1
|
Li Y, Yuan Z, Wang L, Yang J, Pu P, Le Y, Chen X, Wang C, Gao Y, Liu Y, Wang J, Gao X, Li Y, Wang H, Zou C. Prolyl isomerase Pin1 sculpts the immune microenvironment of colorectal cancer. Cell Signal 2024; 115:111041. [PMID: 38199598 DOI: 10.1016/j.cellsig.2024.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Pin1, a peptide prolyl cis-trans isomerase, is overexpressed and/or overactivated in many human malignancies. However, whether Pin1 regulates the immunosuppressive TME has not been well defined. In this study, we detected the effect of Pin1 on immune cells and immune checkpoint PD-L1 in the TME of CRC and explored the anti-tumor efficacy of Pin1 inhibitor ATRA combined with PD-1 antibody. We found that Pin1 facilitated the immunosuppressive TME by raising the proportion of myeloid-derived suppressor cells (MDSCs) and declining the percentage of CD8+ T cells and CD4+ T cells. Pin1 restrained PD-L1 protein expression in CRC cells and the effect was tempered by endoplasmic reticulum (ER) stress inducers. Mechanically, Pin1 overexpression decreased the stability of PD-L1 and promoted its degradation by mitigating ER stress. Silencing or inhibiting Pin1 promoted PD-L1 protein expression by inducing ER stress. Hence, Pin1 inhibitor ATRA enhanced the anti-tumor efficacy of PD-1 antibody in the CRC allograft by upregulating PD-L1. Our results reveal the critical and pleiotropic effects of Pin1 on managing the immune cells and immune checkpoint PD-L1 in the TME of CRC, providing a new promising candidate for combination with immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Zhongnan Yuan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Linlin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Pei Pu
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yunting Le
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - XianWei Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Chongyang Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yating Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Jialin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China; Key Laboratory of Cardiovascular Medicine Research of Harbin Medical University, Ministry of Education, Harbin 150081, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin 150081, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| | - Hefei Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China.
| |
Collapse
|
2
|
Zhang J, Wang K, Xu S, Chen L, Gu H, Yang Y, Zhao Q, Huo Y, Li B, Wang Y, Xie Y, Li N, Zhang J, Zhang J, Li Q. Silk Fibroin-Coated Nano-MOFs Enhance the Thermal Stability and Immunogenicity of HBsAg. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8346-8364. [PMID: 38323561 DOI: 10.1021/acsami.3c16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Vaccines are widely regarded as one of the most effective weapons in the fight against infectious diseases. Currently, vaccines must be stored and transported at low temperatures as high temperatures can lead to a loss of vaccine conformation and reduced therapeutic efficacy. Metal-organic frameworks (MOFs), such as zeolitic imidazole framework-8 (ZIF-8), are a new class of hybrid materials with large specific surface areas, high loading rates, and good biocompatibility and are successful systems for vaccine delivery and protection. Silk fibroin (SF) has a good biocompatibility and thermal stability. In this study, the hepatitis B surface antigen (HBsAg) was successfully encapsulated in ZIF-8 to form HBsAg@ZIF-8 (HZ) using a one-step shake and one-pot shake method. Subsequently, the SF coating modifies HZ through hydrophobic interactions to form HBsAg/SF@ZIF-8 (HSZ), which enhanced the thermal stability and immunogenicity of HBsAg. Compared to free HBsAg, HZ and HSZ improved the thermostability of HBsAg, promoted the antigen uptake and lysosomal escape, stimulated dendritic cell maturation and cytokine secretion, formed an antigen reservoir to promote antibody production, and activated CD4+ T and CD8+ T cells to enhance memory T-cell production. Importantly, HSZ induced a strong immune response even after 14 days of storage at 25 °C. Furthermore, the nanoparticles prepared by the one-step shake method exhibited superior properties compared to those prepared by the one-pot shake method. This study highlights the importance of SF-coated ZIF-8, which holds promise for investigating thermostable vaccines and breaking the vaccine cold chain.
