São Paulo State, Rio Claro, São Paulo, Brazil
- Department of Dermatology and Allergology, University Medical Center Gieβen, Justus Liebig University, Giessen, Germany
| | - Gabriel Hideki Izuka Moraes
- Department of Basic and Applied Biology, Institute for Biosciences, University of São Paulo State, Rio Claro, São Paulo, Brazil
| | | | - Luis Gustavo Romani Fernandes
- Department of Dermatology and Allergology, University Medical Center Gieβen, Justus Liebig University, Giessen, Germany
- Laboratory for Translational Immunology, Faculty of Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Alexis Musacchio Lasa
- Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Brita Dorn
- Department of Dermatology and Allergology, University Medical Center Gieβen, Justus Liebig University, Giessen, Germany
| | - Maria Beatrice Biló
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Allergy Unit, Department of Internal Medicine, University Hospital of Ancona, Ancona, Italy
| | - Ricardo de Lima Zollner
- Laboratory for Translational Immunology, Faculty of Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center Gieβen, Justus Liebig University, Giessen, Germany
| | - Mario Sergio Palma
- Department of Basic and Applied Biology, Institute for Biosciences, University of São Paulo State, Rio Claro, São Paulo, Brazil
- Institute of Investigation in Immunology (Iii)/INCT, São Paulo, Brazil
| |
Collapse
|
2
|
Wu YH, Xiong F, Ou ZW, Wang JA, Cui J, Jiang L, Lan WJ. Anti-Tumor Effects of Vespa bicolor Venom on Liver Cancer: In Vitro and In Vivo Studies. Toxins (Basel) 2024; 17:4. [PMID: 39852957 PMCID: PMC11768937 DOI: 10.3390/toxins17010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
Despite the popular belief in the anti-tumor properties of Vespa bicolor venom (VBV), there is limited scientific evidence to support this claim. This study is the first to examine the anti-tumor effects of VBV on liver cancer, both alone and in combination with cisplatin (DDP), through in vitro and in vivo experiments. In vitro experiments evaluated VBV and its combination with DDP on HepG2 cell proliferation, invasion, migration, and apoptosis. Animal studies examined the tumor-suppressive effects, safety (hepatotoxicity and nephrotoxicity), and immune impact of these treatments in tumor-bearing mice. VBV monotherapy significantly inhibited the growth of HepG2 cells by suppressing their proliferation and invasion and induced apoptosis in vitro. Notably, low VBV concentrations significantly promoted the proliferation of normal liver cells (L-02), suggesting a hepatoprotective effect. In vivo, VBV monotherapy enhanced immune function and exhibited tumor suppression comparable to DDP monotherapy but did not induce significant liver or kidney damage. In addition, VBV combined with DDP synergistically enhanced the anti-tumor effects of DDP, compensating for its limited apoptosis-inducing activity and insufficient enhancement of immune function. Initial studies have shown the strong potential of VBV as an anti-liver-tumor drug, highlighting its unique clinical value.
Collapse
Affiliation(s)
- Yong-Hua Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.-H.W.); (F.X.)
| | - Feng Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.-H.W.); (F.X.)
| | - Zheng-Wen Ou
- Production and Research Base for Wasp Deinsectization, Huxin Biotechnology Co., Ltd., Jiangmen 529245, China; (Z.-W.O.); (J.-A.W.); (J.C.)
| | - Jing-An Wang
- Production and Research Base for Wasp Deinsectization, Huxin Biotechnology Co., Ltd., Jiangmen 529245, China; (Z.-W.O.); (J.-A.W.); (J.C.)
| | - Jing Cui
- Production and Research Base for Wasp Deinsectization, Huxin Biotechnology Co., Ltd., Jiangmen 529245, China; (Z.-W.O.); (J.-A.W.); (J.C.)
| | - Lin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.-H.W.); (F.X.)
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.-H.W.); (F.X.)
| |
Collapse
|
3
|
Bemanian MH, Shokouhi Shoormasti R, Arshi S, Jafari M, Shokri S, Fallahpour M, Nabavi M, Zaremehrjardi F. The role of molecular diagnosis in anaphylactic patients with dual or triple-sensitization to Hymenoptera venoms. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:22. [PMID: 38521942 PMCID: PMC10960983 DOI: 10.1186/s13223-024-00885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The poly-sensitization to Hymenoptera venom makes it difficult to select genuine allergens for immunotherapy and increases patients' costs. The objective of this study was to determine the culprit allergen in dual or triple-sensitized patients to three Hymenoptera venoms through molecular diagnosis and evaluating the results of incorporating the molecular diagnosis with skin tests. METHODS Thirty-two patients with anaphylactic reactions and dual or triple-sensitization to Hymenoptera venoms in skin tests entered this study. IgE-sensitization to whole extracts and molecules of Apis mellifera (Api m), Vespula vulgaris (Ves v), and Polistes dominulus (Pol d) was evaluated utilizing ALEX or ImmunoCAP. RESULTS Twenty-nine patients (90.6%) were male. IgE-sensitization to at least one of the allergenic molecules related to Apis mellifera, Vespula vulgaris, and Polistes dominulus was seen in 59.4, 53.1, and 21.9%, respectively. Among 32 patients, 14 (43.8) and 8 (25%), were mono-sensitized to Api m and Ves v components in ALEX, respectively. Double sensitization to Hymenoptera was identified in 18.8% of patients in ALEX. Api m 1+/Api m 2-/Api m 10- and Ves v 1+/Ves v 5+ demonstrated the most prevalent sensitizations patterns in our patients. CONCLUSIONS The molecular diagnosis of IgE-sensitization to Hymenoptera venoms can be valuable, especially in patients who show dual or triple-sensitization in skin tests, as the ALEX results revealed mono and double-sensitization to Hymenoptera venoms in 22 and 6 patients, respectively. Regarding the high cost and adverse reactions of venom immunotherapy, especially for two or three venoms, incorporating the molecular diagnosis alongside skin tests for accurate diagnosis of the culprit venom could help decrease costs for patients.
