1
|
Bitounis D, Huang Q, Toprani SM, Setyawati MI, Oliveira N, Wu Z, Tay CY, Ng KW, Nagel ZD, Demokritou P. Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells. NANOIMPACT 2022; 25:100379. [PMID: 35559885 PMCID: PMC9661631 DOI: 10.1016/j.impact.2022.100379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 05/26/2023]
Abstract
Nano-enabled, toner-based printing equipment emit nanoparticles during operation. The bioactivity of these nanoparticles as documented in a plethora of published toxicological studies raises concerns about their potential health effects. These include pro-inflammatory effects that can lead to adverse epigenetic alterations and cardiovascular disorders in rats. At the same time, their potential to alter DNA repair pathways at realistic doses remains unclear. In this study, size-fractionated, airborne particles from a printer center in Singapore were sampled and characterized. The PM0.1 size fraction (particles with an aerodynamic diameter less than 100 nm) of printer center particles (PCP) were then administered to human lung adenocarcinoma (Calu-3) or lymphoblastoid (TK6) cells. We evaluated plasma membrane integrity, mitochondrial activity, and intracellular reactive oxygen species (ROS) generation. Moreover, we quantified DNA damage and alterations in the cells' capacity to repair 6 distinct types of DNA lesions. Results show that PCP altered the ability of Calu-3 cells to repair 8oxoG:C lesions and perform nucleotide excision repair, in the absence of acute cytotoxicity or DNA damage. Alterations in DNA repair capacity have been correlated with the risk of various diseases, including cancer, therefore further genotoxicity studies are needed to assess the potential risks of PCP exposure, at both occupational settings and at the end-consumer level.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Qiansheng Huang
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sneh M Toprani
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
| | - Magdiel I Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nathalia Oliveira
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Zachary D Nagel
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA.
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Fang C, Sobhani Z, Zhang D, Zhang X, Gibson CT, Tang Y, Luo Y, Megharaj M, Naidu R. Capture and characterisation of microplastics printed on paper via laser printer's toners. CHEMOSPHERE 2021; 281:130864. [PMID: 34020184 DOI: 10.1016/j.chemosphere.2021.130864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are among the ubiquitous contaminants in our environment. As emerging contaminants, microplastics are still facing with lots of challenges on the characterisation, including their capture, identification and visualisation, particularly from a complex background. For example, when we print documents using a laser printer, we are printing microplastics onto paper, because the plastics are the main ingredient of the toner powder mixture. Characterisation of these microplastic mixture meets an even more complicated challenge, because plastic's signals might be shielded by other toner powder ingredients such as the pigments, the dyes, the black carbon, and the paper fabrics as well. To solve this challenge, we employ various techniques, including SEM, TEM, XPS, FT-IR, TGA and Raman, to characterise the microplastics printed via the toner powders. Interestingly, we show that Raman can distinguish and visualise the distribution of the microplastics from the complex background of the mixture. We estimate the millions of toner powders, each of which is ~4-6 μm in size, are printed out per A4 sheet as microplastics. The findings send a strong warning that millions of microplastics might be generated from the printing activities in our daily lives.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Zahra Sobhani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Dandan Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Christopher T Gibson
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia; Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
| | - Youhong Tang
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
3
|
Tian Z, Sun L, Tian H, Cao K, Bai S, Li J, Zhu Q. 3D Graphene Oxide Hydrogel Derived from Waste Toner as Adsorbent. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5275-5281. [PMID: 33875118 DOI: 10.1166/jnn.2021.19339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Waste toner powders are considered as hazardous materials to human and living things, and should be properly recycled by many effective ways due to their fine particle sizes and complex components. In this paper, waste toner powders were used as raw materials to successfully synthesize three dimensions (3D) graphene oxide (GO) hydrogel by means of a one-pot chemical transformation based on the improved Hummers' method. The obtained 3D GO hydrogel has porous structure and abundant oxygen-containing functional groups because of the inherent 3D solid structure of waste toner powder and the strong oxidation process of the improved Hummers' method. Interestingly, the as-prepared 3D GO hydrogel with excellent adsorptive property could quickly remove Pb(II) ions (100 mg/L, removal efficiency of 96% and removal capacity of 144 mg/g) and methylene blue (50 mg/L, removal efficiency of 97% and removal capacity of 48 mg/g) from water, respectively. The preparation process of 3D GO hydrogel was simple and easy to operate, and the output can be moderately mass produced, thus it would provide a new and effective disposal way for the recycling and reusing of waste toner.
Collapse
Affiliation(s)
- Zhengshan Tian
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Lijuan Sun
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Hao Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kesheng Cao
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Suzhen Bai
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China
| | - Jitao Li
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Qiuxiang Zhu
- College of Information and Electronic Engineering, Hunan City University, Yiyang 413000, China
| |
Collapse
|
4
|
Fang C, Sobhani Z, Zhang X, McCourt L, Routley B, Gibson CT, Naidu R. Identification and visualisation of microplastics / nanoplastics by Raman imaging (iii): algorithm to cross-check multi-images. WATER RESEARCH 2021; 194:116913. [PMID: 33601233 DOI: 10.1016/j.watres.2021.116913] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/12/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
We recently developed the Raman mapping image to visualise and identify microplastics / nanoplastics (Fang et al. 2020, Sobhani et al. 2020). However, when the Raman signal is low and weak, the mapping uncertainty from the individual Raman peak intensity increases and may lead to images with false positive or negative features. For real samples, even the Raman signal is high, a low signal-noise ratio still occurs and leads to the mapping uncertainty due to the high spectrum background when: the target plastic is dispersed within another material with interfering Raman peaks; materials are present that exhibit broad Raman peaks; or, materials are present that fluoresce when exposed to the excitation laser. In this study, in order to increase the mapping certainty, we advance the algorithm to combine and merge multi-images that have been simultaneously mapped at the different characteristic peaks from the Raman spectra, akin imaging via different mapping channels simultaneously. These multi-images are merged into one image via algorithms, including colour off-setting to collect signal with a higher ratio of signal-noise, logic-OR to pick up more signal, logic-AND to eliminate noise, and logic-SUBTRACT to remove image background. Specifically, two or more Raman images can act as "parent images", to merge and generate a "daughter image" via a selected algorithm, to a "granddaughter image" via a further selected algorithm, and to an "offspring image" etc. More interestingly, to validate this algorithm approach, we analyse microplastics / nanoplastics that might be generated by a laser printer in our office or home. Depending on the toner and the printer, we might print and generate millions of microplastics and nanoplastics when we print a single A4 document.
Collapse
Affiliation(s)
- Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan NSW 2308, Australia.
| | - Zahra Sobhani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan NSW 2308, Australia
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Luke McCourt
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ben Routley
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher T Gibson
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia; Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park 5042, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan NSW 2308, Australia
| |
Collapse
|
5
|
Sarwate M, Vrbenska A, Cummings K, Tazelaar HD. Unusual pneumoconiosis in two patients with heavy print toner, and paper dust exposure. Am J Ind Med 2020; 63:821-827. [PMID: 32597538 PMCID: PMC7496873 DOI: 10.1002/ajim.23147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022]
Abstract
Workers in a print shop are exposed to photocopier toner dust and paper dust over a prolonged period of time. However, there are only rare case reports of toner and paper dust induced lung damage in humans. We reviewed our consultation files for a period of 30 years from 1987 to 2018 to look for cases with a diagnosis of giant cell interstitial pneumonia (GIP), printer toner exposure and paper dust exposure resulting in lung disease. There were two cases which met our inclusion criteria. Slides, clinical histories and imaging were reviewed. Both the patients had worked in print shops, and had no history of exposure to hard metals. Patient 1 presented with shortness of breath and cough over several months, while patient 2 was asymptomatic at presentation. Both the patients underwent surgical lung biopsies. Histopathologic examination from both the cases showed a spectrum of pathology, including features of GIP, desquamative interstitial pneumonia, chronic bronchiolitis with lymphoid hyperplasia, and particulate matter consistent with toner. Energy dispersive spectroscopy was performed on one case, and it revealed no cobalt or tungsten particles. The unusual combination of findings is very suggestive that toner particles with or without paper dust exposure were responsible for the pathologic changes in the lungs of these patients. This possibility should be explored further with additional patients who work in print shops where they are exposed to paper dust and paper toner and have signs or symptoms of diffuse lung disease.
Collapse
Affiliation(s)
- Mrinal Sarwate
- Department of Laboratory Medicine and PathologyMayo ClinicScottsdale Arizona
| | - Adela Vrbenska
- Department of Pathology, National Institute for TBLung Diseases and Thoracic SurgeryVysne Tatry Slovakia
| | | | - Henry D. Tazelaar
- Department of Laboratory Medicine and PathologyMayo ClinicScottsdale Arizona
| |
Collapse
|
6
|
Zhou S, Xi Y, Chen Y, Zhang Z, Wu C, Yan W, Luo A, Wu T, Zhang J, Wu M, Dai J, Shen W, Zhang F, Ding W, Wang S. Ovarian Dysfunction Induced by Chronic Whole-Body PM2.5 Exposure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000845. [PMID: 32686359 DOI: 10.1002/smll.202000845] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) pollution arouses public health concerns over the world. Increasing epidemiologic evidence suggests that exposure to ambient airborne PM2.5 increases the risk of female infertility. However, relatively few studies have systematically explored the harmful effect of chronic PM2.5 exposure on ovarian function and the underlying mechanisms. In this study, female C57BL/6J mice are exposed to filtered air or urban airborne PM2.5 for 4 months through a whole-body exposure system. It is found that PM2.5 exposure significantly caused the alteration of estrus cycles, reproductivity, hormone levels, and ovarian reserve. The granulosa cell apoptosis via the mitochondria dependent pathway contributes to the follicle atresia. With RNA-sequencing technique, the differentially expressed genes induced by PM2.5 exposure are mainly enriched in ovarian steroidogenesis, reactive oxygen species and oxidative phosphorylation pathways. Furthermore, it is found that increased PM2.5 profoundly exacerbated ovarian oxidative stress and inflammation in mice through the NF-κB/IL-6 signaling pathway. Notably, dietary polydatin (PD) supplement has protective effect in mice against PM2.5-induced ovarian dysfunction.These striking findings demonstrate that PM2.5 and/or air pollution is a critical factor for ovarian dysfunction through mitochondria-dependent and NF-κB/IL-6-mediated pathway, and PD may serve as a pharmaceutic candidate for air pollution-associated ovarian dysfunction.
