1
|
Lu H, Toyoda JH, Wise SS, Browning CL, Speer RM, Croom-Pérez TJ, Bolt A, Meaza I, Wise JP. A whale of a tale: whale cells evade the driving mechanism for hexavalent chromium-induced chromosome instability. Toxicol Sci 2024; 199:49-62. [PMID: 38539048 PMCID: PMC11057468 DOI: 10.1093/toxsci/kfae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Chromosome instability, a hallmark of lung cancer, is a driving mechanism for hexavalent chromium [Cr(VI)] carcinogenesis in humans. Cr(VI) induces structural and numerical chromosome instability in human lung cells by inducing DNA double-strand breaks and inhibiting homologous recombination repair and causing spindle assembly checkpoint (SAC) bypass and centrosome amplification. Great whales are long-lived species with long-term exposures to Cr(VI) and accumulate Cr in their tissue, but exhibit a low incidence of cancer. Data show Cr(VI) induces fewer chromosome aberrations in whale cells after acute Cr(VI) exposure suggesting whale cells can evade Cr(VI)-induced chromosome instability. However, it is unknown if whales can evade Cr(VI)-induced chromosome instability. Thus, we tested the hypothesis that whale cells resist Cr(VI)-induced loss of homologous recombination repair activity and increased SAC bypass and centrosome amplification. We found Cr(VI) induces similar amounts of DNA double-strand breaks after acute (24 h) and prolonged (120 h) exposures in whale lung cells, but does not inhibit homologous recombination repair, SAC bypass, or centrosome amplification, and does not induce chromosome instability. These data indicate whale lung cells resist Cr(VI)-induced chromosome instability, the major driver for Cr(VI) carcinogenesis at a cellular level, consistent with observations that whales are resistant to cancer.
Collapse
Affiliation(s)
- Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Cynthia L Browning
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Tayler J Croom-Pérez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Alicia Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
2
|
Nunes EA, Silva HCD, Duarte NDAA, de Lima LE, Maraslis FT, Araújo MLD, Pedron T, Lange C, Freire BM, Matias AC, Batista BL, Barcelos GRM. Impact of DNA repair polymorphisms on DNA instability biomarkers induced by lead (Pb) in workers exposed to the metal. CHEMOSPHERE 2023:138897. [PMID: 37182709 DOI: 10.1016/j.chemosphere.2023.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Although the mechanisms of Pb-induced genotoxicity are well established, a wide individual's variation response is seen in biomarkers related to Pb toxicity, despite similar levels of metal exposure. This may be related to intrinsic variations, such as genetic polymorphisms; moreover, very little is known about the impact of genetic variations related to DNA repair system on DNA instability induced by Pb. In this context, the present study aimed to assess the impact of SNPs in enzymes related to DNA repair system on biomarkers related to acute toxicity and DNA damage induced by Pb exposure, in individuals occupationally exposed to the metal. A cross-sectional study was run with 154 adults (males, >18 years) from an automotive batteries' factory, in Brazil. Blood lead levels (BLL) were determined by ICP-MS; biomarkers related to acute toxicity and DNA instability were monitored by the buccal micronucleus cytome (BMNCyt) assay and genotyping of polymorphisms of MLH1 (rs1799977), OGG1 (rs1052133), PARP1 (rs1136410), XPA (rs1800975), XPC (rs2228000) and XRCC1 (rs25487) were performed by TaqMan assays. BLL ranged from 2.0 to 51 μg dL-1 (mean 20 ± 12 μg dL-1) and significant associations between BLL and BMNCyt biomarkers related to cellular proliferation and cytokinetic, cell death and DNA damage were observed. Furthermore, SNPs from the OGG1, XPA and XPC genes were able to modulate interactions in nuclear bud formation (NBUDs) and micronucleus (MNi) events. Taken together, our data provide further evidence that polymorphisms related to DNA repair pathways may modulate Pb-induced DNA damage; studies that investigate the association between injuries to genetic material and susceptibilities in the workplace can provide additional information on the etiology of diseases and the determination of environmentally responsive genes.
Collapse
Affiliation(s)
- Emilene Arusievicz Nunes
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Heliton Camargo da Silva
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Nathália de Assis Aguilar Duarte
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Flora Troina Maraslis
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Marília Ladeira de Araújo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Tatiana Pedron
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Camila Lange
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Bruna Moreira Freire
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Andreza Cândido Matias
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, CEP 05508-000, São Paulo, Brazil.
| | - Bruno Lemos Batista
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| |
Collapse
|
3
|
Hernández-Franco P, Maldonado-Vega M, Calderón-Salinas JV, Rojas E, Valverde M. Role of Ape1 in Impaired DNA Repair Capacity in Battery Recycling Plant Workers Exposed to Lead. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7961. [PMID: 35805621 PMCID: PMC9265680 DOI: 10.3390/ijerph19137961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Exposure to lead in environmental and occupational settings continues to be a serious public health problem. At environmentally relevant doses, two mechanisms may underlie lead exposition-induced genotoxicity, disruption of the redox balance and an interference with DNA repair systems. The aim of the study was to evaluate the ability of lead exposition to induce impaired function of Ape1 and its impact on DNA repair capacity of workers chronically exposed to lead in a battery recycling plant. Our study included 53 participants, 37 lead exposed workers and 16 non-lead exposed workers. Lead intoxication was characterized by high blood lead concentration, high lipid peroxidation and low activity of delta-aminolevulinic acid dehydratase (δ-ALAD). Relevantly, we found a loss of DNA repair capacity related with down-regulation of a set of specific DNA repair genes, showing specifically, for the first time, the role of Ape1 down regulation at transcriptional and protein levels in workers exposed to lead. Additionally, using a functional assay we found an impaired function of Ape1 that correlates with high blood lead concentration and lipid peroxidation. Taken together, these data suggest that occupational exposure to lead could decrease DNA repair capacity, inhibiting the function of Ape1, as well other repair genes through the regulation of the ZF-transcription factor, promoting the genomic instability.