Collapse
Affiliation(s)
- Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Shokouhi Shoormasti
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Jafari
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zaremehrjardi
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Assugeni IOS, Bazon ML, Pinto LM, Mainente LAB, Brochetto-Braga MR, de Lima Zollner R, Fernandes LGR. Recombinant antigen 5 from Polybia paulista wasp venom (Hymenoptera, Vespidae): Antigen-specific antibody production and functional profile of CD4 + T cells in the immune response. J Immunol Methods 2023; 522:113557. [PMID: 37689389 DOI: 10.1016/j.jim.2023.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Polybia paulista is a neotropical social wasp related to severe accidents and allergic reactions cases, including anaphylaxis, in southeastern Brazil. Antigen 5 (Poly p 5) is a major allergenic protein from its venom with potential use for component-resolved diagnostic. Therefore, the previous characterization of the immune response profile triggered by Poly p 5 should be evaluated. Recombinant Poly p 5 (rPoly p 5) was used to sensitize BALB/c mice with six weekly intradermal doses, and the specific antibody production and the functional profile of CD4+ T cells were assessed. rPoly p 5 induced the production of specific immunoglobulins (sIg) sIgE, sIgG1 and sIgG2a, which could recognize natural Poly p 5 presented in the venom of four different wasp species. rPoly p 5 stimulated in vitro the CD4+ T cells from immunized mice, which showed a significant proliferative response. These antigen-specific CD4+T cells produced IFN-γ and IL-17A cytokines and increased ROR-γT transcription factor expression. No differences between the control group and sensitized mice were found in IL-4 production and GATA-3 and T-bet expression. Interestingly, increased CD25+FoxP3+ regulatory T cells (Tregs) frequency was observed in the splenocyte cell cultures from rPoly p 5 immunized mice after the in vitro stimulation with both P. paulista venom extract and rPoly p 5. Here we showed that rPoly p 5 induces antigen-specific antibodies capable of recognizing Antigen 5 in the venom of four wasp species and modulates antigen-specific CD4+ T cells to IFN-γ production response associated with a Th17 profile in sensitized mice. These findings emphasize the potential use of rPoly p 5 as an essential source of a major wasp allergen with significant immunological properties.
Collapse
Affiliation(s)
- Isabela Oliveira Sandrini Assugeni
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Murilo Luiz Bazon
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Lucas Machado Pinto
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | | | - Márcia Regina Brochetto-Braga
- Laboratory of Arthropods Molecular Biology (LBMA), Institute of Biosciences of Rio Claro, Department of Biology, São Paulo State University, Rio Claro, SP, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology (LIT), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology (LIT), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
5
|
Wu YH, Zhang Y, Fang DQ, Chen J, Wang JA, Jiang L, Lv ZF. Characterization of the Composition and Biological Activity of the Venom from Vespa bicolor Fabricius, a Wasp from South China. Toxins (Basel) 2022; 14:toxins14010059. [PMID: 35051036 PMCID: PMC8777732 DOI: 10.3390/toxins14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
We analyzed, for the first time, the major components and biological properties of the venom of Vespa bicolor, a wasp from South China. Using HPLC and SDS-PAGE, combined with LC–MS/MS, MALDI-TOF-MS, and NMR data to analyze V. bicolor venom (VBV), we found that VBV contains three proteins (hyaluronidase A, phospholipase A1 (two isoforms), and antigen 5 protein) with allergenic activity, two unreported proteins (proteins 5 and 6), and two active substances with large quantities (mastoparan-like peptide 12a (Vb-MLP 12a), and 5-hydroxytryptamine (5-HT)). In addition, the antimicrobial activity of VBV was determined, and results showed that it had a significant effect against anaerobic bacteria. The minimum inhibitory concentration and minimum bactericidal concentration for Propionibacterium acnes were 12.5 µg/mL. Unsurprisingly, VBV had strong antioxidant activity because of the abundance of 5-HT. Contrary to other Vespa venom, VBV showed significant anti-inflammatory activity, even at low concentrations (1 µg/mL), and we found that Vb-MLP 12a showed pro-inflammatory activity by promoting the proliferation of RAW 264.7 cells. Cytotoxicity studies showed that VBV had similar antiproliferative effects against all tested tumor cell lines (HepG2, Hela, MCF-7, A549, and SASJ-1), with HepG2 being the most susceptible. Overall, this study on VBV has high clinical importance and promotes the development of Vespa bicolor resources.
