1
|
Andric A, Niederwanger M, Albertini E, Jansen-Dürr P, Stürzenbaum SR, Dallinger R, Pedrini-Martha V, Weiss AKH. A multi-domain snail metallothionein increases cadmium resistance and fitness in Caenorhabditis elegans. Sci Rep 2024; 14:25589. [PMID: 39462019 PMCID: PMC11513058 DOI: 10.1038/s41598-024-76268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Metallothioneins (MTs) are a family of mostly low-molecular weight, cysteine-rich proteins capable of specific metal-ion binding that are involved in metal detoxification and homeostasis, as well as in stress response. In contrast to most other animal species which possess two-domain (bidominial) MTs, some gastropod species have evolved Cd2+-selective multidomain MTs (md-MTs) consisting of several concatenated β3 domains and a single C-terminal β1 domain. Each domain contains three-metal ion clusters and binds three metal ions. The terrestrial snail Alinda biplicata possesses, among other MT isoforms, an md-MT with nine β3 domains and a C-terminal β1 domain (termed 10md-MT), capable of binding up to 30 Cd2+ ions per protein molecule. In the present study, the Alinda biplicata 10md-MT gene and a truncated version consisting of one β3 domain and a single C-terminal β1 domain (2d-MT) were introduced into a Caenorhabditis elegans knock-out strain lacking a native MT gene (mtl-1). The two snail MT constructs consistently increased Cd2+ resistance, and partially improved morphological, life history and physiological fitness traits in the nematode model host Caenorhabditis elegans. This highlights how the engineering of transgenic Caenorhabditis elegans strains expressing snail MTs provides an enhancement of the innate metal detoxification mechanism and in doing so provides a platform for enhanced mechanistic toxicology.
Collapse
Affiliation(s)
- Andreas Andric
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | | | - Eva Albertini
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Reinhard Dallinger
- Department of Zoology, University of Innsbruck, Innsbruck, Austria.
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | | | - Alexander K H Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Pernecker M, Ciarimboli G. Regulation of renal organic cation transporters. FEBS Lett 2024; 598:2328-2347. [PMID: 38831380 DOI: 10.1002/1873-3468.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Transporters for organic cations (OCs) facilitate exchange of positively charged molecules through the plasma membrane. Substrates for these transporters encompass neurotransmitters, metabolic byproducts, drugs, and xenobiotics. Consequently, these transporters actively contribute to the regulation of neurotransmission, cellular penetration and elimination process for metabolic products, drugs, and xenobiotics. Therefore, these transporters have significant physiological, pharmacological, and toxicological implications. In cells of renal proximal tubules, the vectorial secretion pathways for OCs involve expression of organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) on basolateral and apical membrane domains, respectively. This review provides an overview of documented regulatory mechanisms governing OCTs and MATEs. Additionally, regulation of these transporters under various pathological conditions is summarized. The expression and functionality of OCTs and MATEs are subject to diverse pre- and post-translational modifications, providing insights into their regulation in various pathological conditions. Typically, in diseases, downregulation of transporter expression is observed, probably as a protective mechanism to prevent additional damage to kidney tissue. This regulation may be attributed to the intricate network of modifications these transporters undergo, shedding light on their dynamic responses in pathological contexts.
Collapse
Affiliation(s)
- Moritz Pernecker
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| |
Collapse
|
3
|
Holliday MW, Majeti RN, Sheikh-Hamad D. Chronic Interstitial Nephritis in Agricultural Communities: Observational and Mechanistic Evidence Supporting the Role of Nephrotoxic Agrochemicals. Clin J Am Soc Nephrol 2024; 19:538-545. [PMID: 37678249 PMCID: PMC11020436 DOI: 10.2215/cjn.0000000000000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Chronic interstitial nephritis in agricultural communities (CINAC) is an epidemic of kidney disease affecting specific tropical and subtropical regions worldwide and is characterized by progressive CKD in the absence of traditional risk factors, such as hypertension and diabetes. CINAC prevalence is higher among young, male agricultural workers, but it also affects women, children, and nonagricultural workers in affected areas. Biopsies from patients with CINAC across regions commonly demonstrate tubular injury with lysosomal aggregates, tubulointerstitial inflammation, and fibrosis and variable glomerular changes. Each endemic area holds environmental risk factors and patient/genetic milieus, resulting in uncertainty about the cause(s) of the disease. Currently, there is no specific treatment available for CINAC. We highlight survey findings of Houston-based migrant workers with CINAC and draw similarities between kidney injury phenotype of patients with CINAC and mice treated chronically with paraquat, an herbicide used worldwide. We propose potential pathways and mechanisms for kidney injury in patients with CINAC, which may offer clues for potential therapies.