Collapse
Affiliation(s)
- Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Kai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Shiyao Xu
- College of Life Sciences, Tonghua Normal University, Tonghua 134002, China
| | - Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Haiquan Gu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yujie Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qi Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yurou Huo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Bo Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yufei Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Jiali Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| |
Collapse
|
3
|
Gohil D, Panigrahi GC, Gupta SK, Gandhi KA, Gera P, Chavan P, Sharma D, Sandur S, Gota V. Acute and sub-acute oral toxicity assessment of 5-hydroxy-1,4-naphthoquinone in mice. Drug Chem Toxicol 2022; 46:795-808. [PMID: 35899689 DOI: 10.1080/01480545.2022.2104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
5-hydroxy-1,4-naphthoquinone (5NQ) or juglone is a bioactive molecule found in walnuts and has shown therapeutic effects in various disease models. Limited information is available regarding the toxicity of 5NQ, thereby limiting the clinical development of this drug. In the present study, oral acute (50, 300 and 2000 mg/kg) and sub-acute toxicity (5, 15 and 50 mg/kg) was assessed in mice to evaluate the safety of 5NQ. The acute toxicity study identified 118 mg/kg as the point-of-departure dose (POD) for single oral administration of 5NQ using benchmark dose modeling (BMD). Repeated administration of 5NQ at doses of 15 and 50 mg/kg/day caused reduction in food consumption and body weight of mice along with alterations in liver and renal function. Histopathological assessment revealed significant damage to hepatic and renal tissues at all doses in the acute toxicity study, and at higher doses of 15 and 50 mg/kg in the sub-acute toxicity study. We observed dose dependent mortality in sub-acute toxicity study and the no observed adverse effect level (NOAEL) was established as < 5 mg/kg/day. Modeling the survival response in sub-acute toxicity study identified 1.74 mg/kg/day as the POD for repeated administration of 5NQ. Serum levels of aspartate aminotransferase (AST) were most sensitive to 5NQ administration with a lower limit of BMD interval (BMDL) of 1.1 × 10-3 mg/kg/day. The benchmark doses reported in the study can be further used to determine a reference dose of 5NQ for human risk assessment.
Collapse
Affiliation(s)
- Dievya Gohil
- Clinical Pharmacology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, Mumbai, India
| | - Girish Ch Panigrahi
- Clinical Pharmacology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, Mumbai, India
| | - Saurabh Kumar Gupta
- Clinical Pharmacology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, Mumbai, India
| | - Khushboo A Gandhi
- Clinical Pharmacology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Poonam Gera
- ICGC Lab, ACTERC, Tata Memorial Centre, Navi Mumbai, India
- Biorepository, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Preeti Chavan
- Department of Clinical Biochemistry, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Deepak Sharma
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, Mumbai, India
- Radiation Biology & Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Santosh Sandur
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, Mumbai, India
- Radiation Biology & Health Science Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Vikram Gota
- Clinical Pharmacology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, Mumbai, India
| |
Collapse
|
4
|
Irais CM, María-de-la-Luz SG, Dealmy DG, Agustina RM, Nidia CH, Mario-Alberto RG, Luis-Benjamín SG, María-Del-Carmen VM, David PE. Plant Phenolics as Pathogen-Carrier Immunogenicity Modulator Haptens. Curr Pharm Biotechnol 2020; 21:897-905. [PMID: 31965941 PMCID: PMC7536807 DOI: 10.2174/1389201021666200121130313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Background Pathogens use multiple mechanisms to disrupt cell functioning in their host and allow pathogenesis. These mechanisms involve communication between the pathogen and the host cell through protein-protein interactions. Methods Protein-protein interactions chains referred to as signal transduction pathways are the processes by which a chemical or physical signal transmits through a cell as series of molecular events so the pathogen needs to intercept these molecular pathways at few positions to induce pathogenesis such as pathogen viability, infection or hypersensitivity. Results The pathogen nodes of interception are not necessarily the most immunogenic; so that novel immunogenicity-improvement strategies need to be developed thought a chemical conjugation of the pathogen-carrier nodes to develop an efficient immune response in order to block pathogenesis. On the other hand, if pathogen-carriers are immunogens; toleration ought to be induced by this conjugation avoiding hypersensitivity. Thus, this paper addresses the biological plausibility of plant-phenolics as pathogen-carrier immunogenicity modulator haptens. Conclusion The plant-phenolic compounds have in their structure functional groups such as hydroxyl, carbonyl, carboxyl, ester, or ether, capable of reacting with the amino or carbonyl groups of the amino acids of a pathogen-carrier to form conjugates. Besides, the varied carbon structures these phenolic compounds have; it is possible to alter the pathogen-carrier related factors that determine the immunogenicity: 1) Structural complexity, 2) Molecular size, 3) Structural heterogeneity, 4) Accessibility to antigenic determinants or epitopes, 5) Optical configuration, 6) Physical state, or 7) Molecular rigidity.