Collapse
Affiliation(s)
- Pablo Hernández-Franco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - María Maldonado-Vega
- Hospital Regional de Alta Especialidad del Bajío, Dirección de Planeación, Enseñanza e Investigación, Blvd. Milenio #130, Colonia San Carlos La Roncha, León 37660, Mexico;
| | - José Víctor Calderón-Salinas
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN #2508, Colonia San Pedro Zacatenco, Mexico City 07480, Mexico;
| | - Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| |
Collapse
|
4
|
Sonzogni L, Ferlazzo ML, Granzotto A, Fervers B, Charlet L, Foray N. DNA Double-Strand Breaks Induced in Human Cells by 6 Current Pesticides: Intercomparisons and Influence of the ATM Protein. Biomolecules 2022; 12:biom12020250. [PMID: 35204751 PMCID: PMC8961571 DOI: 10.3390/biom12020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
A mechanistic model from radiobiology has emerged by pointing out that the radiation-induced nucleo-shuttling of the ATM protein (RIANS) initiates the recognition, the repair of DNA double-strand breaks (DSB), and the final response to genotoxic stress. More recently, we provided evidence in this journal that the RIANS model is also relevant for exposure to metal ions. To document the role of the ATM-dependent DSB repair and signaling after pesticide exposure, we applied six current pesticides of domestic and environmental interest (lindane, atrazine, glyphosate, permethrin, pentachlorophenol and thiabendazole) to human skin fibroblast and brain cells. Our findings suggest that each pesticide tested may induce DSB at a rate that depends on the pesticide concentration and the RIANS status of cells. At specific concentration ranges, the nucleo-shuttling of ATM can be delayed, which impairs DSB recognition and repair, and contributes to toxicity. Interestingly, the combination of copper sulfate and thiabendazole or glyphosate was found to have additive or supra-additive effects on DSB recognition and/or repair. A general mechanistic model of the biological response to metal and/or pesticide is proposed to define quantitative endpoints for toxicity.
Collapse
Affiliation(s)
- Laurène Sonzogni
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
| | - Mélanie L. Ferlazzo
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
| | - Adeline Granzotto
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
| | - Béatrice Fervers
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
- Cancer & Environment Department, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurent Charlet
- ISTerre Team, University Grenoble Alpes, 38000 Grenoble, France;
| | - Nicolas Foray
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, Centre Léon-Bérard, 69008 Lyon, France; (L.S.); (M.L.F.); (A.G.); (B.F.)
- Correspondence: ; Tel.: +33-4-78-78-28-28
| |
Collapse
|
5
|
DNA Double-Strand Breaks Induced in Human Cells by Twelve Metallic Species: Quantitative Inter-Comparisons and Influence of the ATM Protein. Biomolecules 2021; 11:biom11101462. [PMID: 34680095 PMCID: PMC8533583 DOI: 10.3390/biom11101462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 01/25/2023] Open
Abstract
Despite a considerable amount of data, the molecular and cellular bases of the toxicity due to metal exposure remain unknown. Recent mechanistic models from radiobiology have emerged, pointing out that the radiation-induced nucleo-shuttling of the ATM protein (RIANS) initiates the recognition and the repair of DNA double-strand breaks (DSB) and the final response to genotoxic stress. In order to document the role of ATM-dependent DSB repair and signalling after metal exposure, we applied twelve different metal species representing nine elements (Al, Cu, Zn Ni, Pd, Cd, Pb, Cr, and Fe) to human skin, mammary, and brain cells. Our findings suggest that metals may directly or indirectly induce DSB at a rate that depends on the metal properties and concentration, and tissue type. At specific metal concentration ranges, the nucleo-shuttling of ATM can be delayed which impairs DSB recognition and repair and contributes to toxicity and carcinogenicity. Interestingly, as observed after low doses of ionizing radiation, some phenomena equivalent to the biological response observed at high metal concentrations may occur at lower concentrations. A general mechanistic model of the biological response to metal exposure based on the nucleo-shuttling of ATM is proposed to describe the metal-induced stress response and to define quantitative endpoints for toxicity and carcinogenicity.
Collapse
|
6
|
Speer RM, Toyoda JH, Croom-Perez TJ, Liu KJ, Wise JP. Particulate Hexavalent Chromium Inhibits E2F1 Leading to Reduced RAD51 Nuclear Foci Formation in Human Lung Cells. Toxicol Sci 2021; 181:35-46. [PMID: 33677506 DOI: 10.1093/toxsci/kfab019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer death; however, the mechanisms of lung carcinogens are poorly understood. Metals, including hexavalent chromium [Cr(VI)], induce chromosome instability, an early event in lung cancer. Failure of homologous recombination repair is a key mechanism for chromosome instability. Particulate Cr(VI) causes DNA double-strand breaks and prolonged exposure impairs homologous recombination targeting a key effector protein in this pathway, RAD51. Reduced RAD51 protein is a key endpoint of particulate Cr(VI) exposure. It is currently unknown how Cr(VI) reduces RAD51 protein. E2F1 is the predominant transcription factor for RAD51. This study sought to identify if E2F1 modulates the RAD51 response to particulate Cr(VI). Particulate Cr(VI) reduced RAD51 protein and mRNA levels but had a minimal effect on RAD51 half-life. E2F1 protein and mRNA were also inhibited by particulate Cr(VI) exposure. To connect these two outcomes, we tested if modulating E2F1 affects RAD51 outcomes after particulate Cr(VI) exposure. E2F1 knockdown inhibited RAD51 nuclear foci formation after acute particulate Cr(VI) exposure. These data indicate reduced RAD51 protein levels after prolonged particulate Cr(VI) exposure are predominantly due to inhibited expression. Particulate Cr(VI) also inhibits E2F1 expression. However, although loss of E2F1 does not modulate RAD51 expression after particulate Cr(VI) exposure, RAD51 nuclear foci formation is inhibited. These findings suggest E2F1 is important for RAD51 localization to double-strand breaks, but not expression after particulate Cr(VI) exposure in human lung cells.
Collapse
Affiliation(s)
- Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
7
|
Kumar V, Bhatti SS, Nagpal AK. Assessment of Metal(loid) Contamination and Genotoxic Potential of Agricultural Soils. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:272-284. [PMID: 34272567 DOI: 10.1007/s00244-021-00874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Soil, a connecting link between biotic and abiotic components of terrestrial ecosystem, receives different kinds of pollutants through various point and nonpoint sources. Among different sources of soil pollution, contaminated irrigation water is one of the most prominent sources affecting soils throughout the globe. The irrigation water (both surface and groundwater) is increasingly getting polluted with contaminants such as metal(loid)s due to various anthropogenic activities. The present study was conducted to analyze metal(loid) contents in agricultural soil samples (N = 24) collected from fields along the banks of rivers Beas and Sutlej flowing through Punjab state of India, using wavelength-dispersive X-ray fluorescence (WDXRF) spectroscopy. The soil samples were also analyzed for their genotoxic potential using Allium cepa root chromosomal aberration assay. The rivers Beas and Sutlej are contaminated with municipal and industrial effluents in different parts of Punjab. The soil samples analyzed were found to have higher contents of arsenic, cobalt and chromium in comparison with the reference values given by various international agencies. Pollution assessment using different indices like index of geo-accumulation, enrichment factor and contamination factor revealed that the soil samples were highly polluted with cobalt and arsenic. The Allium cepa assay revealed that maximum genotoxicity was found in soil samples having higher contents of As and Co. Pearson's correlation analysis revealed strong positive correlation between the different metal(loid)s which indicated common sources of these metal(loid)s. Therefore, efforts must be taken to reduce the levels of these metal(loid)s in these agricultural soils.