Collapse
Affiliation(s)
- Michael W. Holliday
- Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
4
|
Srimai N, Tonum K, Soodvilai S. Activation of farnesoid X receptor retards expansion of renal collecting duct cell-derived cysts via inhibition of CFTR-mediated Cl - secretion. Am J Physiol Renal Physiol 2024; 326:F600-F610. [PMID: 38299213 DOI: 10.1152/ajprenal.00363.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
The transcription factor farnesoid X receptor (FXR) regulates energy metabolism. Specifically, FXR functions to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- secretion in intestinal epithelial cells. Therefore, this study aimed to investigate the role of FXR in CFTR-mediated Cl- secretion in renal tubular cells and to further elucidate its effects on renal cyst formation and growth. CFTR-mediated Cl- transport was evaluated via short-circuit current (ISC) measurements in Madin-Darby canine kidney (MDCK) cell monolayers and primary rat inner medullary collecting duct cells. The role of FXR in renal cyst formation and growth was determined by the MDCK cell-derived cyst model. Incubation with synthesized (GW4064) and endogenous (CDCA) FXR ligands reduced CFTR-mediated Cl- secretion in a concentration- and time-dependent manner. The inhibitory effect of FXR ligands was not due to the result of reduced cell viability and was attenuated by cotreatment with an FXR antagonist. FXR activation significantly decreased CFTR protein but not its mRNA. In addition, FXR activation inhibited CFTR-mediated Cl- secretion in primary renal collecting duct cells. FXR activation decreased ouabain-sensitive ISC without altering Na+-K+-ATPase mRNA and protein levels. Furthermore, FXR activation significantly reduced the number of cysts and renal cyst expansion. These inhibitory effects were correlated with a decrease in the expression of protein synthesis regulators mammalian target of rapamycin/S6 kinase. This study shows that FXR activation inhibits Cl- secretion in renal cells via inhibition of CFTR expression and retards renal cyst formation and growth. The discoveries point to a physiological role of FXR in the regulation of CFTR and a potential therapeutic application in polycystic kidney disease treatment.NEW & NOTEWORTHY The present study reveals that farnesoid X receptor (FXR) activation reduces microcyst formation and enlargement. This inhibitory effect of FXR activation is involved with decreased cell proliferation and cystic fibrosis transmembrane conductance regulator-mediated Cl- secretion in renal collecting duct cells. FXR might represent a novel target for the treatment of autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Nipitpon Srimai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kanlayanee Tonum
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
7
|
Holliday MW, Li Q, Bustamante EG, Niu J, Huang L, Espina IM, Dominguez JR, Truong L, Murray KO, Fan L, Anumudu SJ, Shah M, Fischer RS, Vangala C, Mandayam S, Perez J, Pan JS, Ali S, Awan AA, Sheikh-Hamad D. Potential Mechanisms Involved in Chronic Kidney Disease of Unclear Etiology. Clin J Am Soc Nephrol 2022; 17:1293-1304. [PMID: 35944911 PMCID: PMC9625092 DOI: 10.2215/cjn.16831221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND OBJECTIVES The etiology of chronic kidney disease of unclear etiology, also known as Mesoamerican nephropathy, remains unclear. We investigated potential etiologies for Mesoamerican nephropathy in an immigrant dialysis population. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Migrants with Mesoamerican nephropathy kidney failure (n=52) were identified by exclusion of known causes of kidney disease and compared using a cross-sectional survey with demographically similar patients with kidney failure from other causes (n=63) and age/sex/place of origin-matched healthy participants (n=16). Survey results were extended to the bench; C57BL/6 mice (n=73) received 10-15 weekly intraperitoneal injections of paraquat (a reactive oxygen species-generating herbicide) or vehicle. Kidney function, histology, and expression of organic cation transporter-2 (proximal tubule entry for paraquat) and multidrug and toxin extrusion 1 (extrusion pathway) were examined. Kidney biopsies from Nicaraguan patients with acute Mesoamerican nephropathy were stained for the above transporters and compared with patients with tubulointerstitial nephritis and without Mesoamerican nephropathy. RESULTS Patients with Mesoamerican nephropathy and kidney failure were young agricultural workers, almost exclusively men; the majority were from Mexico and El Salvador; and they had prior exposures to agrochemicals, including paraquat (27%). After adjustment for age/sex, exposure to any agrochemical or paraquat was associated with Mesoamerican nephropathy kidney failure (odds ratio, 4.86; 95% confidence interval, 1.82 to 12.96; P=0.002 and odds ratio, 12.25; 95% confidence interval, 1.51 to 99.36; P=0.02, respectively). Adjusted for age/sex and other covariates, 1 year of agrochemical exposure was associated with Mesoamerican nephropathy kidney failure (odds ratio, 1.23; 95% confidence interval, 1.04 to 1.44; P=0.02). Compared with 16 matched healthy controls, Mesoamerican nephropathy kidney failure was significantly associated with exposure to paraquat and agrochemicals. Paraquat-treated male mice developed kidney failure and tubulointerstitial nephritis consistent with Mesoamerican nephropathy. Organic cation transporter-2 expression was higher in male kidneys versus female kidneys. Paraquat treatment increased organic cation transporter-2 expression and decreased multidrug and toxin extrusion 1 expression in male kidneys; similar results were observed in the kidneys of Nicaraguan patients with Mesoamerican nephropathy. CONCLUSIONS Exposure to agrochemicals is associated with Mesoamerican nephropathy, and chronic exposure of mice to paraquat, a prototypical oxidant, induced kidney failure similar to Mesoamerican nephropathy.
Collapse
Affiliation(s)
- Michael W. Holliday
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases, Houston, Texas
| | - Qingtian Li
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Jingbo Niu
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Luping Huang
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ilse M. Espina
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jose R. Dominguez
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| | - Kristy O. Murray
- School of Tropical Medicine and Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lei Fan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Samaya J. Anumudu
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Maulin Shah
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rebecca S.B. Fischer
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, Houston, Texas
| | - Chandan Vangala
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sreedhar Mandayam
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose Perez
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jenny S. Pan
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sehrish Ali
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ahmed A. Awan
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - David Sheikh-Hamad
- The Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases, Houston, Texas
- Department of Nutrition, Harris Health System, Houston, Texas
| |
Collapse
|
8
|
Hafey MJ, Aleksunes LM, Bridges CC, Brouwer KR, Chien HC, Leslie EM, Hu S, Li Y, Shen J, Sparreboom A, Sprowl J, Tweedie D, Lai Y. Transporters and Toxicity: Insights from the International Transporter Consortium Workshop 4. Clin Pharmacol Ther 2022; 112:527-539. [PMID: 35546260 DOI: 10.1002/cpt.2638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022]
Abstract
Over the last decade, significant progress been made in elucidating the role of membrane transporters in altering drug disposition, with important toxicological consequences due to changes in localized concentrations of compounds. The topic of "Transporters and Toxicity" was recently highlighted as a scientific session at the International Transporter Consortium (ITC) Workshop 4 in 2021. The current white paper is not intended to be an extensive review on the topic of transporters and toxicity but an opportunity to highlight aspects of the role of transporters in various toxicities with clinically relevant implications as covered during the session. This includes a review of the role of solute carrier transporters in anticancer drug-induced organ injury, transporters as key players in organ barrier function, and the role of transporters in metal/metalloid toxicity.