Collapse
Affiliation(s)
- Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chunyan Wu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|
7
|
Zhang J, Zhou Q, Su R, Sun Z, Zhang W, Jin X, Zheng Y. Cardiac dysfunction and metabolic remodeling due to seasonally ambient fine particles exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137792. [PMID: 32182466 DOI: 10.1016/j.scitotenv.2020.137792] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Increasing epidemiological evidences have revealed the association between ambient fine particulate matter (PM2.5) pollution and cardiovascular disease's morbidity and mortality. However, how seasonal PM2.5 exposure influence cardiac function and the underlying mechanism converged in energy metabolic remodeling remain to be elucidated. This study focused on seasonal PM2.5-induced cardiac dysfunction and metabolic remodeling, and the toxicity differences of PM2.5 samples from different sampling seasons and different exposure dosages were discussed. The results showed that seasonal haze caused cardiac dysfunctions, including decreases in heart rate (HR) and heart rate variability (HRV), abnormal changes in hemodynamic and echocardiographic parameters. Concurrently, the energy production in myocardial tissues was evidently disturbed. In particular, low dose of PM2.5 exposure notably induced the elevation of beta oxidation (β-oxidation) and tricarboxylic acid cycle (TCA cycle) as the compensation for the disturbed energy metabolism in animals, whereas high dose of PM2.5 exposure attenuated this process and the glycolysis levels were strikingly promoted, thus causing the reduced energy production and cardiac dysfunction. Comparatively, winter PM2.5 exposure caused more severe cardiac toxicity than did summer haze samples, possibly due to the existence of different components and pollutant levels in seasonal hazes. The findings on seasonal PM2.5 induced cardiac dysfunction and myocardial metabolic remodeling provided new insights into cardiovascular disease risks from haze exposure.
Collapse
Affiliation(s)
- Jingxu Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Su
- Institute of Biomedical Science, Shanxi University, Taiyuan 030006, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weifang Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Pei YH, Chen J, Wu X, He Y, Qin W, He SY, Chang N, Jiang H, Zhou J, Yu P, Shi HB, Chen XH. LncRNA PEAMIR inhibits apoptosis and inflammatory response in PM2.5 exposure aggravated myocardial ischemia/reperfusion injury as a competing endogenous RNA of miR-29b-3p. Nanotoxicology 2020; 14:638-653. [PMID: 32100595 DOI: 10.1080/17435390.2020.1731857] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sensitivity of myocardium is enhanced to ischemia/reperfusion (I/R) injury under PM2.5 exposure. It is still under prelude for lncRNA-miRNA pair in the study of aggravated myocardial I/R injury under PM2.5 exposure. In this study, we first built a rat model of 30 min ischemia and 24 h reperfusion followed PM2.5 (6.0 mg/kg) exposure. We found PM2.5 exposure could obviously aggravate I/R injury in the fields of myocardium damage, apoptosis levels and cardiac function which were evaluated by TTC staining, TUNEL and echocardiography, respectively. Then, based on results of sequencing and RT-qPCR, we selected NONRATT003473.2 in the follow-up experiments and named this lncRNA as PM2.5 exposure aggravated myocardial I/R injury lncRNA (PEAMIR). Consistent with the results rat model, we confirmed PEAMIR to be a protective lncRNA against PM + HR triggered damages in H9c2 cells. Next, according to the bioinformatics analysis from miRanda database and a series of gain- and loss-of-function experiments, we proved PEAMIR to be a ceRNA for miR-29b-3p to inhibit cardiac inflammation and apoptosis. Finally, using Target-Scan database, the conserved binding sites for miR-29b-3p was identified in the 3'UTR of PI3K (p85a), a key protein of apoptosis. Our subsequent experiments validated the regulatory relationship between PEAMIR-miR-29b-3p ceRNA pair and PI3K (p85a)/Akt/GSK3b/p53 cascade pathway. In conclusion, our study demonstrated the role and mechanism of PEAMIR in the augment of I/R injury under PM2.5 exposure, suggesting a promising strategy for the prevention and treatment of I/R injury under PM2.5 exposure.
Collapse
Affiliation(s)
- Ying-Hao Pei
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jie Chen
- Department of Gynecology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xiang Wu
- Department of Geriatrics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Yun He
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Wei Qin
- Jiangsu Environmental Monitoring Center, Nanjing, China
| | - Shu-Yin He
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ning Chang
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hua Jiang
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jiang Zhou
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Peng Yu
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hai-Bo Shi
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xiao-Hu Chen
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Eco Friendly Fabrication of Gold Nanoclusters and Their Induction of Cardiomyocyte Apoptosis After Intratracheal Instillation in Rats. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01692-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Le Y, Hu X, Zhu J, Wang C, Yang Z, Lu D. Ambient fine particulate matter induces inflammatory responses of vascular endothelial cells through activating TLR-mediated pathway. Toxicol Ind Health 2019; 35:670-678. [PMID: 31601156 DOI: 10.1177/0748233719871778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims to investigate the role of Toll-like receptors (TLRs) on fine particulate matter (PM2.5)-induced inflammatory responses of vascular endothelial cells. Inflammatory factors and TLRs were examined in the aorta of mice after nonsurgical intratracheal instillation of PM2.5 as well as in the human umbilical vein endothelial cells (HUVECs) treated with PM2.5. In addition, the effects of TLR2 and TLR4 inhibitors in the secretion of interleukin 6 (IL-6) and IL-1β and the expression of TLRs were determined in the HUVECs. The results showed that PM2.5 could increase the expression of IL-1β, IL-6, TLR2, and TLR4 in vitro and in vivo. Anti-TLR2 IgG or TAK242, an inhibitor of TLR4, decreased the secretion of IL-1β and IL-6 by HUVECs and reduced the expression of corresponding TLRs. In conclusion, we demonstrate that both TLR2 and TLR4 are involved in PM2.5-induced inflammatory responses of vascular endothelial cells. Inhibition of TLR2 and TLR4 expression has the potential to prevent PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Shin N, Velmurugan K, Su C, Bauer AK, Tsai CSJ. Assessment of fine particles released during paper printing and shredding processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1342-1352. [PMID: 31049512 DOI: 10.1039/c9em00015a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the airborne particles released during paper printing and paper shredding processes in an attempt to characterize and differentiate these particles. Particle characteristics were studied with real time instruments (RTIs) to measure concentrations and with samplers to collect particles for subsequent microscopy and cytotoxicity analysis. The particles released by paper shredding were evaluated for cytotoxicity by using in vitro human lung epithelial cell models. A substantial amount of particles were released during both the shredding and printing processes. We found that the printing process caused substantial release of particles with sizes of less than 300 nm in the form of metal granules and graphite. These released particles contained various elements including Al, Ca, Cu, Fe, Mg, N, K, P, S and Si. The particles released by the paper shredding processes were primarily nanoparticles and had a peak size between 27.4 nm and 36.5 nm. These paper particles contained elements including Al, Br Ca, Cl, Cr, Cu, Fe, Mg, N, Na, Ni P, S and Si, as determined by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS) and single-particle inductively coupled plasma-mass spectroscopy (SP-ICP-MS) analysis. Although various metals were identified in the paper particles, these particles did not elicit cytotoxicity to simian virus-transformed bronchial epithelial cells (BEAS2B) and immortalized normal human bronchial epithelial cells (HBE1). However, future studies should investigate other cytotoxicity effects of these paper particles in various types of lung cells to identify potential health effects of the particles.