Collapse
Affiliation(s)
- Castillo-Maldonado Irais
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | | | - Delgadillo-Guzmán Dealmy
- Department of Pharmacology, Faculty of Torreon Unit Medicine, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | - Ramírez-Moreno Agustina
- School of Sciences Biological Unit Torreon, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | - Cabral-Hipólito Nidia
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | - Rivera-Guillén Mario-Alberto
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | - Serrano-Gallardo Luis-Benjamín
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | | | - Pedroza-Escobar David
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| |
Collapse
|
5
|
Marimani M, AlOmar SY, Aldahmash B, Ahmad A, Stacey S, Duse A. Distinct epigenetic regulation in patients with multidrug-resistant TB-HIV co-infection and uninfected individuals. Mutat Res 2020; 821:111724. [PMID: 33070028 DOI: 10.1016/j.mrfmmm.2020.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is an airborne pathogenic microorganism that causes tuberculosis (TB). This pathogen invades lung tissues causing pulmonary infections and disseminates into other host organs. The Bacillus Calmette-Guérin (BCG) vaccine is employed to provide immune protection against TB; however, its efficacy is dependent on the age, immune status and geographic location of vaccinated individuals. Advanced diagnostic approaches such as GeneXpert MTB/RIF® and line probe assays (LPAs) have allowed rapid detection of drug-resistant, multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains. However, in sub-Saharan Africa, public and private health institutions are further burdened by the high prevalence of Human Immunodeficiency Virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS) and TB co-infections across different age groups. Epigenetic mechanisms have been widely exploited by Mtb and HIV to bypass the host's innate and adaptive immune responses, leading to microbial proliferation and disease manifestation. In the current study, we investigated the impact of epigenetic mechanisms in regulating target gene expression in healthy and patients co-infected with MDR TB-HIV.
Collapse
Affiliation(s)
- Musa Marimani
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Infectious Diseases, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Sarah Stacey
- Division of Pulmonology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Adriano Duse
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Infectious Diseases, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
6
|
Wang H, Zou C, Zhao W, Yu Y, Cui Y, Zhang H, E F, Qiu Z, Zou C, Gao X. Juglone eliminates MDSCs accumulation and enhances antitumor immunity. Int Immunopharmacol 2019; 73:118-127. [PMID: 31085459 DOI: 10.1016/j.intimp.2019.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/26/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to immune activity suppression and promote the tumor progression. Elimination of MDSCs is a promising cancer therapeutic strategy, and some chemotherapeutic agents have been reported to hamper tumor progression by suppressing MDSCs. Juglone has been showed to exert a direct cytotoxic effect on tumor cells. However, the effect of juglone on MDSCs and anti-tumor immune statue has remained unexplored. In our study, we observed that juglone suppressed tumor growth and metastasis markedly, and the tumor growth suppression in immunocompetent mice was more drastic than that in immunodeficient mice. Juglone reduced the accumulation of MDSCs and increased IFN-γ production by CD8+ T cells. Consistently, juglone affected myeloid cells differentiation and maturation, impairing the immunosuppressive functions of MDSCs. Moreover, juglone down-regulated the level of IL-1β which was mediating accumulation of MDSCs. In addition, juglone inhibited 5FU-induced liver injury in a colorectal carcinoma-bearing mice model. Thus, our work suggests that the anti-tumor effect of juglone is mediated, at least in part, by eliminating accumulation of MDSCs.
Collapse
Affiliation(s)
- Hefei Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Weiyang Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yuan Yu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Yuqi Cui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - He Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Fang E
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Zini Qiu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China.
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin 150081, China; Key Laboratory of Cardiovascular Medicine Research of Harbin Medical University, Ministry of Education, Harbin 150081, China.
| |
Collapse
|