Collapse
Affiliation(s)
- Vaneet Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
- Department of Botany, S.L. Bawa DAV College, Batala, 143505, India.
| | - Sandip Singh Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
8
|
Pham HT, Dinh KV, Hoang THT. Reversible and irreversible transgenerational effects of metal exposure on nine generations of a tropical micro-crustacean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116631. [PMID: 33631692 DOI: 10.1016/j.envpol.2021.116631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Micro-crustaceans are important grazers that control the algal blooms in eutrophic lakes. However, we know little about how these key species may be affected by long-term exposure to contaminants and when the transgenerational effects are reversible and irreversible. To address this, we investigated the effects of lead (Pb, 100 μg L-1) exposure on morphology and reproduction of Moina dubia for nine consecutive generations (F1-F9) in three treatments: control, Pb, and pPb (M. dubia from Pb-exposed parents returned to the control condition). In F1-F2, Pb did not affect morphology, and reproduction of M. dubia. In all later generations, Pb-exposed M. dubia had a smaller body and shorter antennae than those in control. In F3-F6, pPb-exposed animals showed no differences in body size and antennae compared to the control, suggesting recoverable effects. In F7-F9, the body size and antennae of pPb-exposed animals did not differ compared to Pb-exposed ones, and both were smaller than the control animals, suggesting irreversible effects. Pb exposure reduced the brood size, number of broods and total neonates per female in F3-F9, yet the reproduction could recover in pPb treatment until F7. No recovery of the brood size and number of broods per female was observed in pPb-exposed animals in the F8-F9. Our study suggests that long-term exposure to metals, here Pb, may cause irreversible impairments in morphology and reproduction of tropical urban micro-crustaceans that may lower the top-down control on algal blooms and functioning of eutrophic urban lakes.
Collapse
Affiliation(s)
- Hong T Pham
- School of Environmental Science and Technology, Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam; Faculty of Chemistry and Environment, Thuyloi University, No 175 Tay Son Street, Hanoi, Viet Nam
| | - Khuong V Dinh
- Department of Fisheries Biology, Nha Trang University, No 2 Nguyen Dinh Chieu Street, Nha Trang City, Viet Nam
| | - Thu-Huong T Hoang
- School of Environmental Science and Technology, Hanoi University of Science and Technology, No 1 Dai Co Viet Street, Hanoi, Viet Nam.
| |
Collapse
|
9
|
Wang T, Tu Y, Zhang G, Gong S, Wang K, Zhang Y, Meng Y, Wang T, Li A, Christiani DC, Au W, Zhu Y, Xia ZL. Development of a benchmark dose for lead-exposure based on its induction of micronuclei, telomere length changes and hematological toxicity. ENVIRONMENT INTERNATIONAL 2020; 145:106129. [PMID: 32950787 DOI: 10.1016/j.envint.2020.106129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/05/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Excessive lead exposure is associated with adverse health effects. However, there is a lack of systematic investigation using large populations to ascertain acceptable exposure limits. OBJECTIVES Our study was aimed to identify human exposure-response relationships between lead exposure and health-related outcomes, and to determine a benchmark dose (BMD). METHODS A total of 1896 participants from a lead-acid battery plant were recruited. Blood lead levels (BLLs) were detected for all participants. Hematological parameters (n = 1896), micronuclei (MN) frequencies (n = 934), and relative telomere length (rTL) (n = 757) were also determined. Multivariate linear/Poisson regression analyses were performed to examine associations between BLLs and these health outcomes. Restricted cubic splines were used to identify dose-response relationships. Three BMD approaches were used to calculate BMD and its 95% lower confidence limit (BMDL). RESULTS Among all participants, BLLs show a right-skewed distribution (median, 185.40 μg/L; 25th - 75th percentile, 104.63-271.70 μg/L). There existed significant differences for red blood cell (RBC), hemoglobin (Hb), MN and rTL among different BLL dose groups. After adjusting for possible confounders, all indicators were significantly associated with BLLs. Restricted cubic splines show that there were linear dose-response relationships for RBC and Hb with BLLs, while non-linear for MN and rTL. Results from the three BMD approaches indicate that the dichotomous models were better than continuous models to calculate BMD and BMDL of BLLs. The conservative BMDL obtained from RBC data was 135 for total, 104 for male and 175 μg/L for female. The corresponding BMDL obtained from Hb data was 105 for total, 116 for male and 70 μg/L for female. As for MN data, the BMDL estimate was 66 for total, 69 for male and 64 μg/L for female. Finally, the BMDL from rTL data was 35 for total, 32 for male and 43 μg/L for female. CONCLUSIONS Our data show significant dose-response relationships between lead exposure and expressions of hematological toxicity and genotoxicity. The new BMDLs of 135 and 105 μg/L based on RBC and Hb, and even more strict level of 66 and 35 μg/L based on MN and rTL are lower than current exposure limits in China. Therefore, the four values can be considered as novel exposure limits. In addition, sex effect should be taken into account when setting occupational health standard. Considering that different biomarkers have different sensitivities, better understanding their relationships will certainly improve the current emphasis on precision health risk assessment.
Collapse
Affiliation(s)
- Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Yuting Tu
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Guanghui Zhang
- Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, Henan Province, China
| | - Shiyang Gong
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Kan Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Yunxia Zhang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Yu Meng
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Tongshuai Wang
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Anqi Li
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - David C Christiani
- Environmental Medicine and Epidemiology Program, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania; University of Texas Medical Branch, Galveston, TX, USA
| | - Yiliang Zhu
- Division of Epidemiology, Biostatistics, and Preventive Medicine, School of Medicine, University of New Mexico, USA.
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai 200032, China.