Collapse
Affiliation(s)
- Yong-Hua Wu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
- Production and Research Base for Wasp Deinsectization, Guangdong Huxin Biotech Technology Co., Ltd., Jiangmen 529245, China;
| | - Yu Zhang
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
| | - Dan-Qiao Fang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
| | - Jing Chen
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
| | - Jing-An Wang
- Production and Research Base for Wasp Deinsectization, Guangdong Huxin Biotech Technology Co., Ltd., Jiangmen 529245, China;
| | - Lin Jiang
- Guangdong Technology Research Center for Advanced Chinese Medicine, Sun Yat-Sen University, Guangzhou 510006, China; (Y.Z.); (J.C.)
- Correspondence: (L.J.); (Z.-F.L.)
| | - Zhu-Fen Lv
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.-H.W.); (D.-Q.F.)
- Correspondence: (L.J.); (Z.-F.L.)
| |
Collapse
|
6
|
Cross-Reactive Carbohydrate Determinant in Apis mellifera, Solenopsis invicta and Polybia paulista Venoms: Identification of Allergic Sensitization and Cross-Reactivity. Toxins (Basel) 2020; 12:toxins12100649. [PMID: 33050082 PMCID: PMC7599856 DOI: 10.3390/toxins12100649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Allergic reactions to Hymenoptera venom, which could lead to systemic and even fatal symptoms, is characterized by hypersensitivity reactions mediated by specific IgE (sIgE) driven to venom allergens. Patients multisensitized to sIgE usually recognize more than one allergen in different Hymenoptera species. However, the presence of sIgE directed against Cross-Reactive Carbohydrate Determinant (CCD), which occurs in some allergens from Hymenoptera venom, hampers the identification of the culprit insects. CCD is also present in plants, pollen, fruits, but not in mammals. Bromelain (Brl) extracted from pineapples is a glycoprotein commonly used for reference to sIgE-CCD detection and analysis. In sera of fifty-one Hymenoptera allergic patients with specific IgE ≥ 1.0 KU/L, we assessed by immunoblotting the reactivity of sIgE to the major allergens of Apis mellifera, Polybia paulista and Solenopsis invicta venoms. We also distinguished, using sera adsorption procedures, the cases of CCD cross-reaction using Brl as a marker and inhibitor of CCD epitopes. The presence of reactivity for bromelain (24–28 kDa) was obtained in 43% of the patients, in which 64% presented reactivity for more than one Hymenoptera venom in radioallergosorbent (RAST) tests, and 90% showed reactivity in immunoblot analysis to the major allergens of Apis mellifera, Polybia paulista and Solenopsis invicta venoms. Sera adsorption procedures with Brl lead to a significant reduction in patients’ sera reactivity to the Hymenoptera allergens. Immunoblotting assay using pre- and post-Brl adsorption sera from wasp-allergic patients blotted with non-glycosylated recombinant antigens (rPoly p1, rPoly p5) from Polybia paulista wasp venom showed no change in reactivity pattern of sIgE that recognize allergen peptide epitopes. Our results, using Brl as a marker and CCD inhibitor to test sIgE reactivity, suggest that it could complement diagnostic methods and help to differentiate specific reactivity to allergens’ peptide epitopes from cross-reactivity caused by CCD, which is extremely useful in clinical practice.
Collapse
|
7
|
Herrera C, Leza M, Martínez-López E. Diversity of compounds in Vespa spp. venom and the epidemiology of its sting: a global appraisal. Arch Toxicol 2020; 94:3609-3627. [PMID: 32700166 DOI: 10.1007/s00204-020-02859-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
Abstract
Poisonous animals imply a risk to human life, because their venom is a complex mixture of low molecular weight components, peptides and proteins. Hornets use the venom for self-defence, to repel intruders and to capture prey, but they can cause poisoning and allergic reactions to people. In particular, they seem to be a health problem in the countries where they are native due to their sting, which in the most severe cases can lead to severe or fatal systemic anaphylaxis. But this situation is being an emerging problem for new countries and continents because hornet incursions are increasing in the global change scenario, such as in Europe and America. Furthermore, 55 detailed cases of hornet sting were found in 27 papers during the current review where 36.4% died due to, mainly, a multi-organ failure, where renal failure and liver dysfunction were the most common complications. Moreover, the great taxonomic, ecological diversity, geographical distribution and the wide spectrum of pathophysiological symptoms of hornets have been the focus of new research. Considering this, the present systematic review summarizes the current knowledge about the components of Vespa venom and the epidemiology of its sting to serve as reference for the new research focused on the development of techniques for diagnosis, new drugs and treatments of its sting.