Collapse
Affiliation(s)
- Michael J Hafey
- ADME and Discovery Toxicology, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Christy C Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | | | - Huan-Chieh Chien
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California, USA
| | - Elaine M Leslie
- Departments of Physiology and Lab Med and Path, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jinshan Shen
- Relay Therapeutics, Cambridge, Massachusetts, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jason Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| |
Collapse
|
9
|
Wen X, Kozlosky D, Zhang R, Doherty C, Buckley B, Barrett E, Aleksunes LM. BCRP/ ABCG2 Transporter Regulates Accumulation of Cadmium in Kidney Cells: Role of the Q141K Variant in Modulating Nephrotoxicity. Drug Metab Dispos 2021; 49:629-637. [PMID: 34074729 PMCID: PMC8382159 DOI: 10.1124/dmd.121.000446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure to the environmental pollutant cadmium is ubiquitous, as it is present in cigarette smoke and the food supply. Over time, cadmium enters and accumulates in the kidneys, where it causes tubular injury. The breast cancer resistance protein (BCRP, ATP-Binding Cassette G2 ABCG2) is an efflux transporter that mediates the urinary secretion of pharmaceuticals and toxins. The ABCG2 genetic variant Q141K exhibits altered membrane trafficking that results in reduced efflux of BCRP substrates. Here, we sought to 1) evaluate the in vitro and in vivo ability of BCRP to transport cadmium and protect kidney cells from toxicity and 2) determine whether this protection is impaired by the Q141K variant. Cadmium concentrations, cellular stress, and toxicity were quantified in human embryonic kidney 293 cells expressing an empty vector (EV), BCRP wild-type (WT), or variant (Q141K) gene. Treatment with CdCl2 resulted in greater accumulation of cadmium and apoptosis in EV cells relative to WT cells. Exposure to CdCl2 induced expression of stress-related genes and proteins including MT-1A/MT-2A, NAD(P)H quinone dehydrogenase 1, and heme oxygenase-1 to a higher extent in EV cells compared with WT cells. Notably, the Q141K variant protected against CdCl2-induced activation of stress genes and cytotoxicity, but this protection was to a lesser magnitude than observed with WT BCRP. Lastly, concentrations of cadmium in the kidneys of Bcrp knockout mice were 40% higher than in WT mice, confirming that cadmium is an in vivo substrate of BCRP. In conclusion, BCRP prevents the accumulation of cadmium and protects against toxicity, a response that is impaired by the Q141K variant. SIGNIFICANCE STATEMENT: The breast cancer resistance protein transporter lowers cellular accumulation of the toxic heavy metal cadmium. This protective function is partially attenuated by the Q141K genetic variant in the ABCG2 gene.
Collapse
Affiliation(s)
- Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Danielle Kozlosky
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Ranran Zhang
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Cathleen Doherty
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Brian Buckley
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Emily Barrett
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| |
Collapse
|
10
|
Divergent Regulation of OCT and MATE Drug Transporters by Cadmium Exposure. Pharmaceutics 2021; 13:pharmaceutics13040537. [PMID: 33924306 PMCID: PMC8069296 DOI: 10.3390/pharmaceutics13040537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Coordinated transcellular transport by the uptake via organic cation transporters (OCTs) in concert with the efflux via multidrug and toxin extrusion proteins (MATEs) is an essential system for hepatic and renal drug disposition. Despite their clinical importance, the regulation of OCTs and MATEs remains poorly characterized. It has been reported that cadmium (Cd2+) increase the activities of OCTs while being a substrate of MATEs. Here, we found that human (h) OCT2 protein, as compared with hMATE1, was more active in trafficking between the plasma membrane and cytoplasmic storage pool. Cd2+ exposure could significantly enhance the translocation of hOCT2 and hOCT1, but not hMATE1, to the plasma membrane. We further identified that candesartan, a widely prescribed angiotensin II receptor blocker, behaved similarly toward OCT2 and MATE1 as Cd2+ did. Importantly, Cd2+ and candesartan treatments could lead to an enhanced accumulation of metformin, which is a well-characterized substrate of OCTs/MATEs, in mouse kidney and liver, respectively. Altogether, our studies have uncovered possible divergent regulation of OCTs and MATEs by certain xenobiotics, such as Cd2+ and candesartan due to the different cellular trafficking of these two families of transporter proteins, which might significantly affect drug disposition in the liver and kidney.