| |
Collapse
|
10
|
Cowell W, Colicino E, Tanner E, Amarasiriwardena C, Andra SS, Bollati V, Kannan S, Ganguri H, Gennings C, Wright RO, Wright RJ. Prenatal toxic metal mixture exposure and newborn telomere length: Modification by maternal antioxidant intake. ENVIRONMENTAL RESEARCH 2020; 190:110009. [PMID: 32777275 PMCID: PMC7530067 DOI: 10.1016/j.envres.2020.110009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Telomere length (TL) predicts the onset of cellular senescence and correlates with longevity and age-related disease risk. While telomeres erode throughout life, adults display fixed ranking and tracking of TL, supporting the importance of the early environment in determining inter-individual variability across the life course. Given their guanine-rich structure, telomeres are highly susceptible to oxidative stress (OS). We examined maternal metal exposure, which can induce OS, in relation to newborn TL. We also considered the modifying role of maternal antioxidant intake. METHODS Analyses included 100 mother-newborn pairs enrolled in the Boston and New York City-based PRogramming of Intergenerational Stress Mechanisms (PRISM) pregnancy cohort. We measured As, Ba, Cd, Ni, and Pb in maternal late-pregnancy urine by ICP-MS and quantified relative leukocyte TL (rLTL) in cord blood using qPCR. We used Weighted Quantile Sum (WQS) regression to estimate the metal mixture - rLTL association and conducted repeated holdout validation to improve the stability of estimates across data partitions. We examined models stratified by high (>median) versus low (≤median) maternal antioxidant intake, estimated from Block98 Food Frequency Questionnaires. We considered urinary creatinine, week of urine collection, maternal age, and race/ethnicity as covariates. RESULTS In adjusted models, urinary metals were inversely associated with newborn rLTL (βWQS = -0.50, 95% CI: -0.78, -0.21). The top metals contributing to the negative association included Ba (weight: 35.4%), Cd (24.5%) and Pb (26.9%). In models stratified by antioxidant intake, the significant inverse association between metals and rLTL remained only among mothers with low antioxidant intake (low: βWQS = -0.92, 95% CI: -1.53, -0.30; high: βWQS = -0.03, 95% CI: -0.58, 0.52). Results were similar in unadjusted models. CONCLUSIONS Relative LTL was shorter among newborns of mothers with higher exposure to metals during pregnancy. Higher maternal antioxidant intake may mitigate the negative influence of metals on newborn rLTL.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eva Tanner
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Srimathi Kannan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Harish Ganguri
- Department of Information Systems Security, University of Cumberlands, Williamsburg, KY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Role of arsenic, lead and cadmium on telomere length and the risk of carcinogenesis: a mechanistic insight. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Simón Solá MZ, Lovaisa N, Dávila Costa JS, Benimeli CS, Polti MA, Alvarez A. Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation. CHEMOSPHERE 2019; 222:679-687. [PMID: 30735968 DOI: 10.1016/j.chemosphere.2019.01.197] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 05/18/2023]
Abstract
The aims of this study were (1) to isolate new multi-resistant actinobacteria from soil, rhizosphere and plant samples collected from an ancient illegal pesticide storage and (2) to elucidate the effects of these microorganisms developed with maize root exudates on lindane and Cr(VI) removal. Fifty-seven phenotypically different actinobacteria were isolated and four of them, belonging to the genus Streptomyces exhibit tolerance to a mixture of lindane and Cr(VI). Two rhizospheric strains named as Streptomyces sp. Z38 and Streptomyces sp. Z2 were selected to be grown with root exudates because they showed the highest Cr(VI) and lindane removal in co-contaminated medium. When root exudates were the only carbon source, metal dissipation increased significantly either as single or mixed contaminant, compared to metal dissipation with glucose. No significant differences were found on lindane removal with root exudates or glucose, so a higher lindane concentration was evaluated. Despite of this, lindane removal remained stable while metal dissipation was notoriously lower when lindane concentration was enhanced. In addition to a good performance growing with mixed contaminants, Streptomyces strains showed plant growth promoting traits that could improve plant establishment. The results presented in this study show the importance of the screening programs addressed to find new actinobacteria able to grow in co-contaminated systems. It was also evidenced that root exudates of maize improve the growth of Streptomyces strains when they were used as carbon source, being the dissipation of Cr(VI) considerably improved in presence of lower lindane concentration.
Collapse
Affiliation(s)
- María Zoleica Simón Solá
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Nadia Lovaisa
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucuman, Avenida Kirchner 1900, 4000, Tucumán, Argentina
| | - Jose Sebastian Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Avenida Belgrano 300, 4700, Catamarca, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
13
|
Liu X, Wu J, Shi W, Shi W, Liu H, Wu X. Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells. Med Sci Monit 2018; 24:4295-4304. [PMID: 29933360 PMCID: PMC6045917 DOI: 10.12659/msm.908425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. Material/Methods The TK6 cells were incubated with various concentrations of Pb(Ac)2 for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect γ-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. Results The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. Conclusions Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells.
Collapse
Affiliation(s)
- Xiangquan Liu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jingying Wu
- Department of Preventive Medicine, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Wenyan Shi
- Department of Clinical Nutrition, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Wenhua Shi
- Department of Occupational Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Hekun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiaonan Wu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
14
|
Hernández-Franco P, Silva M, Franco R, Valverde M, Rojas E. Lead facilitates foci formation in a Balb/c-3T3 two-step cell transformation model: role of Ape1 function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12150-12158. [PMID: 29455351 DOI: 10.1007/s11356-018-1396-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Several possible mechanisms have been examined to gain an understanding on the carcinogenic properties of lead, which include among others, mitogenesis, alteration of gene expression, oxidative damage, and inhibition of DNA repair. The aim of the present study was to explore if low concentrations of lead, relevant for human exposure, interfere with Ape1 function, a base excision repair enzyme, and its role in cell transformation in Balb/c-3T3. Lead acetate 5 and 30 μM induced APE1 mRNA and upregulation of protein expression. This increase in mRNA expression is consistent throughout the chronic exposure. Additionally, we also found an impaired function of Ape1 through molecular beacon-based assay. To evaluate the impact of lead on foci formation, a Balb/c-3T3 two-step transformation model was used. Balb/c-3T3 cells were pretreated 1 week with low concentrations of lead before induction of transformation with n-methyl-n-nitrosoguanidine (MNNG) (0.5 μg/mL) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (0.1 μg/mL) (a classical two-step protocol). Morphological cell transformation increased in response to lead pretreatment that was paralleled with an increase in Ape1 mRNA and protein overexpression and an impairment of Ape1 activity and correlating with foci number. In addition, we found that lead pretreatment and MNNG (transformation initiator) increased DNA damage, determined by comet assay. Our data suggest that low lead concentrations (5, 30 μM) could play a facilitating role in cellular transformation, probably through the impaired function of housekeeping genes such as Ape1, leading to DNA damage accumulation and chromosomal instability, one of the most important hallmarks of cancer induced by chronic exposures.
Collapse
Affiliation(s)
- Pablo Hernández-Franco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico
| | - Martín Silva
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico
| | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico
| | - Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico.
| |
Collapse
|
15
|
Chen H, Wang P, Du Z, Wang G, Gao S. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1,3-dichloro-2-propyl) phosphate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:37-45. [PMID: 29149642 DOI: 10.1016/j.aquatox.2017.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is an additive flame retardant of high production volume, and frequently detected in biota and environment. However, knowledge on its potential risk and toxicological mechanism still remains limited. In this study, DNA damage, transcriptomic responses and biochemical changes in the liver of zebrafish (Danio rerio) induced by TDCPP were investigated. Zebrafish was exposed to 45.81μg/L (1/100 (96h-LC50)) and 229.05μg/L (1/20 (96h-LC50)) TDCPP for 7 d. The reactive oxygen species (ROS) and GSH contents, in addition to antioxidant enzyme activities in the liver changed significantly, and the mRNA levels of genes related to oxidative stress were alerted in a dose-dependent and/or sex-dependent manner after exposure to TDCPP. Significant DNA damage in zebrafish liver was found, and olive tail moment increased in a concentration-dependent manner. Moreover, exposure of TDCPP at 45.81μg/L level activated the cell cycle arrest, DNA repair system and apoptosis pathway in male zebrafish, and 229.05μg/L TDCPP exposure inhibited those pathways in both male and female zebrafish. The cell apoptosis was confirmed in TUNEL assay as higher incidence of TUNEL-positive cells were observed in zebrafish exposed to 229.05μg/L TDCPP. Our results also indicated that males were more sensitive to TDCPP exposure compared with females. Taken together, our results showed that TDCPP could induce oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish liver in sex- and concentration-dependent manners.