Collapse
Affiliation(s)
- Nara Shin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80528, USA
| | | | | | | | | |
Collapse
|
12
|
Mandler WK, Qi C, Orandle MS, Sarkisian K, Mercer RR, Stefaniak AB, Knepp AK, Bowers LN, Battelli LA, Shaffer J, Friend SA, Qian Y, Sisler JD. Mouse pulmonary response to dust from sawing Corian®, a solid-surface composite material. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:645-663. [PMID: 31290376 DOI: 10.1080/15287394.2019.1640816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Corian®, a solid-surface composite (SSC), is composed of alumina trihydrate and acrylic polymer. The aim of the present study was to examine the pulmonary toxicity attributed to exposure to SSC sawing dust. Male mice were exposed to either phosphate buffer saline (PBS, control), 62.5, 125, 250, 500, or 1000 µg of SSC dust, or 1000 µg silica (positive control) via oropharyngeal aspiration. Body weights were measured for the duration of the study. Bronchoalveolar lavage fluid (BALF) and tissues were collected for analysis at 1 and 14 days post-exposure. Enhanced-darkfield and histopathologic analysis was performed to assess particle distribution and inflammatory responses. BALF cells and inflammatory cytokines were measured. The geometric mean diameter of SSC sawing dust following suspension in PBS was 1.25 µm. BALF analysis indicated that lactate dehydrogenase (LDH) activity, inflammatory cells, and pro-inflammatory cytokines were significantly elevated in the 500 and 1000 µg SSC exposure groups at days 1 and 14, suggesting that exposure to these concentrations of SSC induced inflammatory responses, in some cases to a greater degree than the silica positive control. Histopathology indicated the presence of acute alveolitis at all doses at day 1, which was largely resolved by day 14. Alveolar particle deposition and granulomatous mass formation were observed in all exposure groups at day 14. The SSC particles were poorly cleared, with 81% remaining at the end of the observation period. These findings demonstrate that SSC sawing dust exposure induces pulmonary inflammation and damage that warrants further investigation. Abbreviations: ANOVA: Analysis of Variance; ATH: Alumina Trihydrate; BALF: Bronchoalveolar Lavage Fluid; Dpg: Geometric Mean Diameter; FE-SEM: Field Emission Scanning Electron Microscopy; IACUC: Institutional Animal Care and Use Committee; IFN-γ: Interferon Gamma; IL-1 Β: Interleukin-1 Beta; IL-10: Interleukin-10; IL-12: Interleukin-12; IL-2: Interleukin-2; IL-4: Interleukin-4; IL-5: Interleukin-5; IL-6: Interleukin-6; KC/GRO: Neutrophil-Activating Protein 3; MMAD: Mass Median Aerodynamic Diameter; PBS: Phosphate-Buffered Saline; PEL: Permissible Exposure Limit; PM: Polymorphonuclear Leukocytes; PNOR: Particles Not Otherwise Regulated; SEM/EDX: Scanning Electron Microscope/Energy-Dispersive X-Ray; SSA: Specific Surface Area; SSC: Solid Surface Composite; TNFα: Tumor Necrosis Factor-Alpha; VOC: Volatile Organic Compounds; σg: Geometric Standard Deviation.
Collapse
Affiliation(s)
- W Kyle Mandler
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Chaolong Qi
- b Division of Applied Research, National Institute for Occupational Safety and Health , Cincinnati , OH , USA
| | - Marlene S Orandle
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Khachatur Sarkisian
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Robert R Mercer
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Alycia K Knepp
- c Respiratory Health Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Lauren N Bowers
- c Respiratory Health Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Lori A Battelli
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Justine Shaffer
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Sherri A Friend
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Yong Qian
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Jennifer D Sisler
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
13
|
Jin X, Su H, Ding G, Sun Z, Li Z. Exposure to ambient fine particles causes abnormal energy metabolism and ATP decrease in lung tissues. CHEMOSPHERE 2019; 224:29-38. [PMID: 30807911 DOI: 10.1016/j.chemosphere.2019.02.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/15/2019] [Accepted: 02/17/2019] [Indexed: 05/05/2023]
Abstract
Airborne fine particles, generating from human activities, have drawn increasing attention due to their potential lung health hazards. The currently available toxicological data on fine particles is still not sufficient to explain their cause-and-effect. Based on well reported critical role of ATP on maintaining lung structure and function, the alterations of ATP production and energy metabolism in lungs of rats exposed to different dosages of seasonal PM2.5 were investigated. Haze dosage PM2.5 exposure was demonstrated to reduce the ATP production. Activity of critical enzymes in TCA cycle, such as malate dehydrogenase (MDH) and citrate synthase (CS), and expression of mitochondrial respiration chain genes were attenuated in groups exposed to haze dosage PM2.5. In contrast, there was prominent augment of glycolytic markers at haze dosage PM2.5, including metabolite contents (pyruvate and lactic acid), enzyme activities (hexokinase (HK) and pyruvate kinase (PKM)), along with mRNA levels of PKM and LDH. Consequently, sub-chronic exposure to seasonal haze PM2.5 caused reduction in ATP generation and metabolic rewiring from TCA cycle to glycolysis. Our findings can help better understand the toxicological mechanism of lung disease caused by particulate air pollution.
Collapse
Affiliation(s)
- Xiaoting Jin
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Huilan Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Guobin Ding
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
14
|
Nandan A, Siddiqui NA, Kumar P. Assessment of environmental and ergonomic hazard associated to printing and photocopying: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1187-1211. [PMID: 30350125 DOI: 10.1007/s10653-018-0205-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
"Knowledge is power" and distribution of knowledge is fueled by printing and photocopying industry. Even as printing and photocopying industry have revolutionized the availability of documents and perceptible image quickly at extremely inexpensive and affordable cost, the boon of its revolution has turned into a bane by irresponsible, uncontrolled and extensive use, causing irreversible degradation to not only ecosystem by continuous release of ozone and other volatile organic compounds (VOCs) but also the health of workers occupationally exposed to it. Indoor ozone level due to emission from different photocopying equipment's increases drastically and the condition of other air quality parameters are not different. This situation is particularly sedate in extremely sensitive educational and research industry where sharing of knowledge is extremely important to meet the demands. This work is an attempt to catalogue all the environmental as well as health impacts of printing or photocopying. It has been observed that printing/photocopying operation is a significant factor contributing to indoor air quality degradation, which includes increase in concentration of ozone, VOCs, semi-volatile organic compounds (SVOCs) and heavy metals such as cadmium, selenium, arsenic, zinc, nickel, and other pollutants from photocopy machines. The outcome of this study will empower the manufactures with information regarding ozone and other significant emission, so that their impact can be reduced.
Collapse
Affiliation(s)
- Abhishek Nandan
- University of Petroleum and Energy Studies, Dehradun, India.
| | - N A Siddiqui
- University of Petroleum and Energy Studies, Dehradun, India
| | - Pankaj Kumar
- University of Petroleum and Energy Studies, Dehradun, India
| |
Collapse
|
15
|
Numerical assessment of ambient inhaled micron particle deposition in a human nasal cavity. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42757-019-0015-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Dong L, Sun W, Li F, Shi M, Meng X, Wang C, Meng M, Tang W, Liu H, Wang L, Song L. The harmful effects of acute PM 2.5 exposure to the heart and a novel preventive and therapeutic function of CEOs. Sci Rep 2019; 9:3495. [PMID: 30837634 PMCID: PMC6401085 DOI: 10.1038/s41598-019-40204-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/11/2019] [Indexed: 01/29/2023] Open
Abstract
Epidemiological researches have demonstrated the relationship between PM2.5 exposure and increased morbidity and mortality of cardiovascular injury. However, no effective therapeutic method was established. The purpose of this study is to investigate the effect of acute PM2.5 exposure on the mice heart tissue and explore the therapeutic effects of compound essential oils (CEOs) in this model. In this study, after mice were exposed to PM2.5 intratracheally, some obvious histopathological changes as well as some great alterations of proinflammatory cytokines were observed in the heart tissue. The imbalance of oxidative stress, the altered Ca2+ channel related proteins and the increased intracellular free Ca2+ were all involved in the heart impairment and would also be investigated in this model. The CEOs alleviated the heart impairment via its antioxidant effect rather than its anti-inflammatory function because our results revealed that oxidative stress related indicators were restored after CEOs administration. At the same time, increased concentration of intracellular free Ca2+ and ROS induced by PM2.5 were reduced after NAC (N-Acetyl-L-cysteine) administration. These data suggested that the acute PM2.5 exposure would damage heart tissue by inducing the inflammatory response, oxidative stress and intracellular free Ca2+ overload. PM2.5-induced oxidative stress probably increase intracellular free Ca2+ via RYR2 and SERCA2a. CEOs have the potential to be a novel effective and convenient therapeutic method to prevent and treat the acute heart impairment induced by PM2.5 via its antioxidant function.
Collapse
Affiliation(s)
- Lu Dong
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
- Department of Clinical Laboratory, Xinyi People's Hospital, Xinyi, 221400, Jiangsu Province, People's Republic of China
| | - Wenping Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Min Shi
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Chunyuan Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Meiling Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Wenqi Tang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Lili Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, People's Republic of China.
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China.
| |
Collapse
|
17
|
Abhilash MR, Gangadhar A, Krishnegowda J, Chikkamadaiah M, Srikantaswamy S. Hydrothermal synthesis, characterization and enhanced photocatalytic activity and toxicity studies of a rhombohedral Fe2O3nanomaterial. RSC Adv 2019; 9:25158-25169. [PMID: 35528652 PMCID: PMC9069891 DOI: 10.1039/c9ra04978a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 11/21/2022] Open
Abstract
The present investigation focuses on the synthesis of metal oxide nanoparticles (MONPs)viaa facile hydrothermal route.
Collapse
Affiliation(s)
| | - Akshatha Gangadhar
- Department of Studies in Environmental Science
- University of Mysore
- Mysore 570006
- India
- Centre for Materials Science and Technology
| | - Jagadish Krishnegowda
- Department of Studies in Environmental Science
- University of Mysore
- Mysore 570006
- India
- Centre for Materials Science and Technology
| | | | - Shivanna Srikantaswamy
- Department of Studies in Environmental Science
- University of Mysore
- Mysore 570006
- India
- Centre for Materials Science and Technology
| |
Collapse
|
18
|
Du Z, Chen S, Cui G, Yang Y, Zhang E, Wang Q, Lavin MF, Yeo AJ, Bo C, Zhang Y, Li C, Liu X, Yang X, Peng C, Shao H. Silica nanoparticles induce cardiomyocyte apoptosis via the mitochondrial pathway in rats following intratracheal instillation. Int J Mol Med 2018; 43:1229-1240. [PMID: 30628656 PMCID: PMC6365031 DOI: 10.3892/ijmm.2018.4045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Diseases of the cardiac system caused by silicon dioxide exposure have captured wide public attention. Upon entering the blood circulation, ultrafine particles have the potential to influence cardiomyocytes, leading to myocardial ischemia or even cardiac failure, and the molecular mechanisms remain to be completely elucidated. In this study, the toxicity of ultrafine particles on cardiomyocytes from rats exposed to silica nanoparticles was observed. Rats were randomly divided into a normal saline control group and three exposure groups (2, 5 and 10 mg/kg·body weight) that were intratracheally treated with 60-nm silica nanoparticles. Alterations in body weight, routine blood factors and myocardial enzymes, histopathological and microstructural alterations, apoptosis and the expression of apoptosis-associated proteins were assessed at the end of the exposure period. The silicon levels in the heart and serum, and myocardial enzymes in exposed rats were significantly increased in a dose-dependent manner. In addition, exposure to the silica nanoparticles caused notable histological and ultrastructural alterations in the hearts of these animals. Furthermore, a significant apoptotic effect was observed in the exposure groups. The present data suggest that silica nanoparticles may enter the circulatory system through the lungs, and are distributed to the heart causing cardiovascular injury. Silica nanoparticle-induced apoptosis via the mitochondrial pathway may serve an important role in observed cardiac damage.