Collapse
|
11
|
Sakolish C, Chen Z, Dalaijamts C, Mitra K, Liu Y, Fulton T, Wade TL, Kelly EJ, Rusyn I, Chiu WA. Predicting tubular reabsorption with a human kidney proximal tubule tissue-on-a-chip and physiologically-based modeling. Toxicol In Vitro 2020; 63:104752. [PMID: 31857146 PMCID: PMC7053805 DOI: 10.1016/j.tiv.2019.104752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
Kidney is a major route of xenobiotic excretion, but the accuracy of preclinical data for predicting in vivo clearance is limited by species differences and non-physiologic 2D culture conditions. Microphysiological systems can potentially increase predictive accuracy due to their more realistic 3D environment and incorporation of dynamic flow. We used a renal proximal tubule microphysiological device to predict renal reabsorption of five compounds: creatinine (negative control), perfluorooctanoic acid (positive control), cisplatin, gentamicin, and cadmium. We perfused compound-containing media to determine renal uptake/reabsorption, adjusted for non-specific binding. A physiologically-based parallel tube model was used to model reabsorption kinetics and make predictions of overall in vivo renal clearance. For all compounds tested, the kidney tubule chip combined with physiologically-based modeling reproduces qualitatively and quantitatively in vivo tubular reabsorption and clearance. However, because the in vitro device lacks filtration and tubular secretion components, additional information on protein binding and the importance of secretory transport is needed in order to make accurate predictions. These and other limitations, such as the presence of non-physiological compounds such as antibiotics and bovine serum albumin in media and the need to better characterize degree of expression of important transporters, highlight some of the challenges with using microphysiological devices to predict in vivo pharmacokinetics.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | - Chimeddulam Dalaijamts
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | - Kusumica Mitra
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77845, USA.
| | - Yina Liu
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77845, USA.
| | - Tracy Fulton
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77845, USA
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77845, USA.
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, and Division of Nephrology, University of Washington Kidney Research Institute, Seattle, WA 98195, USA; Division of Nephrology, University of Washington Kidney Research Institute, Seattle, WA 98195, USA.
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
12
|
Schmid C, Alampi I, Briggs J, Tarcza K, Stawicki TM. Mechanotransduction Activity Facilitates Hair Cell Toxicity Caused by the Heavy Metal Cadmium. Front Cell Neurosci 2020; 14:37. [PMID: 32153368 PMCID: PMC7044240 DOI: 10.3389/fncel.2020.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Hair cells are sensitive to many insults including environmental toxins such as heavy metals. We show here that cadmium can consistently kill hair cells of the zebrafish lateral line. Disrupting hair cell mechanotransduction genetically or pharmacologically significantly reduces the amount of hair cell death seen in response to cadmium, suggesting a role for mechanotransduction in this cell death process, possibly as a means for cadmium uptake into the cells. Likewise, when looking at multiple cilia-associated gene mutants that have previously been shown to be resistant to aminoglycoside-induced hair cell death, resistance to cadmium-induced hair cell death is only seen in those with mechanotransduction defects. In contrast to what was seen with mechanotransduction, significant protection was not consistently seen from other ions previously shown to compete for cadmium uptake into cells or tissue including zinc and copper. These results show that functional mechanotransduction activity is playing a significant role in cadmium-induced hair cell death.
Collapse
Affiliation(s)
- Caleigh Schmid
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | - Isabella Alampi
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | - Jay Briggs
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Kelly Tarcza
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | | |
Collapse
|
13
|
Yang H, Tang J, Guo D, Zhao Q, Wen J, Zhang Y, Obianom ON, Zhou S, Zhang W, Shu Y. Cadmium exposure enhances organic cation transporter 2 trafficking to the kidney membrane and exacerbates cisplatin nephrotoxicity. Kidney Int 2019; 97:765-777. [PMID: 32061436 DOI: 10.1016/j.kint.2019.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Renal accumulation and exposure of cadmium originating from pollution in agricultural land and the prevalence of cigarette smoking remains an unneglectable human health concern. Whereas cadmium exposure has been correlated with increased incidence of a variety of kidney diseases, little is known pertaining to its effect on renal drug disposition and response in patients. Here, we report that cadmium exposure significantly increased the activity of organic cation transporter 2 (OCT2), a critical renal drug transporter recommended in United States Federal Drug Administration guidance for assessment during drug development. Cadmium enhanced OCT2 trafficking to the cell membrane both in vitro and in vivo. Mechanistically cadmium-mediated OCT2 translocation was found to involve protein-protein interaction between serine/threonine-protein kinase AKT2, calcium/calmodulin and the AKT substrate AS160 in in vitro cellular studies. The formed protein complex could selectively facilitate phosphorylation of AKT2 at T309, which induced translocation of OCT2 to the plasma membrane. Moreover, cadmium exposure markedly exacerbated nephrotoxicity induced by cisplatin, an OCT2 substrate, by increasing its accumulation in the mouse kidney. Consistently, there was a significant correlation between plasma cadmium level and alteration of renal function in cervical cancer patients who underwent chemotherapy with cisplatin. Thus, our studies suggest that membrane transporter distribution induced by cadmium exposure is a previously unrecognized factor for the broad variation in renal drug disposition and response.
Collapse
Affiliation(s)
- Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Qingqing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Yanjuan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Obinna N Obianom
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Shiwei Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland, USA.
| |
Collapse
|
14
|
The Source and Pathophysiologic Significance of Excreted Cadmium. TOXICS 2019; 7:toxics7040055. [PMID: 31635341 PMCID: PMC6958378 DOI: 10.3390/toxics7040055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
In theory, the identification of the source of excreted cadmium (Cd) might elucidate the pathogenesis of Cd-induced chronic kidney disease (CKD). With that possibility in mind, we studied Thai subjects with low, moderate, and high Cd exposure. We measured urine concentrations of Cd, ([Cd]u); N-acetyl-β-d-glucosaminidase, a marker of cellular damage ([NAG]u); and β2-microglobulin, an indicator of reabsorptive dysfunction ([β2MG]u). To relate excretion rates of these substances to existing nephron mass, we normalized the rates to creatinine clearance, an approximation of the glomerular filtration rate (GFR) (ECd/Ccr, ENAG/Ccr, and Eβ2MG/Ccr). To link the loss of intact nephrons to Cd-induced tubular injury, we examined linear and quadratic regressions of estimated GFR (eGFR) on ECd/Ccr, eGFR on ENAG/Ccr, and ENAG/Ccr on ECd/Ccr. Estimated GFR varied inversely with both ratios, and ENAG/Ccr varied directly with ECd/Ccr. Linear and quadratic regressions of Eβ2MG/Ccr on ECd/Ccr and ENAG/Ccr were significant in moderate and high Cd-exposure groups. The association of ENAG/Ccr with ECd/Ccr implies that both ratios depicted cellular damage per surviving nephron. Consequently, we infer that excreted Cd emanated from injured tubular cells, and we attribute the reduction of eGFR to the injury. We suggest that ECd/Ccr, ENAG/Ccr, and eGFR were associated with one another because each parameter was determined by the tubular burden of Cd.