Collapse
Affiliation(s)
- Hanyan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhongkun Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Guowei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
16
|
Simon Sola MZ, Pérez Visñuk D, Benimeli CS, Polti MA, Alvarez A. Cr(VI) and lindane removal by Streptomyces
M7 is improved by maize root exudates. J Basic Microbiol 2017; 57:1037-1044. [DOI: 10.1002/jobm.201700324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/12/2022]
Affiliation(s)
- María Z. Simon Sola
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET); Tucumán Argentina
| | | | - Claudia S. Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET); Tucumán Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET); Tucumán Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo; Universidad Nacional de Tucumán; Tucumán Argentina
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET); Tucumán Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo; Universidad Nacional de Tucumán; Tucumán Argentina
| |
Collapse
|
17
|
Prolonged particulate chromate exposure does not inhibit homologous recombination repair in North Atlantic right whale (Eubalaena glacialis) lung cells. Toxicol Appl Pharmacol 2017; 331:18-23. [PMID: 28411036 DOI: 10.1016/j.taap.2017.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/28/2023]
Abstract
Chromosome instability is a common feature of cancers that forms due to the misrepair of DNA double strand breaks. Homologous recombination (HR) repair is a high fidelity DNA repair pathway that utilizes a homologous DNA sequence to accurately repair such damage and protect the genome. Prolonged exposure (>72h) to the human lung carcinogen, particulate hexavalent chromium (Cr(VI)), inhibits HR repair, resulting in increased chromosome instability in human cells. Comparative studies have shown acute Cr(VI) exposure induces less chromosome damage in whale cells than human cells, suggesting investigating the effect of this carcinogen in other species may inform efforts to prevent Cr(VI)-induced chromosome instability. Thus, the goal of this study was to determine the effect of prolonged Cr(VI) exposure on HR repair and clastogenesis in North Atlantic right whale (Eubalaena glacialis) lung cells. We show particulate Cr(VI) induces HR repair activity after both acute (24h) and prolonged (120h) exposure in North Atlantic right whale cells. Although the RAD51 response was lower following prolonged Cr(VI) exposure compared to acute exposure, the response was sufficient for HR repair to occur. In accordance with active HR repair, no increase in Cr(VI)-induced clastogenesis was observed with increased exposure time. These results suggest prolonged Cr(VI) exposure affects HR repair and genomic stability differently in whale and human lung cells. Future investigation of the differences in how human and whale cells respond to chemical carcinogens may provide valuable insight into mechanisms of preventing chemical carcinogenesis.
Collapse
|
18
|
Li W, Gu X, Zhang X, Kong J, Ding N, Qi Y, Zhang Y, Wang J, Huang D. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV. Mutat Res 2015. [PMID: 26201248 DOI: 10.1016/j.mrfmmm.2015.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1-8h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.
Collapse
Affiliation(s)
- Weiwei Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoning Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinxin Kong
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Nan Ding
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jufang Wang
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Xie H, Holmes AL, Wise SS, Young JL, Wise JTF, Wise JP. Human Skin Cells Are More Sensitive than Human Lung Cells to the Cytotoxic and Cell Cycle Arresting Impacts of Particulate and Soluble Hexavalent Chromium. Biol Trace Elem Res 2015; 166:49-56. [PMID: 25805272 PMCID: PMC4470775 DOI: 10.1007/s12011-015-0315-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/13/2015] [Indexed: 11/25/2022]
Abstract
Hexavalent chromium Cr(VI) is a known human lung carcinogen, with solubility playing an important role in its carcinogenic potency. Dermal exposure to Cr(VI) is common and has been associated with skin damage; however, no link between chromate exposure and skin cancer has been found. In this study, we compared the cytotoxic and clastogenic effects of Cr(VI) and its impacts on cell cycle progression in human lung and skin fibroblasts. We found human skin cells arrested earlier in their cell cycle and exhibit more cytotoxicity than human lung cells, despite taking up similar amounts of Cr. These outcomes are consistent with a hypothesis that different cellular and molecular responses underlie the differences in carcinogenic outcome in these two tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - John Pierce Wise
- Corresponding author: John Pierce Wise, Sr., Ph.D., Director, Maine Center for Toxicology and Environmental Health, Professor of Toxicology and Molecular Epidemiology, Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St. PO Box 9300, Portland, ME 04104-9300, Phone (207) 228-8050, FAX (207) 228-8518, , www.usm.maine.edu/toxicology
| |
Collapse
|
20
|
McKelvey SM, Horgan KA, Murphy RA. Chemical form of selenium differentially influences DNA repair pathways following exposure to lead nitrate. J Trace Elem Med Biol 2015; 29:151-69. [PMID: 25023848 DOI: 10.1016/j.jtemb.2014.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents.
Collapse
Affiliation(s)
- Shauna M McKelvey
- Alltech Biotechnology Centre, Sarney, Summerhill Rd., Dunboyne, County Meath, Ireland.
| | - Karina A Horgan
- Alltech Biotechnology Centre, Sarney, Summerhill Rd., Dunboyne, County Meath, Ireland
| | - Richard A Murphy
- Alltech Biotechnology Centre, Sarney, Summerhill Rd., Dunboyne, County Meath, Ireland
| |
Collapse
|
21
|
Pino MTL, Verstraeten SV. Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. J Appl Toxicol 2014; 35:952-69. [PMID: 25534134 DOI: 10.1002/jat.3096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/31/2014] [Indexed: 01/06/2023]
Abstract
The effects of thallium [Tl(I) and Tl(III)] on the PC12 cell cycle were evaluated without (EGF(-)) or with (EGF(+)) media supplementation with epidermal growth factor (EGF). The following markers of cell-cycle phases were analyzed: cyclin D1 (G1 ); E2F-1, cyclin E and cytosolic p21 (G1 →S transition); nuclear PCNA and cyclin A (S); and cyclin B1 (G2). The amount of cells in each phase and the activation of the signaling cascade triggered by EGF were also analyzed. Tl(I) and Tl(III) (5-100 μM) caused dissimilar effects on PC12 cell proliferation. In EGF(-) cells, Tl(I) increased the expression of G1 →S transition markers and nuclear PCNA, without affecting cyclin A or cyclin B1. In addition to those, cyclin B1 was also increased in EGF(+) cells. In EGF(-) cells, Tl(III) increased the expression of cyclin D1, all the G1→S and S phase markers and cyclin B1. In EGF(+) cells, Tl(III) increased cyclin D1 expression and decreased all the markers of G1 →S transition and the S phase. Even when these cations did not induce the activation of EGF receptor (EGFR) in EGF(-) cells, they promoted the phosphorylation of ERK1/2 and Akt. In the presence of EGF, the cations anticipated EGFR phosphorylation without affecting the kinetics of EGF-dependent ERK1/2 and Akt phosphorylation. Altogether, results indicate that Tl(I) promoted cell proliferation in both EGF(-) and EGF(+) cells. In contrast, Tl(III) promoted the proliferation of EGF(-) cells but delayed it in EGF(+) cells, which may be related to the toxic effects of this cation in PC12 cells.