Collapse
Affiliation(s)
- Cayetano Herrera
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain
| | - Mar Leza
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain.
| | - Emma Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain.,Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
8
|
Blank S, Bazon ML, Grosch J, Schmidt-Weber CB, Brochetto-Braga MR, Bilò MB, Jakob T. Antigen 5 Allergens of Hymenoptera Venoms and Their Role in Diagnosis and Therapy of Venom Allergy. Curr Allergy Asthma Rep 2020; 20:58. [PMID: 32647993 PMCID: PMC7347709 DOI: 10.1007/s11882-020-00954-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Stings of Hymenoptera of the superfamily Vespoidea such as yellow jackets, paper wasps or stinging ants are common triggers for severe and even fatal allergic reactions. Antigen 5 allergens are potent allergens in the majority of these venoms with major importance for diagnosis and therapy. Reviewed here are the characteristics of antigen 5 allergens, their role in component-resolved diagnostics as well as current limitations of the available diagnostics for proper therapeutic decisions. RECENT FINDINGS Antigens 5 are proteins of unknown function in Hymenoptera venoms with high allergenic potency. They represent key elements in component-resolved diagnosis to discriminate between honeybee and vespid venom allergy. However, due to their pronounced cross-reactivity, there are remaining diagnostic and therapeutic challenges that have to be addressed. Antigens 5 are highly relevant venom allergens of the Vespoidea superfamily. Although their use in component-resolved diagnosis facilitates dissection of cross-reactivity and primary allergy in double sensitization to honeybee and vespid venom, new diagnostic concepts are needed to discriminate between allergies to different vespid species.
Collapse
Affiliation(s)
- Simon Blank
- Center of Allergy and Environment (ZAUM), School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Technical University of Munich, Ingolstädter Landstraße 1, 85764, Munich, Germany.
| | - Murilo Luiz Bazon
- Center of Allergy and Environment (ZAUM), School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Technical University of Munich, Ingolstädter Landstraße 1, 85764, Munich, Germany
- Department of General and Applied Biology, Biosciences Institute, Sao Paulo State University, Rio Claro, São Paulo, Brazil
| | - Johannes Grosch
- Center of Allergy and Environment (ZAUM), School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Technical University of Munich, Ingolstädter Landstraße 1, 85764, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Technical University of Munich, Ingolstädter Landstraße 1, 85764, Munich, Germany
| | - Márcia Regina Brochetto-Braga
- Department of General and Applied Biology, Biosciences Institute, Sao Paulo State University, Rio Claro, São Paulo, Brazil
| | - Maria Beatrice Bilò
- Department of Clinical and Molecular Sciences, Ancona and Allergy Unit, Department of Internal Medicine, University Hospital of Ancona, Polytechnic University of Marche, Ancona, Italy
| | - Thilo Jakob
- Experimental Dermatology and Allergy Research Group, Department of Dermatology and Allergology, Justus-Liebig-University Gießen, Giessen, Germany
| |
Collapse
|
9
|
Fernandes LGR, Perez-Riverol A, Bazon ML, Abram DM, Brochetto-Braga MR, Zollner RDL. Functional Profile of Antigen Specific CD4 + T Cells in the Immune Response to Phospholipase A1 Allergen from Polybia paulista Venom. Toxins (Basel) 2020; 12:toxins12060379. [PMID: 32521656 PMCID: PMC7354480 DOI: 10.3390/toxins12060379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Insect venom can cause systemic allergic reactions, including anaphylaxis. Improvements in diagnosis and venom immunotherapy (VIT) are based on a better understanding of an immunological response triggered by venom allergens. Previously, we demonstrated that the recombinant phospholipase A1 (rPoly p 1) from Polybia paulista wasp venom induces specific IgE and IgG antibodies in sensitized mice, which recognized the native allergen. Here, we addressed the T cell immune response of rPoly p 1-sensitized BALB/c mice. Cultures of splenocytes were stimulated with Polybia paulista venom extract and the proliferation of CD8+ and CD4+ T cells and the frequency of T regulatory cells (Tregs) populations were assessed by flow cytometry. Cytokines were quantified in cell culture supernatants in ELISA assays. The in vitro stimulation of T cells from sensitized mice induces a significant proliferation of CD4+ T cells, but not of CD8+ T cells. The cytokine pattern showed a high concentration of IFN-γ and IL-6, and no significant differences to IL-4, IL-1β and TGF-β1 production. In addition, the rPoly p 1 group showed a pronounced expansion of CD4+CD25+FoxP3+ and CD4+CD25-FoxP3+ Tregs. rPoly p 1 sensitization induces a Th1/Treg profile in CD4+ T cell subset, suggesting its potential use in wasp venom immunotherapy.
Collapse
Affiliation(s)
- Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, Medicine School, FCM, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (D.M.A.); (R.d.L.Z.)
- Correspondence:
| | - Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro 13500, Brazil;
| | - Murilo Luiz Bazon
- Laboratory of Arthropods Molecular Biology - LBMA-IBRC-UNESP (São Paulo State University), Rio Claro 13506-900, Brazil; (M.L.B.); (M.R.B.-B.)
| | - Débora Moitinho Abram
- Laboratory of Translational Immunology, Medicine School, FCM, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (D.M.A.); (R.d.L.Z.)
| | - Márcia Regina Brochetto-Braga
- Laboratory of Arthropods Molecular Biology - LBMA-IBRC-UNESP (São Paulo State University), Rio Claro 13506-900, Brazil; (M.L.B.); (M.R.B.-B.)