Collapse
|
15
|
Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts. Biometals 2019; 32:469-489. [DOI: 10.1007/s10534-019-00176-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/21/2022]
|
16
|
Sayyed K, Le Vee M, Abdel-Razzak Z, Fardel O. Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate. Toxicol In Vitro 2017. [DOI: 10.1016/j.tiv.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 2017; 116:73-91. [PMID: 28111348 DOI: 10.1016/j.addr.2017.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Renal proximal tubules are targets for toxicity due in part to the expression of transporters that mediate the secretion and reabsorption of xenobiotics. Alterations in transporter expression and/or function can enhance the accumulation of toxicants and sensitize the kidneys to injury. This can be observed when xenobiotic uptake by carrier proteins is increased or efflux of toxicants and their metabolites is reduced. Nephrotoxic chemicals include environmental contaminants (halogenated hydrocarbon solvents, the herbicide paraquat, the fungal toxin ochratoxin, and heavy metals) as well as pharmaceuticals (certain beta-lactam antibiotics, antiviral drugs, and chemotherapeutic drugs). This review explores the mechanisms by which transporters mediate the entry and exit of toxicants from renal tubule cells and influence the degree of kidney injury. Delineating how transport proteins regulate the renal accumulation of toxicants is critical for understanding the likelihood of nephrotoxicity resulting from competition for excretion or genetic polymorphisms that affect transporter function.
Collapse
|
18
|
Orr SE, Bridges CC. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int J Mol Sci 2017; 18:ijms18051039. [PMID: 28498320 PMCID: PMC5454951 DOI: 10.3390/ijms18051039] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/26/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of functional nephrons. As injured nephrons become sclerotic and die, the remaining healthy nephrons undergo numerous structural, molecular, and functional changes in an attempt to compensate for the loss of diseased nephrons. These compensatory changes enable the kidney to maintain fluid and solute homeostasis until approximately 75% of nephrons are lost. As CKD continues to progress, glomerular filtration rate decreases, and remaining nephrons are unable to effectively eliminate metabolic wastes and environmental toxicants from the body. This inability may enhance mortality and/or morbidity of an individual. Environmental toxicants of particular concern are arsenic, cadmium, lead, and mercury. Since these metals are present throughout the environment and exposure to one or more of these metals is unavoidable, it is important that the way in which these metals are handled by target organs in normal and disease states is understood completely.
Collapse
Affiliation(s)
- Sarah E Orr
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College St., Macon, GA 31207, USA.
| | - Christy C Bridges
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College St., Macon, GA 31207, USA.
| |
Collapse
|
19
|
Phuagkhaopong S, Ospondpant D, Kasemsuk T, Sibmooh N, Soodvilai S, Power C, Vivithanaporn P. Cadmium-induced IL-6 and IL-8 expression and release from astrocytes are mediated by MAPK and NF-κB pathways. Neurotoxicology 2017; 60:82-91. [DOI: 10.1016/j.neuro.2017.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/24/2022]
|
20
|
Vimalraj S, Sumantran VN, Chatterjee S. MicroRNAs: Impaired vasculogenesis in metal induced teratogenicity. Reprod Toxicol 2017; 70:30-48. [PMID: 28249814 DOI: 10.1016/j.reprotox.2017.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
Certain metals have been known for their toxic effects on embryos and fetal development. The vasculature in early pregnancy is extremely dynamic and plays an important role in organogenesis. Nascent blood vessels in early embryonic life are considered to be a primary and delicate target for many teratogens since the nascent blood islands follow a tightly controlled program to form vascular plexus around and inside the embryo for resourcing optimal ingredients for its development. The state of the distribution of toxic metals, their transport mechanisms and the molecular events by which they notch extra-embryonic and embryonic vasculatures are illustrated. In addition, pharmacological aspects of toxic metal induced teratogenicity have also been portrayed. The work reviewed state of the current knowledge of specific role of microRNAs (miRNAs) that are differentially expressed in response to toxic metals, and how they interfere with the vasculogenesis that manifests into embryonic anomalies.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India.
| | | | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India; Department of Biotechnology, Anna University, Chennai, India.
| |
Collapse
|
21
|
Xu YJ, Wang Y, Lu YF, Xu SF, Wu Q, Liu J. Age-associated differences in transporter gene expression in kidneys of male rats. Mol Med Rep 2016; 15:474-482. [DOI: 10.3892/mmr.2016.5970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 10/18/2016] [Indexed: 11/06/2022] Open
|
22
|
Yang H, Guo D, Obianom ON, Su T, Polli JE, Shu Y. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium. Toxicol Appl Pharmacol 2016; 314:55-62. [PMID: 27871888 DOI: 10.1016/j.taap.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023]
Abstract
Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd2+). In this study, we aimed to examine whether Cd2+ is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd2+. The cells overexpressing MATEs showed a 2-4 fold increase of Cd2+ uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (Km) of 130±15.8μM for HEK-hMATE1; 139±21.3μM for HEK-hMATE2-K; and 88.7±13.5μM for HEK-mMate1, respectively. Cd2+ could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC50) of 97.5±6.0μM, 20.2±2.6μM, and 49.9±6.9μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd2+ out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd2+-induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd2+ and may function as cellular elimination machinery in Cd intoxication.