Collapse
Affiliation(s)
- María T L Pino
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Sandra V Verstraeten
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| |
Collapse
|
22
|
Pottier G, Viau M, Ricoul M, Shim G, Bellamy M, Cuceu C, Hempel WM, Sabatier L. Lead Exposure Induces Telomere Instability in Human Cells. PLoS One 2013; 8:e67501. [PMID: 23840724 PMCID: PMC3694068 DOI: 10.1371/journal.pone.0067501] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/20/2013] [Indexed: 12/31/2022] Open
Abstract
Lead (Pb) is an important environmental contaminant due to its widespread use over many centuries. While it affects primarily every organ system of the body, the most pernicious effects of Pb are on the central nervous system leading to cognitive and behavioral modification. Despite decades of research, the mechanisms responsible for Pb toxicity remain poorly understood. Recent work has suggested that Pb exposure may have consequences on chromosomal integrity as it was shown that Pb exposure leads to the generation of γH2Ax foci, a well-established biomarker for DNA double stranded break (DSB formation). As the chromosomal localization of γH2Ax foci plays an important role in determining the molecular mechanism responsible for their formation, we examined the localization of Pb-induced foci with respect to telomeres. Indeed, short or dysfunctional telomeres (uncapped or damaged telomeres) may be recognized as DSB by the DNA repair machinery, leading to “telomere-Induced Foci” (TIFs). In the current study, we show that while Pb exposure did not increase intra-chromosomal foci, it significantly induced TIFs, leading in some cases, to chromosomal abnormalities including telomere loss. The evidence suggests that these chromosomal abnormalities are likely due to perturbation of telomere replication, in particular on the lagging DNA strand. We propose a mechanism by which Pb exposure leads to the loss of telomere maintenance. As numerous studies have demonstrated a role for telomere maintenance in brain development and tissue homeostasis, our results suggest a possible mechanism for lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Géraldine Pottier
- Commissariat à l’Energie Atomique (CEA), Laboratoire de Radiobiologie et Oncologie (LRO), Fontenay-aux-Roses, France
| | - Muriel Viau
- Commissariat à l’Energie Atomique (CEA), Laboratoire de Radiobiologie et Oncologie (LRO), Fontenay-aux-Roses, France
| | - Michelle Ricoul
- Commissariat à l’Energie Atomique (CEA), Laboratoire de Radiobiologie et Oncologie (LRO), Fontenay-aux-Roses, France
| | - Grace Shim
- Commissariat à l’Energie Atomique (CEA), Laboratoire de Radiobiologie et Oncologie (LRO), Fontenay-aux-Roses, France
| | - Marion Bellamy
- Commissariat à l’Energie Atomique (CEA), Laboratoire de Radiobiologie et Oncologie (LRO), Fontenay-aux-Roses, France
| | - Corina Cuceu
- Commissariat à l’Energie Atomique (CEA), Laboratoire de Radiobiologie et Oncologie (LRO), Fontenay-aux-Roses, France
| | - William M. Hempel
- Commissariat à l’Energie Atomique (CEA), Laboratoire de Radiobiologie et Oncologie (LRO), Fontenay-aux-Roses, France
| | - Laure Sabatier
- Commissariat à l’Energie Atomique (CEA), Laboratoire de Radiobiologie et Oncologie (LRO), Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
23
|
Mulware SJ. The mammary gland carcinogens: the role of metal compounds and organic solvents. Int J Breast Cancer 2013; 2013:640851. [PMID: 23762568 PMCID: PMC3671233 DOI: 10.1155/2013/640851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
The increased rate of breast cancer incidences especially among postmenopausal women has been reported in recent decades. Despite the fact that women who inherited mutations in the BRCA1 and BRCA2 genes have a high risk of developing breast cancer, studies have also shown that significant exposure to certain metal compounds and organic solvents also increases the risks of mammary gland carcinogenesis. While physiological properties govern the uptake, intracellular distribution, and binding of metal compounds, their interaction with proteins seems to be the most relevant process for metal carcinogenicity than biding to DNA. The four most predominant mechanisms for metal carcinogenicity include (1) interference with cellular redox regulation and induction of oxidative stress, (2) inhibition of major DNA repair, (3) deregulation of cell proliferation, and (4) epigenetic inactivation of genes by DNA hypermethylation. On the other hand, most organic solvents are highly lipophilic and are biotransformed mainly in the liver and the kidney through a series of oxidative and reductive reactions, some of which result in bioactivation. The breast physiology, notably the parenchyma, is embedded in a fat depot capable of storing lipophilic xenobiotics. This paper reviews the role of metal compounds and organic solvents in breast cancer development.
Collapse
Affiliation(s)
- Stephen Juma Mulware
- Ion Beam Modification and Analysis Laboratory, Physics Department, University of North Texas, 1155 Union Circle, #311427, Denton, TX 76203, USA
| |
Collapse
|
24
|
Sunkaria A, Wani WY, Sharma DR, Gill KD. Dichlorvos-induced cell cycle arrest and DNA damage repair activation in primary rat microglial cells. J Neurosci Res 2012; 91:444-52. [DOI: 10.1002/jnr.23173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/05/2012] [Accepted: 10/16/2012] [Indexed: 01/12/2023]
|
25
|
Könczöl M, Goldenberg E, Ebeling S, Schäfer B, Garcia-Käufer M, Gminski R, Grobéty B, Rothen-Rutishauser B, Merfort I, Gieré R, Mersch-Sundermann V. Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells. Chem Res Toxicol 2012; 25:2687-703. [PMID: 23116259 DOI: 10.1021/tx300333z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be globally abundant. Therefore, our study is of direct relevance to populations living near such power plants.