- Venoms and Venomous Animal Studies Center-CEVAP, São Paulo State University (UNESP), Botucatu 18610-307, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Medicine School, FCM, University of Campinas (UNICAMP), Campinas 13083-888, Brazil; (D.M.A.); (R.d.L.Z.)
| |
Collapse
|
10
|
Perez-Riverol A, Musacchio-Lasa A, Fernandes LGR, dos Santos-Pinto JRA, Esteves FG, Bazon ML, Zollner RDL, Palma MS, Brochetto-Braga MR. Improved production of the recombinant phospholipase A1 from Polybia paulista wasp venom expressed in bacterial cells for use in routine diagnostics. 3 Biotech 2020; 10:217. [PMID: 32355591 DOI: 10.1007/s13205-020-02202-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022] Open
Abstract
Phospholipase A1 (PLA1) is one of the three major allergens identified in the venom of P. paulista (Hymenoptera: Vespidae), a clinically relevant wasp from southeastern Brazil. The recombinant form of this allergen (rPoly p 1) could be used for the development of molecular diagnostic of venom allergy. Early attempts to produce rPoly p 1 using Escherichia coli BL21 (DE3) cells rendered high yields of the insoluble rPoly p 1 but with low levels of solubilized protein recovery (12%). Here, we aimed to improve the production of rPoly p 1 in E. coli by testing different conditions of expression, solubilization of the inclusion bodies and protein purification. The results showed that the expression at 16 °C and 0.1 mM of IPTG increased the production of rPoly p 1, still in the insoluble form, but with high solubilized protein yields after incubation with citrate-phosphate buffer with 0.15 M NaCl, 6 M urea, pH 2.6 at 25 ºC for 2 h. The venom allergen was also cloned in pPICZαA vector for soluble expression as a secreted protein in Pichia pastoris X-33 cells, rendering almost undetectable levels (nanograms) in the culture supernatant. In contrast, a sevenfold increase of the solubilized and purified rPoly p 1 yields (1.5 g/L of fermentation broth) was obtained after improved production in E. coli. The identity of the protein was confirmed with an anti-His antibody and MS spectra. Allergen-specific IgE (sIgE)-mediated recognition was evaluated in immunoblotting with sera of allergic patients (n = 40). Moreover, rPoly p 1 showed high levels of diagnostic sensitivity (95%). The optimized strategy for rPoly p 1 production described here, will provide the amounts of allergen necessary for the subsequent protein refolding, immunological characterization steps, and ultimately, to the development of molecular diagnostic for P. paulista venom allergy.
Collapse
|
11
|
Current challenges in molecular diagnostics of insect venom allergy. ALLERGO JOURNAL 2020. [DOI: 10.1007/s15007-020-2518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Wang J, Song J, Fang Q, Yao H, Wang F, Song Q, Ye G. Insight into the Functional Diversification of Lipases in the Endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) by Genome-scale Annotation and Expression Analysis. INSECTS 2020; 11:E227. [PMID: 32260574 PMCID: PMC7240578 DOI: 10.3390/insects11040227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Lipases play essential roles in digestion, transport, and processing of dietary lipids in insects. For parasitoid wasps with a unique life cycle, lipase functions could be multitudinous in particular. Pteromalus puparum is a pupal endoparasitoid of butterflies. The female adult deposits eggs into its host, along with multifunctional venom, and the developing larvae consume host as its main nutrition source. Parasitoid lipases are known to participate in the food digestion process, but the mechanism remains unclear. P. puparum genome and transcriptome data were interrogated. Multiple alignments and phylogenetic trees were constructed. We annotated a total of 64 predicted lipase genes belonging to five lipase families and suggested that eight venom and four salivary lipases could determine host nutrition environment post-parasitization. Many putative venom lipases were found with incomplete catalytic triads, relatively long β9 loops, and short lids. Data analysis reveals the loss of catalytic activities and weak triacylglycerol (TAG) hydrolytic activities of lipases in venom. Phylogenetic trees indicate various predicted functions of lipases in P. puparum. Our information enriches the database of parasitoid lipases and the knowledge of their functional diversification, providing novel insight into how parasitoid wasps manipulate host lipid storage by using venom lipases.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Jiqiang Song
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (J.S.); (Q.F.); (H.Y.); (F.W.)