Collapse
Affiliation(s)
- Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Guanqun Cui
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Ji'nan, Shandong 250012, P.R. China
| | - Ye Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Enguo Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Abrey J Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Cunxiang Bo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Yu Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Chao Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Xiaoshan Liu
- Department of Radiology, Shandong Tumor Hospital, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250117, P.R. China
| | - Xu Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, P.R. China
| |
Collapse
|
19
|
Gai HF, An JX, Qian XY, Wei YJ, Williams JP, Gao GL. Ovarian Damages Produced by Aerosolized Fine Particulate Matter (PM 2.5) Pollution in Mice: Possible Protective Medications and Mechanisms. Chin Med J (Engl) 2018; 130:1400-1410. [PMID: 28584201 PMCID: PMC5463468 DOI: 10.4103/0366-6999.207472] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Ambient aerosol fine particulate matter (PM2.5) is associated with male reproductive toxicity in experiments and may have adverse effects in the female. However, studies evaluating the protective effects and precise mechanisms of aspirin, Vitamin C, Vitamin E, or ozone against toxic effects of PM2.5 are sparse. This study was conducted to investigate the possible protective effects and mechanisms of aspirin, Vitamin C, Vitamin E, or ozone on fertility in female mice treated with PM2.5. Methods: Eighty-four ICR mice were divided into six groups: control group, PM2.5 group, PM2.5 + aspirin group, PM2.5 + Vitamin C group, PM2.5 + Vitamin E group, and PM2.5 + ozone group. PM2.5 was given by intratracheal instillation every 2 days for 3 weeks. Aspirin, Vitamin C, and Vitamin E were given once a day by oral gavage for 3 weeks, and ozone was administered by intraperitoneal injection once a day for 3 weeks. The levels of anti-Müllerian hormone (AMH), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and 8-hydroxy-2’-deoxyguanosine (8-OHdG) were measured using enzyme-linked immunosorbent assay. Western blotting analysis was used to analyze the expressions of Bcl-2, Bax, and caspase-3 in ovaries. Changes in histological structure were examined by light microscope and electron microscopy was used to detect ultramicrostructure. Results: The results demonstrated that PM2.5 decreased AMH levels (P < 0.001); however, aspirin (P < 0.001), Vitamin C (P < 0.001), Vitamin E (P = 0.001), and ozone (P = 0.002) alleviated the decrease. Changes of IL-6, TNF-α, 8-OHdG, Bax/Bcl-2, and caspase-3 in PM2.5 group were increased compared to control group (P < 0.001), while in PM2.5 + aspirin, PM2.5 + Vitamin C, PM2.5 + Vitamin E, and PM2.5 + ozone groups, they were statistically decreased compared to PM2.5 group (P < 0.001 or P < 0.05). Conclusions: PM2.5 cause the damage of ovaries, and aspirin, Vitamin C, Vitamin E, and ozone antagonizes the damage. The protective mechanism is probably due to its ability to blunt the inflammatory and oxidative stress caused by PM2.5, which subsequently suppressing the expression of apoptotic regulatory protein and reducing the incidence of ovary apoptosis.
Collapse
Affiliation(s)
- Hui-Fang Gai
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261000; Department of Obstetrics and Gynecology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China
| | - Jian-Xiong An
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China
| | - Xiao-Yan Qian
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China
| | - Yong-Jie Wei
- Laboratory of Environmental Criteria and Risk Assessment and Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Guo-Lan Gao
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261000; Department of Obstetrics and Gynecology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing 100012, China
| |
Collapse
|
20
|
Azuma K, Ikeda K, Kagi N, Yanagi U, Osawa H. Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1649-1655. [PMID: 29070452 DOI: 10.1016/j.scitotenv.2017.10.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
We conducted a cross-sectional epidemiological study to examine the correlation between indoor air quality (IAQ) and building-related symptoms (BRSs) of office workers in air-conditioned office buildings. We investigated 11 offices during winter and 13 offices during summer in 17 buildings with air-conditioning systems in Tokyo, Osaka, and Fukuoka, and we included 107 office workers during winter and 207 office workers during summer. We conducted environmental sampling for evaluating IAQ and concurrently administered self-reported questionnaires to collect information regarding work-related symptoms. Multivariate analyses revealed that upper respiratory symptoms showed a significant correlation with increased indoor temperature [odds ratio (OR), 1.55; 95% confidence interval (CI), 1.11-2.18] and increased indoor concentration of suspended particles released from the ambient air pollution via air-conditioning systems (OR, 1.31; 95% CI, 1.08-1.59) during winter. In particular, smaller particles (particle size>0.3μm), which possibly penetrated through the filter media in air-conditioning systems from ambient air, were correlated with upper respiratory symptoms. The use of high-efficiency particulate air filters in air-conditioning systems and their adequate maintenance may be an urgent solution for reducing the indoor air concentration of submicron particles. Several irritating volatile organic compounds (VOCs) (e.g., formaldehyde, acetaldehyde, ethylbenzene, toluene, and xylenes) that were positively correlated with the indoor air concentration among their VOCs, were associated with upper respiratory symptoms, although their indoor air concentrations were lower than those specified by the indoor air quality guideline. A new approach and strategy for decreasing the potential combined health risks (i.e., additive effect of risks) associated with multiple low-level indoor pollutants that have similar hazardous properties are required.
Collapse
Affiliation(s)
- Kenichi Azuma
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| | - Koichi Ikeda
- Department of Architecture, College of Science and Technology, Nihon University, 8-14 Kanda-Surugadai 1-chome, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Naoki Kagi
- Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - U Yanagi
- Department of Architecture, School of Architecture, Kogakuin University, 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan.
| | - Haruki Osawa
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.
| |
Collapse
|
21
|
Jin X, Su R, Li R, Cheng L, Li Z. Crucial role of pro-inflammatory cytokines from respiratory tract upon PM 2.5 exposure in causing the BMSCs differentiation in cells and animals. Oncotarget 2018; 9:1745-1759. [PMID: 29416728 PMCID: PMC5788596 DOI: 10.18632/oncotarget.23158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Fine particulate matter exposure may cause health risk, including cardiovascular diseases and cancer. Bone marrow mesenchymal stem cell (BMSC), a typical model for evaluating pollutant toxicity, has been closely linked to these diseases, due to its characteristics of differentiation. We therefore studied the BMSCs differentiation and its roles in inflammatory activation in the respiratory tract upon PM2.5 exposure using both in vitro and in vivo models. BMSCs differentiation into endothelial-like cells (ELCs) and cancer-associated fibroblasts cells (CAFs) was enhanced in response to conditioned medium from PM2.5-treated 16HBE cells. PM2.5 elevated inflammatory cytokines' expression and secretion in 16HBE cells. However, induction of differentiation markers was reduced when IL-1β, IL-6 and COX-2 neutralizing antibodies were added to the conditioned medium. Furthermore, PM2.5 induced ROS formation and NADPH oxidase (NOX) expression in 16HBE cells. DPI (inhibitor of ROS from NOX) or NAC (inhibitor of ROS) supplement reduced PM2.5-induced inflammatory activation and BMSCs differentiation. Likewise, a concomitant disorder of mitochondrial morphology and respiratory chain was observed. In addition, Rot or AA (inhibitor of mitochondrial complex I or III) supplement restored PM2.5-induced toxic effects. Moreover, the results coincided with the in vitro data obtained from SD rats post-exposed to different doses of PM2.5 for 30 days. PM2.5 enhanced the BMSCs differentiation and inflammatory cytokines' expression in respiratory organs of SD rats, including lung and trachea tissue. This study uncovers that PM2.5 promotes the BMSCs differentiation via inflammatory activation mediated by ROS induction from NOX and mitochondria in the respiratory tract.