Collapse
Affiliation(s)
- Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD, USA
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD, USA
| | - Obinna N Obianom
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD, USA
| | - Tong Su
- Department of Oral Maxillofacial Surgery, the First Affiliated Hospital, Xiangya Medical School, Central South University, Hunan 410007, China
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD, USA.
| |
Collapse
|
23
|
Thévenod F, Wolff NA. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 2016; 8:17-42. [PMID: 26485516 DOI: 10.1039/c5mt00215j] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The kidney has recently emerged as an organ with a significant role in systemic iron (Fe) homeostasis. Substantial amounts of Fe are filtered by the kidney, which have to be reabsorbed to prevent Fe deficiency. Accordingly Fe transporters and receptors for protein-bound Fe are expressed in the nephron that may also function as entry pathways for toxic metals, such as cadmium (Cd), by way of "ionic and molecular mimicry". Similarities, but also differences in handling of Cd by these transport routes offer rationales for the propensity of the kidney to develop Cd toxicity. This critical review provides a comprehensive update on Fe transport by the kidney and its relevance for physiology and Cd nephrotoxicity. Based on quantitative considerations, we have also estimated the in vivo relevance of the described transport pathways for physiology and toxicology. Under physiological conditions all segments of the kidney tubules are likely to utilize Fe for cellular Fe requiring processes for metabolic purposes and also to contribute to reabsorption of free and bound forms of Fe into the circulation. But Cd entering tubule cells disrupts metabolic pathways and is unable to exit. Furthermore, our quantitative analyses contest established models linking chronic Cd nephrotoxicity to proximal tubular uptake of metallothionein-bound Cd. Hence, Fe transport by the kidney may be beneficial by preventing losses from the body. But increased uptake of Fe or Cd that cannot exit tubule cells may lead to kidney injury, and Fe deficiency may facilitate renal Cd uptake.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| | - Natascha A Wolff
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| |
Collapse
|
24
|
Gerasimenko TN, Senyavina NV, Anisimov NU, Tonevitskaya SA. A Model of Cadmium Uptake and Transport in Caco-2 Cells. Bull Exp Biol Med 2016; 161:187-92. [PMID: 27259497 DOI: 10.1007/s10517-016-3373-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 01/09/2023]
Abstract
We created a physiologically substantiated kinetic model of cadmium transport and toxicity in intestinal cell model (Caco-2 cells). Transcriptome profiling of Caco-2 cells revealed high content of transporter DMT1 and ZIP14 and intensive expression of some calcium channels of the CACN family. The mathematical model describing three types of transporters, as well as intracellular cadmium binding with metallothionein and excretion through the basolateral membrane allowed us to construct cadmium uptake and transport curves that approximated the previously obtained experimental data. Using the proposed model, we determined toxic intracellular cadmium concentration leading to cell death and impairing the integrity of cell monolayer and described cadmium transport in this case.
Collapse
Affiliation(s)
| | - N V Senyavina
- BioCilicum Research and Production Center, Moscow, Russia.
| | - N U Anisimov
- Moscow State University of Mechanical Engineering (MAMI), Moscow, Russia
| | - S A Tonevitskaya
- Moscow State University of Mechanical Engineering (MAMI), Moscow, Russia
| |
Collapse
|
25
|
Fongsupa S, Soodvilai S, Muanprasat C, Chatsudthipong V, Soodvilai S. Activation of liver X receptors inhibits cadmium-induced apoptosis of human renal proximal tubular cells. Toxicol Lett 2015; 236:145-53. [DOI: 10.1016/j.toxlet.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
|
26
|
Cytotoxicity of corrosion products of degradable Fe-based stents: relevance of pH and insoluble products. Colloids Surf B Biointerfaces 2015; 128:480-488. [PMID: 25797480 DOI: 10.1016/j.colsurfb.2015.02.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
Abstract
Fe-based biodegradable metallic materials (Fe-BMMs) have been proposed for cardiovascular applications and are expected to disappear via corrosion after an appropriate period. However, in vivo studies showed that Fe ions release leads to accumulation of orange and brownish insoluble products at the biomaterial/cell interface. As an additional consequence, sharp changes in pH may affect the biocompatibility of these materials. In the present work, the experimental protocols were designed with the aim of evaluating the relative importance that these factors have on biocompatibility evaluation of BMMs. Mitochondrial activity (MTT assay) and thiobarbituric acid reactive substances (TBARS) assay on mammalian cells, exposed to 1-5 mM of added Fe3+ salt, were assessed and compared with results linked exclusively to pH effects. Soluble Fe concentration in culture medium and intracellular Fe content were also determined. The results showed that: (i) mitochondrial activity was affected by pH changes over the entire range of concentrations of added Fe3+ assayed, (ii) at the highest added Fe3+ concentrations (≥3 mM), precipitation was detected and the cells were able to incorporate the precipitate, that seems to be linked to cell damage, (iii) the extent of precipitation depends on the Fe/protein concentration ratio; and (iv) lipid peroxidation products were detected over the entire range of concentrations of added Fe3+. Hence, a new approach opens in the biocompatibility evaluation of Fe-based BMMs, since the cytotoxicity would not be solely a function of released (and soluble) ions but of the insoluble degradation product amount and the pH falling at the biomaterial/cell interface. The concentration of Fe-containing products at the interface depends on diffusional conditions in a very complex way that should be carefully analyzed in the future.