| |
Collapse
|
13
|
Rungsa P, Janpan P, Saengkun Y, Jangpromma N, Klaynongsruang S, Patramanon R, Uawonggul N, Daduang J, Daduang S. Heterologous expression and mutagenesis of recombinant Vespa affinis hyaluronidase protein (rVesA2). J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190030. [PMID: 31839801 PMCID: PMC6892566 DOI: 10.1590/1678-9199-jvatitd-2019-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background Crude venom of the banded tiger waspVespa affinis contains a variety of enzymes including hyaluronidases, commonly known as spreading factors. Methods The cDNA cloning, sequence analysis and structural modelling of V. affinis venom hyaluronidase (VesA2) were herein described. Moreover, heterologous expression and mutagenesis of rVesA2 were performed. Results V. affinis venom hyaluronidase full sequence is composed of 331 amino acids, with four predicted N-glycosylation sites. It was classified into the glycoside hydrolase family 56. The homology modelling exhibited a central core (α/β)7 composed of Asp107 and Glu109, acting as the catalytic residues. The recombinant protein was successfully expressed in E. coli with hyaluronidase activity. A recombinant mutant type with the double point mutation, Asp107Asn and Glu109Gln, completely lost this activity. The hyaluronidase from crude venom exhibited activity from pH 2 to 7. The recombinant wild type showed its maximal activity at pH 2 but decreased rapidly to nearly zero at pH 3 and was completely lost at pH 4. Conclusion The recombinant wild-type protein showed its maximal activity at pH 2, more acidic pH than that found in the crude venom. The glycosylation was predicted to be responsible for the pH optimum and thermal stability of the enzymes activity.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piyapon Janpan
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yutthakan Saengkun
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nunthawun Uawonggul
- Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
14
|
Korošec P, Jakob T, Harb H, Heddle R, Karabus S, de Lima Zollner R, Selb J, Thong BYH, Zaitoun F, Golden DB, Levin M. Worldwide perspectives on venom allergy. World Allergy Organ J 2019; 12:100067. [PMID: 31700565 PMCID: PMC6829763 DOI: 10.1016/j.waojou.2019.100067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/14/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
Venom immunotherapy is the standard of care for people with severe reactions and has been proven to reduce risk of future anaphylactic events. There is a moral imperative to ensure production, supply and worldwide availability of locally relevant, registered, standardized commercial venom extracts for diagnosis and treatment. Insects causing severe immediate allergic reactions vary by region worldwide. The most common culprits include honeybees (Apis mellifera), social wasps including yellow jackets (Vespula and Dolichovespula), paper wasps (Polistes) and hornets (Vespa), stinging ants (Solenopsis, Myrmecia, Pachycondyla, and Pogonomyrmex), and bumblebees (Bombus). Insects with importance in specific areas of the world include the Australian tick (Ixodes holocyclus), the kissing bug (Triatoma spp), horseflies (Tabanus spp), and mosquitoes (Aedes, Culex, Anopheles). Reliable access to high quality venom immunotherapy to locally relevant allergens is not available throughout the world. Many current commercially available therapeutic vaccines have deficiencies, are not suitable for, or are unavailable in vast areas of the globe. New products are required to replace products that are unstandardized or inadequate, particularly whole-body extract products. New products are required for insects in which no current treatment options exist. Venom immunotherapy should be promoted throughout the world and the provision thereof be supported by health authorities, regulatory authorities and all sectors of the health care service.
Collapse
Affiliation(s)
- Peter Korošec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Thilo Jakob
- Department of Dermatoloy and Allergy, University Medical Center Giessen UKGM, Justus-Liebig-University, Giessen, Germany
| | - Harfi Harb
- National Center of Allergy, Asthma and Immunology, Riyadh, Saudi Arabia
| | | | - Sarah Karabus
- Division of Paediatric Allergy, University of Cape Town, South Africa
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Brazil
| | - Julij Selb
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Bernard Yu-Hor Thong
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore
| | | | - David B.K. Golden
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Maryland, USA
| | - Michael Levin
- Division of Paediatric Allergy, University of Cape Town, South Africa
| |
Collapse
|
15
|
de Souza CL, Dos Santos-Pinto JRA, Esteves FG, Perez-Riverol A, Fernandes LGR, de Lima Zollner R, Palma MS. Revisiting Polybia paulista wasp venom using shotgun proteomics - Insights into the N-linked glycosylated venom proteins. J Proteomics 2019; 200:60-73. [PMID: 30905720 DOI: 10.1016/j.jprot.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
The partial proteome of Polybia paulista wasp venom was previously reported elsewhere using a gel-dependent approach and resulted in the identification of a limited number of venom toxins. Here, we reinvestigated the P. paulista venom using a gel-free shotgun proteomic approach; the highly dynamic range of this approach facilitated the detection and identification of 1673 proteins, of which 23 venom proteins presented N-linked glycosylation as a posttranslational modification. Three different molecular forms of PLA1 were identified as allergenic proteins, and two of these forms were modified by N-linked glycosylation. This study reveals an extensive repertoire of hitherto undescribed proteins that were classified into the following six different functional groups: (i) typical venom proteins; (ii) proteins related to the folding/conformation and PTMs of toxins; (iii) proteins that protect toxins from oxidative stress; (iv) proteins involved in chemical communication; (v) housekeeping proteins; and (vi) uncharacterized proteins. It was possible to identify venom toxin-like proteins that are commonly reported in other animal venoms, including arthropods such as spiders and scorpions. Thus, the findings reported here may contribute to improving our understanding of the composition of P. paulista venom, its envenoming mechanism and the pathologies experienced by the victim after the wasp stinging accident. BIOLOGICAL SIGNIFICANCE: The present study significantly expanded the number of proteins identified in P. paulista venom, contributing to improvements in our understanding of the envenoming mechanism produced by sting accidents caused by this wasp. For example, novel wasp venom neurotoxins have been identified, but no studies have assessed the presence of this type of toxin in social wasp venoms. In addition, 23 N-linked glycosylated venom proteins were identified in the P. paulista venom proteome, and some of these proteins might be relevant allergens that are immunoreactive to human IgE.