Collapse
Affiliation(s)
- Xiaoting Jin
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Ruijun Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Long Cheng
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
22
|
Jin X, Xue B, Zhou Q, Su R, Li Z. Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM 2.5 exposure. J Toxicol Sci 2018; 43:101-111. [DOI: 10.2131/jts.43.101] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xiaoting Jin
- Institutes of Biomedical Sciences, Shanxi University, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Bin Xue
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
| | - Ruijun Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, China
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, China
- School of Life Science, Shanxi University, China
| |
Collapse
|
23
|
Pirela SV, Martin J, Bello D, Demokritou P. Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: state of science and future research needs. Crit Rev Toxicol 2017; 47:678-704. [PMID: 28524743 DOI: 10.1080/10408444.2017.1318354] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Toner formulations used by laser printers (LP) and photocopiers (PC), collectively called "toner-based printing equipment" (TPE), are nano-enabled products (NEP) because they contain several engineered nanomaterials (ENM) that improve toner performance. It has been shown that during consumer use (printing), these ENM are released in the air, together with other semi-volatile organic nanoparticles, and newly formed gaseous co-pollutants such as volatile organic compounds (VOC). The aim of this review is to detail and analyze physico-chemical and morphological (PCM), as well as the toxicological properties of particulate matter (PM) emissions from TPE. The review covers evolution of science since the early 2000, when this printing technology first became a subject of public interest, as well as the lagging regulatory framework around it. Important studies that have significantly changed our understanding of these exposures are also highlighted. The review continues with a critical appraisal of the most up-to-date cellular, animal and human toxicological evidence on the potential adverse human health effects of PM emitted from TPE. We highlight several limitations of existing studies, including (i) use of high and often unrealistic doses in vitro or in vivo; (ii) unrealistically high-dose rates in intratracheal instillation studies; (iii) improper use of toners as surrogate for emitted nanoparticles; (iv) lack of or inadequate PCM characterization of exposures; and (v) lack of dosimetry considerations in in vitro studies. Presently, there is compelling evidence that the PM0.1 from TPE are biologically active and capable of inducing oxidative stress in vitro and in vivo, respiratory tract inflammation in vivo (in rats) and in humans, several endpoints of cellular injury in monocultures and co-cultures, including moderate epigenetic modifications in vitro. In humans, limited epidemiological studies report typically 2-3 times higher prevalence of chronic cough, wheezing, nasal blockage, excessive sputum production, breathing difficulties, and shortness of breath, in copier operators relative to controls. Such symptoms can be exacerbated during chronic exposures, and in individuals susceptible to inhaled pollutants. Thus respiratory, immunological, cardiovascular, and other disorders may be developed following such exposures; however, further toxicological and larger scale molecular epidemiological studies must be done to fully understand the mechanism of action of these TPE emitted nanoparticles. Major research gaps have also been identified. Among them, a methodical risk assessment based on "real world" exposures rather than on the toner particles alone needs to be performed to provide the much-needed data to establish regulatory guidelines protective of individuals exposed to TPE emissions at both the occupational and consumer level. Industry-wide molecular epidemiology as well as mechanistic animal and human studies are also urgently needed.
Collapse
Affiliation(s)
- Sandra Vanessa Pirela
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - John Martin
- b Department of Public Health , UMass Lowell , Lowell , MA , USA
| | - Dhimiter Bello
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA.,b Department of Public Health , UMass Lowell , Lowell , MA , USA
| | - Philip Demokritou
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| |
Collapse
|
24
|
Voliotis A, Karali I, Kouras A, Samara C. Fine and ultrafine particle doses in the respiratory tract from digital printing operations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3027-3037. [PMID: 27848134 DOI: 10.1007/s11356-016-8047-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/03/2016] [Indexed: 05/27/2023]
Abstract
In this study, we report for the first time particle number doses in different parts of the human respiratory tract and real-time deposition rates for particles in the 10 nm to 10 μm size range emitted by digital printing operations. Particle number concentrations (PNCs) and size distribution were measured in a typical small-sized printing house using a NanoScan scanning mobility particle sizer and an optical particle sizer. Particle doses in human lung were estimated applying a multiple-path particle dosimetry model under two different breathing scenarios. PNC was dominated by the ultrafine particle fractions (UFPs, i.e., particles smaller than 100 nm) exhibiting almost nine times higher levels in comparison to the background values. The average deposition rate fοr each scenario in the whole lung was estimated at 2.0 and 2.9 × 107 particles min-1, while the respective highest particle dose in the tracheobronchial tree (2.0 and 2.9 × 109 particles) was found for diameter of 50 nm. The majority of particles appeared to deposit in the acinar region and most of them were in the UFP size range. For both scenarios, the maximum deposition density (9.5 × 107 and 1.5 × 108 particles cm-2) was observed at the lobar bronchi. Overall, the differences in the estimated particle doses between the two scenarios were 30-40% for both size ranges.
Collapse
Affiliation(s)
- Aristeidis Voliotis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Irene Karali
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athanasios Kouras
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
25
|
IKEGAMI K, HASEGAWA M, ANDO H, HATA K, KITAMURA H, OGAMI A, HIGASHI T. A cohort study of the acute and chronic respiratory effects of toner exposure among handlers: a longitudinal analyses from 2004 to 2013. INDUSTRIAL HEALTH 2016; 54:448-459. [PMID: 27021062 PMCID: PMC5054286 DOI: 10.2486/indhealth.2015-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
This study examines the acute and chronic respiratory effects of toner exposure based on markers for interstitial pneumonia, oxidative stress and pulmonary function tests. A total of 112 subjects working in a Japanese toner and photocopier manufacturing company participated in this study in 2004. We annually conducted personal exposure measurements, pulmonary function tests, chest X-ray examinations, biomarkers, and questionnaires on respiratory symptoms to the subjects. We report in this paper the results of the analysis of combined annual survey point data from 2004 to 2008 and data from three annual survey points, 2004, 2008, and 2013. During these survey periods, we observed that none of subjects had a new onset of respiratory disease or died of such a disease. In both the analyses, there were no significant differences in each biomarker and pulmonary function tests within the subjects, nor between a toner-handling group and a non-toner-handling group, except for a few results on pulmonary function tests. The findings of this study suggest that there were no acute and chronic respiratory effects of toner exposure in this cohort group, although the number of subjects was small and the level of toner exposure in this worksite was low.
Collapse
Affiliation(s)
- Kazunori IKEGAMI
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Japan
| | - Masayuki HASEGAWA
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Japan
| | - Hajime ANDO
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Japan
| | - Koichi HATA
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Japan
| | - Hiroko KITAMURA
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Japan
| | - Akira OGAMI
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Japan
| | - Toshiaki HIGASHI
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Japan
| |
Collapse
|
26
|
Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. Effects of Laser Printer-Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:210-9. [PMID: 26080392 PMCID: PMC4749083 DOI: 10.1289/ehp.1409582] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/12/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Engineered nanomaterials (ENMs) incorporated into toner formulations of printing equipment become airborne during consumer use. Although information on the complex physicochemical and toxicological properties of both toner powders and printer-emitted particles (PEPs) continues to grow, most toxicological studies have not used the actual PEPs but rather have primarily used raw toner powders, which are not representative of current exposures experienced at the consumer level during printing. OBJECTIVES We assessed the biological responses of a panel of human cell lines to PEPs. METHODS Three physiologically relevant cell lines--small airway epithelial cells (SAECs), macrophages (THP-1 cells), and lymphoblasts (TK6 cells)--were exposed to PEPs at a wide range of doses (0.5-100 μg/mL) corresponding to human inhalation exposure durations at the consumer level of 8 hr or more. Following treatment, toxicological parameters reflecting distinct mechanisms were evaluated. RESULTS PEPs caused significant membrane integrity damage, an increase in reactive oxygen species (ROS) production, and an increase in pro-inflammatory cytokine release in different cell lines at doses equivalent to exposure durations from 7.8 to 1,500 hr. Furthermore, there were differences in methylation patterns that, although not statistically significant, demonstrate the potential effects of PEPs on the overall epigenome following exposure. CONCLUSIONS The in vitro findings obtained in this study suggest that laser printer-emitted engineered nanoparticles may be deleterious to lung cells and provide preliminary evidence of epigenetic modifications that might translate to pulmonary disorders.
Collapse
Affiliation(s)
- Sandra V. Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Xiaoyan Lu
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, Maryland, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Dhimiter Bello
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Work Environment, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Lester Kobzik
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Address correspondence to P. Demokritou, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Room 1310B, Boston, MA 02115 USA. (617) 432-3481. E-mail:
| |
Collapse
|
27
|
Pirela SV, Lu X, Miousse I, Sisler JD, Qian Y, Guo N, Koturbash I, Castranova V, Thomas T, Godleski J, Demokritou P. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NANOIMPACT 2016; 1:1-8. [PMID: 26989787 PMCID: PMC4791579 DOI: 10.1016/j.impact.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Incorporation of engineered nanomaterials (ENMs) into toners used in laser printers has led to countless quality and performance improvements. However, the release of ENMs during printing (consumer use) has raised concerns about their potential adverse health effects. The aim of this study was to use "real world" printer-emitted particles (PEPs), rather than raw toner powder, and assess the pulmonary responses following exposure by intratracheal instillation. Nine-week old male Balb/c mice were exposed to various doses of PEPs (0.5, 2.5 and 5 mg/kg body weight) by intratracheal instillation. These exposure doses are comparable to real world human inhalation exposures ranging from 13.7 to 141.9 h of printing. Toxicological parameters reflecting distinct mechanisms of action were evaluated, including lung membrane integrity, inflammation and regulation of DNA methylation patterns. Results from this in vivo toxicological analysis showed that while intratracheal instillation of PEPs caused no changes in the lung membrane integrity, there was a pulmonary immune response, indicated by an elevation in neutrophil and macrophage percentage over the vehicle control and low dose PEPs groups. Additionally, exposure to PEPs upregulated expression of the Ccl5 (Rantes), Nos1 and Ucp2 genes in the murine lung tissue and modified components of the DNA methylation machinery (Dnmt3a) and expression of transposable element (TE) LINE-1 compared to the control group. These genes are involved in both the repair process from oxidative damage and the initiation of immune responses to foreign pathogens. The results are in agreement with findings from previous in vitro cellular studies and suggest that PEPs may cause immune responses in addition to modifications in gene expression in the murine lung at doses that can be comparable to real world exposure scenarios, thereby raising concerns of deleterious health effects.