Collapse
Affiliation(s)
- Mathias Könczöl
- Department of Environmental Health Sciences, University Medical Center Freiburg , Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jasso-Pineda Y, Díaz-Barriga F, Calderón J, Yáñez L, Carrizales L, Pérez-Maldonado IN. DNA damage and decreased DNA repair in peripheral blood mononuclear cells in individuals exposed to arsenic and lead in a mining site. Biol Trace Elem Res 2012; 146:141-9. [PMID: 22016027 DOI: 10.1007/s12011-011-9237-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
Abstract
The aim of this study was to evaluate DNA damage and the capacity for DNA repair in children exposed to arsenic and lead. During 2006, we studied a total of 85 healthy children (aged 4-11 years) who were residents of Villa de la Paz (community A), Matehuala (community B), and Soledad de Graciano Sanchez (community C) in San Luis Potosi, Mexico. The quantification of arsenic in urine (AsU) and lead in blood (PbB) was performed by atomic absorption spectrophotometry. The alkaline comet assay was used to evaluate DNA damage and DNA repair. The highest levels of AsU and PbB in children were found in community A (44.5 μg/g creatinine for arsenic and 11.4 μg/dL for lead), followed by community B (16.8 μg/g creatinine for arsenic and 7.3 μg/dL for lead) and finally by children living in community C (12.8 μg/g creatinine for arsenic and 5.3 μg/dL for lead). When DNA damage was assessed, children living in community A had the highest DNA damage. Analysis of these same cells 1 h after a challenge with H(2)O(2) 10 μM showed a dramatic increase in DNA damage in the cells of children living in community B and community C, but not in the cells of children living in community A. Moreover, significantly higher levels of DNA damage were observed 3 h after the challenge ended (repair period) in cells from individuals living in community A. Our results show that children exposed to metals might be more susceptible to DNA alterations.
Collapse
Affiliation(s)
- Yolanda Jasso-Pineda
- Departamento Toxicología Ambiental, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | | | | | | | | | | |
Collapse
|
27
|
Effect of melatonin administration on DNA damage and repair responses in lymphocytes of rats subchronically exposed to lead. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 742:37-42. [DOI: 10.1016/j.mrgentox.2011.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022]
|
28
|
Narayana K, Raghupathy R. DNA damage in lead-exposed hepatocytes: coexistence of apoptosis and necrosis? Drug Chem Toxicol 2011; 35:208-17. [DOI: 10.3109/01480545.2011.589849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Barillet S, Adam-Guillermin C, Palluel O, Porcher JM, Devaux A. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:495-502. [PMID: 21093136 DOI: 10.1016/j.envpol.2010.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 05/30/2023]
Abstract
Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect.
Collapse
Affiliation(s)
- Sabrina Barillet
- Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex, France.
| | | | | | | | | |
Collapse
|
30
|
Narayana K, Al-Bader M. Ultrastructural and DNA damaging effects of lead nitrate in the liver. ACTA ACUST UNITED AC 2011; 63:43-51. [DOI: 10.1016/j.etp.2009.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 09/07/2009] [Accepted: 09/09/2009] [Indexed: 11/29/2022]
|
31
|
Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 213:113-36. [PMID: 21541849 DOI: 10.1007/978-1-4419-9860-6_4] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lead has gained considerable attention as a persistent toxic pollutant of concern,partly because it has been prominent in the debate concerning the growing anthropogenic pressure on the environment. The purpose of this review is to describe how plants take lead up and to link such uptake to the ecotoxicity of lead in plants.Moreover, we address the mechanisms by which plants or plant systems detoxify lead.Lead has many interesting physico-chemical properties that make it a very useful heavy metal. Indeed, lead has been used by people since the dawn of civilization.Industrialization, urbanization, mining, and many other anthropogenic activities have resulted in the redistribution of lead from the earth's crust to the soil and to the environment.Lead forms various complexes with soil components, and only a small fraction of the lead present as these complexes in the soil solution are phyto available. Despite its lack of essential function in plants, lead is absorbed by them mainly through the roots from soil solution and thereby may enter the food chain. The absorption of lead by roots occurs via the apoplastic pathway or via Ca2+-permeable channels.The behavior of lead in soil, and uptake by plants, is controlled by its speciation and by the soil pH, soil particle size, cation-exchange capacity, root surface area,root exudation, and degree of mycorrhizal transpiration. After uptake, lead primarily accumulates in root cells, because of the blockage by Casparian strips within the endodermis. Lead is also trapped by the negative charges that exist on roots' cell walls.Excessive lead accumulation in plant tissue impairs various morphological, physiological, and biochemical functions in plants, either directly or indirectly, and induces a range of deleterious effects. It causes phytotoxicity by changing cell membrane permeability, by reacting with active groups of different enzymes involved in plant metabolism and by reacting with the phosphate groups of ADP or ATP,and by replacing essential ions. Lead toxicity causes inhibition of ATP production, lipid peroxidation, and DNA damage by over production of ROS. In addition, lead strongly inhibits seed germination, root elongation, seedling development, plant growth, transpiration, chlorophyll production, and water and protein content. The negative effects that lead has on plant vegetative growth mainly result from the following factors: distortion of chloroplast ultrastructure, obstructed electron transport,inhibition of Calvin cycle enzymes, impaired uptake of essential elements, such as Mg and Fe, and induced deficiency of CO2 resulting from stomatal closure.Under lead stress, plants possess several defense strategies to cope with lead toxicity. Such strategies include reduced uptake into the cell; sequestration of lead into vacuoles by the formation of complexes; binding of lead by phytochelatins,glutathione, and amino acids; and synthesis of osmolytes. In addition, activation of various antioxidants to combat increased production of lead-induced ROS constitutes a secondary defense system.
Collapse
Affiliation(s)
- Bertrand Pourrut
- LGCgE, Equipe Sols et environnement, ISA, 59046, Lille Cedex, France.
| | | | | | | | | |
Collapse
|
32
|
Asakura K, Satoh H, Chiba M, Okamoto M, Serizawa K, Nakano M, Omae K. Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony. J Occup Health 2009; 51:498-512. [PMID: 19851040 DOI: 10.1539/joh.l9080] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Many kinds of heavy metals are used in industry; thus, it is important for us to clarify their toxicity. For example, lead, which is a component of solder, is notorious for its neurotoxicity, and substitute materials have been sought for many years. Therefore, we examined the genotoxicity of lead and also those of metallic bismuth, indium, silver and antimony which are possible substitutes for lead in solder. METHODS Bacterial reverse mutation tests and chromosomal aberration tests in cultured mammalian cells were performed according to standard procedures. RESULTS Antimony showed genotoxicity in both tests, and bismuth also showed positive results in the chromosomal aberration test. In contrast, lead, indium, and silver were considered to be inactive by the criteria of the present study. CONCLUSIONS Although further studies are needed because of the difficulty of genotoxicity evaluation using an in vitro system, sufficient precautions should be made when antimony and bismuth are used.