Collapse
Affiliation(s)
- Caroline Lacerra de Souza
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| | - Franciele Grego Esteves
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| |
Collapse
|
16
|
Perez-Riverol A, Lasa AM, Dos Santos-Pinto JRA, Palma MS. Insect venom phospholipases A1 and A2: Roles in the envenoming process and allergy. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:10-24. [PMID: 30582958 DOI: 10.1016/j.ibmb.2018.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Insect venom phospholipases have been identified in nearly all clinically relevant social Hymenoptera, including bees, wasps and ants. Among other biological roles, during the envenoming process these enzymes cause the disruption of cellular membranes and induce hypersensitive reactions, including life threatening anaphylaxis. While phospholipase A2 (PLA2) is a predominant component of bee venoms, phospholipase A1 (PLA1) is highly abundant in wasps and ants. The pronounced prevalence of IgE-mediated reactivity to these allergens in sensitized patients emphasizes their important role as major elicitors of Hymenoptera venom allergy (HVA). PLA1 and -A2 represent valuable marker allergens for differentiation of genuine sensitizations to bee and/or wasp venoms from cross-reactivity. Moreover, in massive attacks, insect venom phospholipases often cause several pathologies that can lead to fatalities. This review summarizes the available data related to structure, model of enzymatic activity and pathophysiological roles during envenoming process of insect venom phospholipases A1 and -A2.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, Department of System Biology, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana, 10600, Cuba
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil.
| |
Collapse
|
17
|
Rungsa P, Peigneur S, Daduang S, Tytgat J. Purification and biochemical characterization of VesT1s, a novel phospholipase A1 isoform isolated from the venom of the greater banded wasp Vespa tropica. Toxicon 2018; 148:74-84. [DOI: 10.1016/j.toxicon.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
|
18
|
dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148:172-196. [DOI: 10.1016/j.toxicon.2018.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
19
|
Abstract
Purpose of review Component-resolved diagnostics makes use of defined allergen molecules to analyse IgE-mediated sensitizations at a molecular level. Here, we review recent studies on the use of component-resolved diagnostics in the field of Hymenoptera venom allergy (HVA) and discuss its benefits and limitations. Recent findings Component resolution in HVA has moved from single molecules to panels of allergens. Detection of specific immunoglobulin E (sIgE) to marker and cross-reactive venom allergens has been reported to facilitate the discrimination between primary sensitization and cross-reactivity and thus, to provide a better rationale for prescribing venom immunotherapy (VIT), particularly in patients sensitized to both honeybee and vespid venom. Characterization of IgE reactivity to a broad panel of venom allergens has allowed the identification of different sensitization profiles that in honeybee venom allergy were associated with increased risks for side effects or treatment failure of VIT. In contrast, component resolution so far has failed to provide reliable markers for the discrimination of sensitizations to venoms of different members of Vespidae. Summary Component-resolved diagnostics allows a better understanding of the complexity of sensitization and cross-reactivities in HVA. In addition, the enhanced resolution and precision may allow identification of biomarkers, which can be used for risk stratification in VIT. Knowledge about the molecular composition of different therapeutic preparations may enable the selection of appropriate preparations for VIT according to individual sensitization profiles, an approach consistent with the goals of personalized medicine.
Collapse
|
20
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
21
|
Phospholipase A1-based cross-reactivity among venoms of clinically relevant Hymenoptera from Neotropical and temperate regions. Mol Immunol 2017; 93:87-93. [PMID: 29156294 DOI: 10.1016/j.molimm.2017.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023]
Abstract
Molecular cross-reactivity caused by allergen homology or cross-reactive carbohydrate determinants (CCDs) is a major challenge for diagnosis and immunotherapy of insect venom allergy. Venom phospholipases A1 (PLA1s) are classical, mostly non-glycosylated wasp and ant allergens that provide diagnostic benefit for differentiation of genuine sensitizations from cross-reactivity. As CCD-free molecules, venom PLA1s are not causative for CCD-based cross-reactivity. Little is known however about the protein-based cross-reactivity of PLA1 within vespid species. Here, we address PLA1-based cross-reactivity among ten clinically relevant Hymenoptera venoms from Neotropical and temperate regions including Polybia paulista (paulistinha) venom and Vespula vulgaris (yellow jacket) venom. In order to evaluate cross-reactivity, sera of mice sensitized with recombinant PLA1 (rPoly p 1) from P. paulista wasp venom were used. Pronounced IgE and IgG based cross-reactivity was detected for wasp venoms regardless the geographical region of origin. The cross-reactivity correlated well with the identity of the primary sequence and 3-D models of PLA1 proteins. In contrast, these mice sera showed no reaction with honeybee (HBV) and fire ant venom. Furthermore, sera from patients monosensitized to HBV and fire ants did not recognize the rPoly p 1 in immunoblotting. Our findings reveal the presence of conserved epitopes in the PLA1s from several clinically relevant wasps as major cause of PLA1-based in vitro cross-reactivity. These findings emphasize the limitations but also the potential of PLA1-based HVA diagnostics.