Collapse
Affiliation(s)
- Sandra V. Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Xiaoyan Lu
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Isabelle Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jennifer D. Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Nancy Guo
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States
| | - Treye Thomas
- U.S. Consumer Product Safety Commission, Office of Hazard Identification and Reduction, Rockville, MD, United States
| | - John Godleski
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
- Corresponding author at: Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115, United States. Tel.: +1 917 432 3481. (P. Demokritou)
| |
Collapse
|
28
|
Desmond C, Verdun-Esquer C, Rinaldo M, Courtois A, Labadie M. Mise au point sur les risques toxiques lors de l’utilisation professionnelle des photocopieurs. ARCH MAL PROF ENVIRO 2015. [DOI: 10.1016/j.admp.2015.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Azuma K, Ikeda K, Kagi N, Yanagi U, Osawa H. Prevalence and risk factors associated with nonspecific building-related symptoms in office employees in Japan: relationships between work environment, Indoor Air Quality, and occupational stress. INDOOR AIR 2015; 25:499-511. [PMID: 25244340 DOI: 10.1111/ina.12158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
A nationwide cross-sectional study of 3335 employees was conducted in 320 offices in Japan to estimate the prevalence of building-related symptoms (BRSs) and determine the risk factors related to work environment, Indoor Air Quality, and occupational stress. Data were collected through self-administered questionnaires. The prevalences of general symptoms, eye irritation, and upper respiratory symptoms were 14.4%, 12.1%, and 8.9%, respectively. Multiple logistic regression analyses revealed that eye irritation was significantly associated with carpeting [odds ratio (OR), 1.73; 95% confidence interval (CI), 1.24-2.41], coldness perception (OR, 1.28; 95% CI, 1.13-1.45), and air dryness perception (OR, 1.61; 95% CI, 1.42-1.82). General symptoms were significantly associated with unpleasant odors (OR, 1.37; 95% CI, 1.13-1.65), amount of work (OR, 1.24; 95% CI, 1.06-1.45), and interpersonal conflicts (OR, 1.44; 95% CI, 1.23-1.69). Upper respiratory symptoms were significantly associated with crowded workspaces (OR, 1.36; 95% CI, 1.13-1.63), air dryness perception (OR, 2.07; 95% CI, 1.79-2.38), and reported dustiness on the floor (OR, 1.39; 95% CI, 1.16-1.67). Although psychosocial support is important to reduce and control BRSs, maintaining appropriate air-conditioning and a clean and uncrowded workspace is of equal importance.
Collapse
Affiliation(s)
- K Azuma
- Department of Environmental Medicine and Behavioral Science, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - K Ikeda
- Department of Architecture, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, Japan
| | - N Kagi
- Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - U Yanagi
- Department of Architecture, School of Architecture, Kogakuin University, Shinjuku-ku, Tokyo, Japan
| | - H Osawa
- National Institute of Public Health, Wako, Saitama, Japan
| |
Collapse
|
30
|
Shang Y, Dong J, Inthavong K, Tu J. Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities. Inhal Toxicol 2015; 27:694-705. [PMID: 26406158 DOI: 10.3109/08958378.2015.1088600] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Micron-sized particle deposition in anatomically realistic models of a rat and human nasal cavity was numerically investigated. A steady laminar inhalation flow rate was applied and particles were released from the outside air. Particles showing equivalent total particle deposition fractions were classified into low, medium and high inertial particle. Typical particle sizes are 2.5, 9 and 20 μm for the human model and 1, 2 and 3 μm for the rat model, respectively. Using a surface-mapping technique the 3D nasal cavity surface was "unwrapped" into a 2D domain and the particle deposition locations were plotted for complete visual coverage of the domain surface. The total surface area comparison showed that the surface area of the human nasal model was about ten times the size of the rat model. In contrast, the regional surface area percentage analysis revealed the olfactory region of the rat model was significantly larger than all other regions making up ∼55.6% of the total surface area, while that of the human nasal model only occupying 10.5%. Flow pattern comparisons showed rapid airflow acceleration was found at the nasopharynx region and the nostril region for the human and rat model, respectively. For the human model, the main passage is the major deposition region for micro-particles. While for the rat model, it is the vestibule. Through comparing the regional deposition flux between human and rat models, this study can contribute towards better extrapolation approach of inhalation exposure data between inter-subject species.
Collapse
Affiliation(s)
- Yidan Shang
- a School of Aerospace, Mechanical & Manufacturing Engineering, and Platform Technologies Research Institute (PTRI), RMIT University , Bundoora , VIC , Australia
| | - Jingliang Dong
- a School of Aerospace, Mechanical & Manufacturing Engineering, and Platform Technologies Research Institute (PTRI), RMIT University , Bundoora , VIC , Australia
| | - Kiao Inthavong
- a School of Aerospace, Mechanical & Manufacturing Engineering, and Platform Technologies Research Institute (PTRI), RMIT University , Bundoora , VIC , Australia
| | - Jiyuan Tu
- a School of Aerospace, Mechanical & Manufacturing Engineering, and Platform Technologies Research Institute (PTRI), RMIT University , Bundoora , VIC , Australia
| |
Collapse
|
31
|
Huo L, Chen R, Zhao L, Shi X, Bai R, Long D, Chen F, Zhao Y, Chang YZ, Chen C. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 2015; 61:307-15. [DOI: 10.1016/j.biomaterials.2015.05.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/16/2015] [Indexed: 01/16/2023]
|
32
|
Li R, Kou X, Geng H, Xie J, Tian J, Cai Z, Dong C. Mitochondrial damage: an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:392-401. [PMID: 25677476 DOI: 10.1016/j.jhazmat.2015.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 05/05/2023]
Abstract
Epidemiological studies suggested that ambient fine particulate matter (PM2.5) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM2.5-induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM2.5 with different dosages (0.375, 1.5, 6.0 and 24.0mg/kg body weight) were investigated. The results indicated that the PM2.5 exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM2.5 exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na(+)K(+)-ATPase and Ca(2+)-ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM2.5-induced heart injury, and may have relations with cardiovascular disease.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Xiaojing Kou
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Hong Geng
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Jingfang Xie
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Jingjing Tian
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Chuan Dong
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China.
| |
Collapse
|
33
|
Wang G, Zhao J, Jiang R, Song W. Rat lung response to ozone and fine particulate matter (PM2.5) exposures. ENVIRONMENTAL TOXICOLOGY 2015; 30:343-356. [PMID: 24136897 DOI: 10.1002/tox.21912] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 05/28/2023]
Abstract
Exposure to different ambient pollutants maybe more toxic to lung than exposure to a single pollutant. In this study, we discussed the inflammation and oxidative stress responses of rat lung caused by ozone and PM2.5 versus that of rats exposed to saline, ozone, or single PM2.5 . Wistar rats inhaled 0.8 ppm ozone or air for 4 h and then placed in air for 3 h following intratracheal instillation with 0, 0.2 (low dose), 0.8 (medium dose), 3.2 (high dose) mg/rat PM2.5 dissolved in sterile saline (0.25 mL/rat), repeated twice per week for 3 weeks, the cumulative doses of PM2.5 in animals were 1.2, 4.8, and 19.2 mg. Rats were sacrificed 24 h after the last (sixth) exposure. The collected bronchoalveolar lavage fluid (BALF) was analyzed for inflammatory cells and cytokines. Lung tissues were processed for light microscopic and transmission electron microscopic (TEM) examinations. Results showed that total cell number in BALF of PM2.5 -exposed groups were higher than control (p < 0.05). PM2.5 instillation caused dose-trend increase in tumor necrosis factor alpha (TNF-α), interleukin-6, lactate dehydrogenase, and total protein of BALF. Exposure to ozone alone only caused TNF-α significant change in above-mentioned indicators of lung injury. On the other hand, ozone could enhance PM2.5-induced inflammatory changes and pathological characters in rat lungs. SOD and GSH-Px activities in lung were reduced in PM2.5-exposed rats with and without prior ozone exposure compared to control. To determine whether the PM2.5 and ozone affect endothelium system, iNOS, eNOS, and ICAM-1 mRNA levels in lung were analyzed by real-time PCR. These data demonstrated that inflammation and oxidative stress were involved in toxicology mechanisms of PM2.5 in rat lung and ozone potentiated these effects induced by PM2.5. These results have implications for understanding the pulmonary effects induced by ozone and PM2.5.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Hygienic Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China; Department of Environmental Health, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | | | | | | |
Collapse
|
34
|
Li R, Kou X, Geng H, Xie J, Yang Z, Zhang Y, Cai Z, Dong C. Effect of Ambient PM2.5 on Lung Mitochondrial Damage and Fusion/Fission Gene Expression in Rats. Chem Res Toxicol 2015; 28:408-18. [DOI: 10.1021/tx5003723] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Xiaojing Kou
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Hong Geng
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Jingfang Xie
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhenhua Yang
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Yuexia Zhang
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuan Dong
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
35
|
Pirela SV, Sotiriou GA, Bello D, Shafer M, Bunker KL, Castranova V, Thomas T, Demokritou P. Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products. Nanotoxicology 2014; 9:760-8. [PMID: 25387251 DOI: 10.3109/17435390.2014.976602] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well established that printers emit nanoparticles during their operation. To-date, however, the physicochemical and toxicological characterization of "real world" printer-emitted nanoparticles (PEPs) remains incomplete, hampering proper risk assessment efforts. Here, we investigate our earlier hypothesis that engineered nanomaterials (ENMs) are used in toners and ENMs are released during printing (consumer use). Furthermore, we conduct a detailed physicochemical and morphological characterization of PEPs in support of ongoing toxicological assessment. A comprehensive suite of state of the art analytical methods and tools was employed for the physicochemical and morphological characterization of 11 toners widely utilized in printers from major printer manufacturers and their PEPs. We confirmed that a number of ENMs incorporated into toner formulations (e.g. silica, alumina, titania, iron oxide, zinc oxide, copper oxide, cerium oxide, carbon black among others) and released into the air during printing. All evaluated toners contained large amounts of organic carbon (OC, 42-89%), metals/metal oxides (1-33%), and some elemental carbon (EC, 0.33-12%). The PEPs possess a composition similar to that of toner and contained 50-90% OC, 0.001-0.5% EC and 1-3% metals. While the chemistry of the PEPs generally reflected that of their toners, considerable differences are documented indicative of potential transformations taking place during consumer use (printing). We conclude that: (i) Routine incorporation of ENMs in toners classifies them as nano-enabled products (NEPs); (ii) These ENMs become airborne during printing; (iii) The chemistry of PEPs is complex and it reflects that of the toner and paper. This work highlights the importance of understanding life-cycle (LC) nano-EHS implications of NEPs and assessing real world exposures and associated toxicological properties rather than focusing on "raw" materials used in the synthesis of an NEP.