Collapse
|
27
|
Ljubojević M, Breljak D, Herak-Kramberger CM, Anzai N, Sabolić I. Expression of basolateral organic anion and cation transporters in experimental cadmium nephrotoxicity in rat kidney. Arch Toxicol 2015; 90:525-41. [DOI: 10.1007/s00204-015-1450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/06/2015] [Indexed: 01/11/2023]
|
28
|
Yang H, Shu Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci 2015; 16:1484-94. [PMID: 25584611 PMCID: PMC4307315 DOI: 10.3390/ijms16011484] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022] Open
Abstract
Among the organs in which the environmental pollutant cadmium causes toxicity, the kidney has gained the most attention in recent years. Numerous studies have sought to unravel the exact pathways by which cadmium enters the renal epithelial cells and the mechanisms by which it causes toxicity in the kidney. The purpose of this review is to present the progress made on the mechanisms of cadmium transport in the kidney and the role of transporter proteins in cadmium-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD 21201, USA.
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
29
|
Weaver VM, Vargas GG, Silbergeld EK, Rothenberg SJ, Fadrowski JJ, Rubio-Andrade M, Parsons PJ, Steuerwald AJ, Navas-Acien A, Guallar E. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. ENVIRONMENTAL RESEARCH 2014; 132:226-32. [PMID: 24815335 PMCID: PMC4128831 DOI: 10.1016/j.envres.2014.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 05/21/2023]
Abstract
Positive associations between urine toxicant levels and measures of glomerular filtration rate (GFR) have been reported recently in a range of populations. The explanation for these associations, in a direction opposite that of traditional nephrotoxicity, is uncertain. Variation in associations by urine concentration adjustment approach has also been observed. Associations of urine cadmium, thallium and uranium in models of serum creatinine- and cystatin-C-based estimated GFR (eGFR) were examined using multiple linear regression in a cross-sectional study of adolescents residing near a lead smelter complex. Urine concentration adjustment approaches compared included urine creatinine, urine osmolality and no adjustment. Median age, blood lead and urine cadmium, thallium and uranium were 13.9 years, 4.0 μg/dL, 0.22, 0.27 and 0.04 g/g creatinine, respectively, in 512 adolescents. Urine cadmium and thallium were positively associated with serum creatinine-based eGFR only when urine creatinine was used to adjust for urine concentration (β coefficient=3.1 mL/min/1.73 m(2); 95% confidence interval=1.4, 4.8 per each doubling of urine cadmium). Weaker positive associations, also only with urine creatinine adjustment, were observed between these metals and serum cystatin-C-based eGFR and between urine uranium and serum creatinine-based eGFR. Additional research using non-creatinine-based methods of adjustment for urine concentration is necessary.
Collapse
Affiliation(s)
- Virginia M Weaver
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Gonzalo García Vargas
- Faculty of Medicine, University of Juárez of Durango State, Durango, Mexico; Secretaría de Salud del Estado de Coahuila, Coahuila, México
| | - Ellen K Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen J Rothenberg
- Instituto Nacional de Salud Publica, Centro de Investigacion en Salud Poblacional, Cuernavaca, Morelos, Mexico
| | - Jeffrey J Fadrowski
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Amy J Steuerwald
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Eliseo Guallar
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Young RK, Villalobos ARA. Stress-induced stimulation of choline transport in cultured choroid plexus epithelium exposed to low concentrations of cadmium. Am J Physiol Regul Integr Comp Physiol 2014; 306:R291-303. [PMID: 24401988 DOI: 10.1152/ajpregu.00252.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a "sink" for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl₂). At 50-1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [(3)H]choline. However, extended exposure to 250-500 nM cadmium increased [(3)H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase.
Collapse
|
31
|
Nazimabashir, Manoharan V, Prabu SM. Protective role of grape seed proanthocyanidins against cadmium induced hepatic dysfunction in rats. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50085c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
32
|
Santoyo-Sánchez MP, Pedraza-Chaverri J, Molina-Jijón E, Arreola-Mendoza L, Rodríguez-Muñoz R, Barbier OC. Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors. BMC Nephrol 2013; 14:211. [PMID: 24093454 PMCID: PMC3851428 DOI: 10.1186/1471-2369-14-211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic exposure to low cadmium (Cd) levels produces urinary excretion of low molecular weight proteins, which is considered the critical effect of Cd exposure. However, the mechanisms involved in Cd-induced proteinuria are not entirely clear. Therefore, the present study was designed to evaluate the possible role of megalin and cubilin (important endocytic receptors in proximal tubule cells) and angiotensin II type 1 (AT1) receptor on Cd-induced microalbuminuria. METHODS Four groups of female Wistar rats were studied. Control (CT) group, vehicle-treated rats; LOS group, rats treated with losartan (an AT1 antagonist) from weeks 5 to 8 (10 mg/kg/day by gavage); Cd group, rats subchronically exposed to Cd (3 mg/kg/day by gavage) during 8 weeks, and Cd + LOS group, rats treated with Cd for 8 weeks and LOS from weeks 5-8. Kidney Cd content, glomerular function (evaluated by creatinine clearance and plasma creatinine), kidney injury and tubular function (evaluated by Kim-1 expression, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and glucose, and microalbuminuria), oxidative stress (measured by lipid peroxidation and NAD(P)H oxidase activity), mRNA levels of megalin, expressions of megalin and cubilin (by confocal microscopy) and AT1 receptor (by Western blot), were measured in the different experimental groups. Data were analyzed by one-way ANOVA or Kruskal-Wallis test using GraphPad Prism 5 software (Version 5.00). P < 0.05 was considered statistically significant. RESULTS Administration of Cd (Cd and Cd + LOS groups) increased renal Cd content. LOS-treatment decreased Cd-induced microalbuminuria without changes in: plasma creatinine, creatinine clearance, urinary NAG and glucose, oxidative stress, mRNA levels of megalin and cubilin, neither protein expression of megalin nor AT1 receptor, in the different experimental groups studied. However, Cd exposure did induce the expression of the tubular injury marker Kim-1 and decreased cubilin protein levels in proximal tubule cells whereas LOS-treatment restored cubilin levels and suppressed Kim-1 expression. CONCLUSION LOS treatment decreased microalbuminuria induced by Cd apparently through a cubilin receptor-dependent mechanism but independent of megalin.