Collapse
Affiliation(s)
- Keiko Asakura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Vidic T, Lah B, Berden-Zrimec M, Marinsek-Logar R. Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters. ENVIRONMENTAL TOXICOLOGY 2009; 24:472-483. [PMID: 18973278 DOI: 10.1002/tox.20451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Physicochemical analyses of polluted soils are limited in their ability to determine all hazardous compounds, their bioavailability, and their combined effects on living organisms. Bioassays, on the other hand, can evaluate environmental quality more accurately. This study assesses the genotoxic potential of water extracts from soil polluted with metals (Pb, Cd, and Zn) by the former lead smelter in zerjav, Slovenia using comet assay with Tetrahymena thermophila and human hepatoma cells (HepG2). In addition, the toxicity of soil samples and their extracts was evaluated using Vibrio fischeri and delayed fluorescence of Lemna minor. Chemical analyses of metals using atomic absorption spectrophotometry (AAS) was performed for comparison. Measurements of the total metal concentrations showed that four of five plots near the former lead smelter were highly contaminated with Pb, Cd, and Zn, but the amount of metals in water/soil extracts was low at all the sampling plots. Genotoxicity was demonstrated using T. thermophila for the majority of the extracts, and HepG2 cells for only some of the extracts. Whereas V. fischeri indicated a gradual decrease in soil toxicity with greater distance from the smelter, the toxicity of extracts did not correlate with proximity. Low concentrations of metals in water extracts stimulated L. minor growth. The results indicate that comet assay with T. thermophila and HepG2 cells and the BSPT with V. fischeri are suitable protocols for screening the genotoxic and toxic potential of water/soil extracts by comet assay, whereas chemical analyses of total metal concentrations in soil do not solely suffice for evaluating metal pollution in the environment. Biological assays are thus crucial for risk assessment.
Collapse
Affiliation(s)
- Tatjana Vidic
- Simon Jenko Primary School, Kranj, Ulica 31. divizije 7a, 4000 Kranj, Slovenia
| | | | | | | |
Collapse
|
34
|
Zhuang HQ, Sun J, Yuan ZY, Wang J, Zhao LJ, Wang P, Ren XB, Wang CL. Radiosensitizing effects of gefitinib at different administration times in vitro. Cancer Sci 2009; 100:1520-5. [PMID: 19432883 PMCID: PMC11159024 DOI: 10.1111/j.1349-7006.2009.01190.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The optimal administration time for applying epidermal growth factor receptor inhibitors combined with radiotherapy has been unclear. We investigated the efficacy of combining gefitinib with radiation in different treatment schedules. We demonstrated that gefitinib was administered to A549 lung cancer cells in three ways (administration before irradiation, administration upon irradiation, administration after irradiation) to establish the radiosensitizing effect. Cell-survival rates were evaluated by colony-forming assays. Cell apoptosis and cell-cycle distribution were investigated using flow cytometry; meanwhile, the expression of P21, Cdc25c, Bcl-2, Bax, Rad51 and phosphorylated DNA-PKcs (phospho-DNA-PK) after 6 Gy irradiation and/or gefitinib were determined by Western blot analysis. The sensitizer enhancement ratios of the gefitinib administration before irradiation, administration upon irradiation, and administration after irradiation groups were 2.23, 1.51 and 1.30, respectively. A higher apoptosis rate and G(2)/M phase arrest were observed in cells at 48 h after exposure to 6 Gy irradiation when gefitinib was administrated before irradiation. Increased cell apoptosis and cell cycle arrest were further supported by the expression changes of Bcl-2, Bax, P21, Cdc25c, Rad51 and phospho-DNA-PK at the same time. The best radiosensitizing effect was obtained when gefitinib was delivered before irradiation. Apoptosis might be an important way of cell killing and G(2)/M phase arrest might be an important mechanism of apoptosis. The expression proportion changes of P21/Cdc25c proteins may play an important role in G(2)/M cell cycle arrest. Moreover, the pro-apoptotic/antiapoptotic and DNA repair factors may be important modulators taking part in the molecular events of the radiosensitizing effect of gefitinib combined with irradiation.
Collapse
Affiliation(s)
- Hong-Qing Zhuang
- Department of Radiotherapy, Tianjin Cancer Institute & Hospital, Tianjin Lung Cancer Center, and Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
TEGDMA-induced oxidative DNA damage and activation of ATM and MAP kinases. Biomaterials 2009; 30:2006-14. [DOI: 10.1016/j.biomaterials.2008.12.045] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/19/2008] [Indexed: 11/18/2022]
|
36
|
Chiorcea-Paquim AM, Corduneanu O, Oliveira S, Diculescu V, Oliveira-Brett A. Electrochemical and AFM evaluation of hazard compounds–DNA interaction. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Méndez-Gómez J, García-Vargas GG, López-Carrillo L, Calderón-Aranda ES, Gómez A, Vera E, Valverde M, Cebrián ME, Rojas E. Genotoxic Effects of Environmental Exposure to Arsenic and Lead on Children in Region Lagunera, Mexico. Ann N Y Acad Sci 2008; 1140:358-67. [DOI: 10.1196/annals.1454.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Viau M, Gastaldo J, Bencokova Z, Joubert A, Foray N. Cadmium inhibits non-homologous end-joining and over-activates the MRE11-dependent repair pathway. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:13-21. [DOI: 10.1016/j.mrgentox.2008.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/17/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
|
39
|
Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 2008; 82:493-512. [PMID: 18496671 DOI: 10.1007/s00204-008-0313-y] [Citation(s) in RCA: 689] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/30/2008] [Indexed: 02/07/2023]
Abstract
Mechanisms of carcinogenicity are discussed for metals and their compounds, classified as carcinogenic to humans or considered to be carcinogenic to humans: arsenic, antimony, beryllium, cadmium, chromium, cobalt, lead, nickel and vanadium. Physicochemical properties govern uptake, intracellular distribution and binding of metal compounds. Interactions with proteins (e.g., with zinc finger structures) appear to be more relevant for metal carcinogenicity than binding to DNA. In general, metal genotoxicity is caused by indirect mechanisms. In spite of diverse physicochemical properties of metal compounds, three predominant mechanisms emerge: (1) interference with cellular redox regulation and induction of oxidative stress, which may cause oxidative DNA damage or trigger signaling cascades leading to stimulation of cell growth; (2) inhibition of major DNA repair systems resulting in genomic instability and accumulation of critical mutations; (3) deregulation of cell proliferation by induction of signaling pathways or inactivation of growth controls such as tumor suppressor genes. In addition, specific metal compounds exhibit unique mechanisms such as interruption of cell-cell adhesion by cadmium, direct DNA binding of trivalent chromium, and interaction of vanadate with phosphate binding sites of protein phosphatases.
Collapse
|
40
|
Gastaldo J, Viau M, Bouchot M, Joubert A, Charvet AM, Foray N. Induction and repair rate of DNA damage: A unified model for describing effects of external and internal irradiation and contamination with heavy metals. J Theor Biol 2008; 251:68-81. [DOI: 10.1016/j.jtbi.2007.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 10/21/2007] [Accepted: 10/27/2007] [Indexed: 10/22/2022]
|