Collapse
Affiliation(s)
- Sandra V Pirela
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, School of Public Health, Harvard University , Boston, MA , USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kitamura H, Terunuma N, Kurosaki S, Hata K, Masuda M, Kochi T, Yanagi N, Murase T, Ogami A, Higashi T. A cohort study of toner-handling workers on inflammatory, allergic, and oxidative stress markers. Hum Exp Toxicol 2014; 34:337-44. [DOI: 10.1177/0960327113512339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: This study examines the relationship between toner exposure and its health effects in terms of biomarkers which are known to assess the damages to humans caused by toxic material exposure. Methods: The subjects were 1504 male workers aged below 50 in 2003 in a Japanese toner and photocopier manufacturing company. Personal exposure measurements, pulmonary function tests, chest X-ray examinations, biomarker measurement, and a questionnaire about respiratory symptoms were conducted. We will report about biomarker measurement in this study. Cross-sectional survey studies and a longitudinal study from 2003 to 2008 were conducted. Results: Few significant findings were associated with the toner exposure in both the cross-sectional and the longitudinal studies. The higher toner exposure concentrations did not induce effects on increasing biomarkers. Conclusion: There was no evidence of excessive inflammatory, allergic, or oxidative stress reaction in toner-handling workers as compared to non-handling workers, despite some sporadically significant findings. There are no other reports of a longitudinal epidemiological study with regard to toner exposure; this report significantly contributes to toner exposure literature. Although in the current well-controlled working environment, the toner exposure concentrations are quite low; further studies are needed to completely understand the health effects toner may have, however small they may be.
Collapse
Affiliation(s)
- H Kitamura
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - N Terunuma
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - S Kurosaki
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - K Hata
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - M Masuda
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Kochi
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - N Yanagi
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Murase
- Department of Haematology, Tokai University School of Medicine, Hachioji, Japan
| | - A Ogami
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Higashi
- Department of Work Systems and Health, Institute of Industrial Ecological Science, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
37
|
Kitamura H, Terunuma N, Kurosaki S, Hata K, Masuda M, Kochi T, Yanagi N, Murase T, Ogami A, Higashi T. A cohort study using pulmonary function tests and x-ray examination in toner-handling workers: cross-sectional and longitudinal analyses from 2003 to 2008. Hum Exp Toxicol 2014; 34:345-56. [PMID: 25034943 DOI: 10.1177/0960327113520018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study uses pulmonary function tests and chest x-ray examinations to examine the relationship between toner-handling work and its health effects. METHODS The subjects were 1504 male workers in a Japanese toner and photocopier manufacturing company, in the age range from 19 to 50 years in 2003. Personal exposure measurements, pulmonary function tests, chest x-ray examinations, biomarker measurements, and a questionnaire about respiratory symptoms were conducted. The present study reports the results of pulmonary function tests and chest x-ray examinations conducted in the subjects, which includes a cross-sectional study on the toner handling and non-handling workers and a longitudinal study from 2003 to 2008. RESULTS Few significant findings were suspected to be caused by toner exposure found in pulmonary function indices in both the cross-sectional and longitudinal studies. Any obvious fibrotic findings in chest x-ray findings related to the toner exposure could not be found out. CONCLUSION No evidence of adverse effects on pulmonary function indices and chest x-rays was present in the toner-handling workers as compared to the nonspecifically exposed workers. Although the toner exposure concentration is quite low in the current well-controlled working environment, even among the toner-handling workers, we would like to continue this study in the future to verify the toner exposure health effects.
Collapse
Affiliation(s)
- H Kitamura
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - N Terunuma
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - S Kurosaki
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - K Hata
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - M Masuda
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Kochi
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - N Yanagi
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Murase
- Department of Haematology, Tokai University School of Medicine, Hachioji, Japan
| | - A Ogami
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Higashi
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
38
|
Toxicity evaluation following intratracheal instillation of iron oxide in a silica matrix in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:134260. [PMID: 24949417 PMCID: PMC4053145 DOI: 10.1155/2014/134260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022]
Abstract
Iron oxide-silica nanoparticles (IOSi-NPs) were prepared from a mixture of ferrous chloride tetrahydrate and ferric chloride hexahydrate dropped into a silica xerogel composite. The structure and morphology of the synthesized maghemite nanoparticles into the silica xerogel were analysed by X-ray diffraction measurements, scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, and transmission electron microscopy. The results of the EDAX analysis indicated that the embedded particles were iron oxide nanoparticles. The particle size of IOSi-NPs calculated from the XRD analysis was estimated at around 12.5 nm. The average size deduced from the particle size distribution is 13.7 ± 0.6 nm, which is in good agreement with XRD analysis. The biocompatibility of IOSi-NPs was assessed by cell viability and cytoskeleton analysis. Histopathology analysis was performed after 24 hours and 7 days, respectively, from the intratracheal instillation of a solution containing 0.5, 2.5, or 5 mg/kg IOSi-NPs. The pathological micrographs of lungs derived from rats collected after the intratracheal instillation with a solution containing 0.5 mg/kg and 2.5 mg/kg IOSi-NPs show that the lung has preserved the architecture of the control specimen with no significant differences. However, even at concentrations of 5 mg/kg, the effect of IOSi-NPS on the lungs was markedly reduced at 7 days posttreatment.
Collapse
|
39
|
Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, Chang Y, Chen C. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS NANO 2014; 8:2562-2574. [PMID: 24490819 DOI: 10.1021/nn406184r] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in cosmetics and sunscreens, advanced textiles, self-charging and electronic devices; the potential for human exposure and the health impact at each stage of their manufacture and use are attracting great concerns. In addition to pulmonary damage, nanoparticle exposure is also strongly correlated with the increase in incidences of cardiovascular diseases; however, their toxic potential remains largely unclear. Herein, we investigated the cellular responses and endoplasmatic reticulum (ER) stress induced by ZnO NPs in human umbilical vein endothelial cells (HUVECs) in comparison with the Zn2+ ions and CeO2 NPs. We found that the dissolved zinc ion was the most significant factor for cytotoxicity in HUVECs. More importantly, ZnO NPs at noncytotoxic concentration, but not CeO2 NPs, can induce significant cellular ER stress response with higher expression of spliced xbp-1, chop, and caspase-12 at the mRNA level, and associated ER marker proteins including BiP, Chop, GADD34, p-PERK, p-eIF2α, and cleaved Caspase-12 at the protein levels. Moreover, ER stress was widely activated after treatment with ZnO NPs, while six of 84 marker genes significantly increased. ER stress response is a sensitive marker for checking the interruption of ER homeostasis by ZnO NPs. Furthermore, higher dosage of ZnO NPs (240 μM) quickly rendered ER stress response before inducing apoptosis. These results demonstrate that ZnO NPs activate ER stress-responsive pathway and the ER stress response might be used as an earlier and sensitive end point for nanotoxicological study.
Collapse
Affiliation(s)
- Rui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China , Beijing 100090, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Khatri M, Bello D, Pal AK, Cohen JM, Woskie S, Gassert T, Lan J, Gu AZ, Demokritou P, Gaines P. Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines. Part Fibre Toxicol 2013; 10:42. [PMID: 23968360 PMCID: PMC3766213 DOI: 10.1186/1743-8977-10-42] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 08/14/2013] [Indexed: 11/25/2022] Open
Abstract
Background Photocopiers emit nanoparticles with complex chemical composition. Short-term exposures to modest nanoparticle concentrations triggered upper airway inflammation and oxidative stress in healthy human volunteers in a recent study. To further understand the toxicological properties of copier-emitted nanoparticles, we studied in-vitro their ability to induce cytotoxicity, pro-inflammatory cytokine release, DNA damage, and apoptosis in relevant human cell lines. Methods Three cell types were used: THP-1, primary human nasal- and small airway epithelial cells. Following collection in a large volume photocopy center, nanoparticles were extracted, dispersed and characterized in the cell culture medium. Cells were doped at 30, 100 and 300 μg/mL administered doses for up to 24 hrs. Estimated dose delivered to cells, was ~10% and 22% of the administered dose at 6 and 24 hrs, respectively. Gene expression analysis of key biomarkers was performed using real time quantitative PCR (RT-qPCR) in THP-1 cells at 5 μg nanoparticles/mL for 6-hr exposure for confirmation purposes. Results Multiple cytokines, GM-CSF, IL-1β, IL-6, IL-8, IFNγ, MCP-1, TNF-α and VEGF, were significantly elevated in THP-1 cells in a dose-dependent manner. Gene expression analysis confirmed up-regulation of the TNF-α gene in THP-1 cells, consistent with cytokine findings. In both primary epithelial cells, cytokines IL-8, VEGF, EGF, IL-1α, TNF-α, IL-6 and GM-CSF were significantly elevated. Apoptosis was induced in all cell lines in a dose-dependent manner, consistent with the significant up-regulation of key apoptosis-regulating genes P53 and Casp8 in THP-1 cells. No significant DNA damage was found at any concentration with the comet assay. Up-regulation of key DNA damage and repair genes, Ku70 and Rad51, were also observed in THP-1 cells, albeit not statistically significant. Significant up-regulation of the key gene HO1 for oxidative stress, implicates oxidative stress induced by nanoparticles. Conclusions Copier-emitted nanoparticles induced the release of pro-inflammatory cytokines, apoptosis and modest cytotoxicity but no DNA damage in all three-human cell lines. Taken together with gene expression data in THP-1 cells, we conclude that these nanoparticles are directly responsible for inflammation observed in human volunteers. Further toxicological evaluations of these nanoparticles, including across different toner formulations, are warranted.