Collapse
|
22
|
Liu NY, Wang JQ, Zhang ZB, Huang JM, Zhu JY. Unraveling the venom components of an encyrtid endoparasitoid wasp Diversinervus elegans. Toxicon 2017; 136:15-26. [DOI: 10.1016/j.toxicon.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
|
23
|
Heterologous Expression, Purification and Immunoreactivity of the Antigen 5 from Polybia paulista Wasp Venom. Toxins (Basel) 2017; 9:toxins9090259. [PMID: 28837089 PMCID: PMC5618192 DOI: 10.3390/toxins9090259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Polybia paulista (Hymenoptera: Vespidae) is responsible for a high number of sting accidents and anaphylaxis events in Southeast Brazil, Argentina and Paraguay. The specific detection of allergy to the venom of this wasp is often hampered by the lack of recombinant allergens currently available for molecular diagnosis. Antigen 5 (~23 kDa) from P. paulista venom (Poly p 5) is a highly abundant and glycosylated allergenic protein that could be used for development of component-resolved diagnosis (CRD). Here, we describe the cloning and heterologous expression of the antigen 5 (rPoly p 5) from P. paulista venom using the eukaryotic system Pichia pastoris. The expression as a secreted protein yielded high levels of soluble rPoly p 5. The recombinant allergen was further purified to homogeneity (99%) using a two-step chromatographic procedure. Simultaneously, the native form of the allergen (nPoly p 5) was purified from the wasp venom by Ion exchange chromatography. The rPoly p 5 and nPoly p 5 were then submitted to a comparative analysis of IgE-mediated immunodetection using sera from patients previously diagnosed with sensitization to wasp venoms. Both rPoly p 5 and nPoly p 5 were recognized by specific IgE (sIgE) in the sera of the allergic individuals. The high levels of identity found between nPoly p 5 and rPoly p 5 by the alignment of its primary sequences as well as by 3-D models support the results obtained in the immunoblot. Overall, we showed that P. pastoris is a suitable system for production of soluble rPoly p 5 and that the recombinant allergen represents a potential candidate for molecular diagnosis of P.paulista venom allergy.
Collapse
|
24
|
Perez-Riverol A, Dos Santos-Pinto JRA, Lasa AM, Palma MS, Brochetto-Braga MR. Wasp venomic: Unravelling the toxins arsenal of Polybia paulista venom and its potential pharmaceutical applications. J Proteomics 2017; 161:88-103. [PMID: 28435107 DOI: 10.1016/j.jprot.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 02/08/2023]
Abstract
Polybia paulista (Hymenoptera: Vespidae) is a neotropical social wasp from southeast Brazil. As most social Hymenoptera, venom from P. paulista comprises a complex mixture of bioactive toxins ranging from low molecular weight compounds to peptides and proteins. Several efforts have been made to elucidate the molecular composition of the P. paulista venom. Data derived from proteomic, peptidomic and allergomic analyses has enhanced our understanding of the whole envenoming process caused by the insect sting. The combined use of bioinformatics, -omics- and molecular biology tools have allowed the identification, characterization, in vitro synthesis and recombinant expression of several wasp venom toxins. Some of these P. paulista - derived bioactive compounds have been evaluated for the rational design of antivenoms and the improvement of allergy specific diagnosis and immunotherapy. Molecular characterization of crude venom extract has enabled the description and isolation of novel toxins with potential biotechnological applications. Here, we review the different approaches that have been used to unravel the venom composition of P. paulista. We also describe the main groups of P. paulista - venom toxins currently identified and analyze their potential in the development of component-resolved diagnosis of allergy, and in the rational design of antivenoms and novel bioactive drugs.
Collapse
Affiliation(s)
- Amilcar Perez-Riverol
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | | | - Alexis Musacchio Lasa
- Center for Genetic Engineering and Biotechnology, Biomedical Research Division, System Biology Department, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana 10600, Cuba.
| | - Mario Sergio Palma
- Centro de Estudos de Insetos Sociais-CEIS-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil.
| | - Márcia Regina Brochetto-Braga
- Laboratório de Biologia Molecular de Artrópodes-LBMA-IBRC-UNESP (Univ Estadual Paulista), Av. 24-A, n° 1515, CEP 13506-900, Bela Vista, Rio Claro, SP, Brazil; Centro de Estudos de Venenos e Animais Peçonhentos-CEVAP (Univ Estadual Paulista), Rua José Barbosa de Barros, 1780, Fazenda Experimental Lageado, Botucatu 18610-307, SP, Brazil.
| |
Collapse
|