Collapse
Affiliation(s)
- Madhu Khatri
- Department of Work Environment, One University Avenue, University of Massachusetts Lowell, Lowell, MA 0185, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pirela S, Molina R, Watson C, Cohen JM, Bello D, Demokritou P, Brain J. Effects of copy center particles on the lungs: a toxicological characterization using a Balb/c mouse model. Inhal Toxicol 2013; 25:498-508. [PMID: 23895351 DOI: 10.3109/08958378.2013.806614] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Printers and photocopiers release respirable particles into the air. Engineered nanomaterials (ENMs) have been recently incorporated into toner formulations but their potential toxicological effects have not been well studied. OBJECTIVE To evaluate the biological responses to copier-emitted particles in the lungs using a mouse model. METHODS Particulate matter (PM) from a university copy center was sampled and fractionated into three distinct sizes, two of which (PM0.1 and PM0.1-2.5) were evaluated in this study. The particles were extracted and dispersed in deionized water and RPMI/10% FBS. Hydrodynamic diameter and zeta potential were evaluated by dynamic light scattering. The toxicological potential of these particles was studied using 8-week-old male Balb/c mice. Mice were intratracheally instilled with 0.2, 0.6, 2.0 mg/kg bw of either the PM0.1 and PM0.1-2.5 size fractions. Fe2O3 and welding fumes were used as comparative materials, while RPMI/10% FBS was used as the vehicle control. Bronchoalveolar lavage (BAL) was performed 24 hours post-instillation. The BAL fluid was analyzed for total and differential cell counts, and biochemical markers of injury and inflammation. RESULTS Particle size- and dose-dependent pulmonary effects were found. Specifically, mice instilled with PM0.1 (2.0 mg/kg bw) had significant increases in neutrophil number, lactate dehydrogenase and albumin compared to vehicle control. Likewise, pro-inflammatory cytokines were elevated in mice exposed to PM0.1 (2.0 mg/kg bw) compared to other groups. CONCLUSION Our results indicate that exposure to copier-emitted nanoparticles may induce lung injury and inflammation. Further exposure assessment and toxicological investigations are necessary to address this emerging environmental health pollutant.
Collapse
Affiliation(s)
- Sandra Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Guo J, Gu N, Chen J, Shi T, Zhou Y, Rong Y, Zhou T, Yang W, Cui X, Chen W. Neutralization of interleukin-1 beta attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice. Arch Toxicol 2013; 87:1963-1973. [DOI: 10.1007/s00204-013-1063-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/23/2013] [Indexed: 02/06/2023]
|
43
|
Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2012.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Bello D, Martin J, Santeufemio C, Sun Q, Lee Bunker K, Shafer M, Demokritou P. Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology 2012; 7:989-1003. [PMID: 22551088 DOI: 10.3109/17435390.2012.689883] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several reports link printing and photocopying with genotoxicity, immunologic and respiratory diseases. Photocopiers and printers emit nanoparticles, which may be involved in these diseases. The physicochemical and morphological composition of these emitted nanoparticles, which is poorly understood and is critical for toxicological evaluations, was assessed in this study using both real-time instrumentation and analytical methods. Tests included elemental composition (40 metals), semi-volatile organics (100 compounds) and single particle analysis, using multiple high-sensitivity/resolution techniques. Identical analyses were performed on the toners and dust collected from copier's exhaust filter. Engineered nanoparticles, including titanium dioxide, iron oxide and fumed silica, and several metals were found in toners and airborne nanoscale fraction. Chemical composition of airborne nanoscale fraction was complex and reflected toner chemistry. These findings are important in understanding the origin and toxicology of such nanoparticles. Further investigation of their chemistry, larger scale exposure studies and thorough toxicological characterisation of emitted nanoparticles is needed.
Collapse
Affiliation(s)
- Dhimiter Bello
- University of Massachusetts Lowell, One University Avenue , Lowell, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Schüepp K, Sly PD. The developing respiratory tract and its specific needs in regard to ultrafine particulate matter exposure. Paediatr Respir Rev 2012; 13:95-9. [PMID: 22475255 DOI: 10.1016/j.prrv.2011.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanoparticles have unique physico-chemical properties compared to larger particles that have the potential to provide promising new possibilities for biomedical applications. Considerable research is currently exploring these potentials of nanotechnology. In contrast, airborne particles as components of indoor air, ambient air pollution associated with traffic-related pollution, industry, power plants, and other combustion sources have the potential to harm children's health. However, a similar research effort into the potential health effects of exposure to nanoparticles is lacking. Children differ markedly from adults in their developmental biology rendering young children the most vulnerable group with regard to potentially harmful effects induced by particulate exposure. This review discusses the differences between children and adults in regard to nanoparticle exposure highlighting the uniqueness and vulnerability of children.
Collapse
Affiliation(s)
- Karen Schüepp
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.
| | | |
Collapse
|
46
|
Guo L, Zhu N, Guo Z, Li GK, Chen C, Sang N, Yao QC. Particulate matter (PM10) exposure induces endothelial dysfunction and inflammation in rat brain. JOURNAL OF HAZARDOUS MATERIALS 2012; 213-214:28-37. [PMID: 22365138 DOI: 10.1016/j.jhazmat.2012.01.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 12/05/2011] [Accepted: 01/11/2012] [Indexed: 05/04/2023]
Abstract
Epidemiological studies suggest that particulate matter (PM(10)) inhalation was associated with adverse effects on brain-related health, however, existing experimental data lacked relevant evidences. In this study, we treated Wistar rats with PM(10) at different concentrations (0.3, 1, 3 and 10 mg/kg body weight (bw)), and investigated endothelial dysfunction and inflammatory responses in the brain. The results indicate that mild pathological abnormal occurred after 15-day exposure (five times with 3 days each), followed by the changes of endothelial mediators (ET-1 and eNOS) and inflammatory markers (IL-1β, TNF-α, COX-2, iNOS and ICAM-1). Also, the sample up-regulated bax/bcl-2 ratio and p53 expression, and induced neuronal apoptosis. It implicates that PM(10) exerted injuries to mammals' brain, and the mechanisms might be involved in endothelial dysfunction and inflammatory responses.
Collapse
Affiliation(s)
- Lin Guo
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Tang T, Gminski R, Könczöl M, Modest C, Armbruster B, Mersch-Sundermann V. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:125-135. [PMID: 22069140 DOI: 10.1002/em.20695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Exposure to emissions from laser printers during the printing process is commonplace worldwide, both in the home and workplace environment. In the present study, cytotoxic and genotoxic effects of the emission from five low to medium-throughput laser printers were investigated with respect to the release of ozone (O(3) ), volatile organic compounds (VOC), particulate matter (PM), and submicrometer particles (SMP) during standby and operation. Experiments were conducted in a 1 m(3) emission chamber connected to a Vitrocell® exposure system. Cytotoxicity was determined by the WST-1 assay and genotoxicity by the micronucleus test in human A549 lung cells. The five laser printers emitted varying but generally small amounts of O(3) , VOC, and PM. VOC emissions included 13 compounds with total VOC concentrations ranging from 95 to 280 μg/m(3) (e.g., 2-butanone, hexanal, m,p-xylene, and o-xylene). Mean PM concentrations were below 2.4 μg/m(3). SMP number concentration levels during standby ranged from 9 to 26 particles/cm(3). However, three of the printers generated a 90 to 16 × 10(3) -fold increase of SMP during the printing process (maximum 294,460 particles/cm(3)). Whereas none of the printer emissions were found to cause cytotoxicity, emissions from two printers induced formation of micronuclei (P < 0.001), thus providing evidence for genotoxicity. As yet, differences in biological activity cannot be explained on the basis of the specific emission characteristics of the different printers. Because laser printing technology is widely used, studies with additional cytogenetic endpoints are necessary to confirm the DNA-damaging potency and to identify emission components responsible for genotoxicity.
Collapse
Affiliation(s)
- Tao Tang
- Department of Environmental Health Sciences, Freiburg University Medical Center, Institut für Umweltmedizin und Krankenhaushygiene, Freiburg im Breisgau, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Kleinsorge EC, Erben M, Galan MG, Barison C, Gonsebatt ME, Simoniello MF. Assessment of oxidative status and genotoxicity in photocopier operators: a pilot study. Biomarkers 2011; 16:642-8. [PMID: 21981312 DOI: 10.3109/1354750x.2011.620744] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Occupational exposure to photocopiers has been indicated as being responsible for a number of health complaints, particularly effects on the respiratory, immunological, and nervous systems. In this study, we investigated oxidative and genotoxic damage in photocopier operators by assessing catalase activity (CAT), reduced vs. oxidized glutathione ratio (GSH/GSSG), level of lipid peroxidation (TBARS), damage index by Comet assay (DICA), and buccal cells with micronuclei (BCMN). Our results reveal that the TBARS levels in operators were increased (27%; p<0.05) but that no significant alterations to GSH/GSSG or CAT activity were observed. The DICA and the number of BCMN were significantly increased (134% and 100%, respectively; p<0.05) in the exposed group. There was a significant association between the time in months spent at work and DNA damage in lymphocytes (r(s) = 0.720; p<0.001) and buccal cell with MN (r(s) = 0.538; p<0.001). Because laser printers and photocopiers have become increasingly used, it is important to control human exposure using reliable biomarkers.
Collapse
Affiliation(s)
- Elisa C Kleinsorge
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|