Collapse
Affiliation(s)
- Mitzi Paola Santoyo-Sánchez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México.
| | | | | | | | | | | |
Collapse
|
33
|
Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34:413-35. [PMID: 23506881 DOI: 10.1016/j.mam.2012.10.010] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/18/2012] [Indexed: 12/14/2022]
Abstract
The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, 97070 Würzburg, Germany.
| |
Collapse
|
34
|
Thévenod F, Ciarimboli G, Leistner M, Wolff NA, Lee WK, Schatz I, Keller T, Al-Monajjed R, Gorboulev V, Koepsell H. Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate cd2+. Mol Pharm 2013; 10:3045-56. [PMID: 23763587 DOI: 10.1021/mp400113d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polyspecific organic cation transporter Oct2 from rat (gene Slc22A2) has been previously shown to transport Cs(+). Here we report that human OCT2 (hOCT2) is able to transport Cd(2+) showing substrate saturation with a Michaelis-Menten constant (Km) of 54 ± 5.8 μM. Uptake of Cd(2+) by hOCT2 was inhibited by typical hOCT2 ligands (unlabeled substrates and inhibitors), and the rate of uptake was decreased by a point mutation in a substrate binding domain of hOCT2. Incubation of hOCT2 overexpressing human embryonic kidney 293 cells (HEK-hOCT2-C) or rat renal proximal tubule cells expressing rOct2 (NRK-52E-C) with Cd(2+) resulted in an increased level of apoptosis that was reduced by OCT2 inhibitory ligand cimetidine(+). HEK-hOCT2-C exhibited different functional properties when they were confluent or had been dissociated by removal of Ca(2+) and Mg(2+). Only confluent HEK-hOCT2-C transported Cd(2+), and confluent and dissociated cells exhibited different potencies for inhibition of uptake of 1-methyl-4-phenylpyridinium(+) (MPP(+)) by Cd(2+), MPP(+), tetraethylammonium(+), cimetidine(+), and corticosterone. In confluent HEK-hOCT2-C, largely different inhibitor potencies were obtained upon comparison of inhibition of Cd(2+) uptake, 4-[4-(dimethylamino)styryl]-N-methylpyridinium(+) (ASP(+)) uptake, and MPP(+) uptake using substrate concentrations far below the respective Km values. Employing a point mutation in the previously identified substrate binding site of rat Oct1 produced evidence that short distance allosteric effects between binding sites for substrates and inhibitors are involved in substrate-dependent inhibitor potency. Substrate-dependent inhibitor affinity is probably a common property of OCTs. To predict interactions between drugs that are transported by OCTs and inhibitory drugs, it is necessary to employ the specific transported drug rather than a model substrate for in vitro measurements.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology and Pathophysiology, ZBAF, University of Witten/Herdecke , Witten, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Raksaseri P, Chatsudthipong V, Muanprasat C, Soodvilai S. Activation of liver X receptors reduces CFTR-mediated Cl(-) transport in kidney collecting duct cells. Am J Physiol Renal Physiol 2013; 305:F583-91. [PMID: 23720350 DOI: 10.1152/ajprenal.00579.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Liver X receptors (LXRs) are transcription factors belonging to the nuclear receptor super family, which act as regulators of lipid and glucose metabolism. However, LXRs have been shown to regulate the function of transporters in the kidney, including the Na-Pi cotransporter, organic anion transporter, and epithelial Na(+) channel. In this report, we demonstrated the ability of LXR ligands, both endogenous [22 (R)-hydroxycholesterol] and synthetic (T0901317 and GW3965), to reduce CFTR-mediated Cl(-) secretion in a type I Madin-Darby canine kidney (MDCK) cell line and in murine primary inner medullary collecting duct (IMCD) cells, based on measurements of [Arg(8)]-vasopressin-induced Cl(-) current. However, treatment of MDCK cell monolayers with 5 μM T0901317 for 24 h did not alter ouabain-senstive current or Na(+)-K(+)-ATPase-α protein content. Furthermore, basolateral membranes permeabilization of MDCK cell monolayers still resulted in a decrease in apical Cl(-) current stimulated by both [Arg(8)]-vasopressin and 8-cholorophenyl-thio-cAMP, indicating that the factor(s) encoded by the target gene(s) of agonist-activated LXRs might be located at the apical membrane. Western blot analysis revealed that inhibition of Cl(-) secretion occurred via a decrease in CFTR protein, which was not due to downregulation of its mRNA expression. In addition, both synthetic LXR agonists significantly retarded the growth of forskolin-induced cysts formed in MDCK cells cultured in collagen gel. This is the first evidence showing that ligand-activated LXRs are capable of downregulating CFTR-mediated Cl(-) secretion of kidney cells and of retarding cyst growth in a MDCK cell model.
Collapse
Affiliation(s)
- Promporn Raksaseri
- Dept. of Physiology, Faculty of Science, Mahidol Univ., Rama VI Road, Bangkok 10400, Thailand.
| | | | | | | |
Collapse
|
36
|
|
37
|
Asavapanumas N, Kittayaruksakul S, Meetam P, Muanprasat C, Chatsudthipong V, Soodvilai S. Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARα-independent pathways. Drug Metab Pharmacokinet 2012; 27:513-9. [PMID: 22473497 DOI: 10.2133/dmpk.dmpk-11-rg-123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibrate drugs, the peroxisome proliferator-activated receptor alpha (PPARα) agonists, are widely prescribed for the treatment of hyperlipidemia. The present study examined the effect of fibrate drugs on renal OCT2 activity in a heterologous cell system [Chinese hamster ovary (CHO-K1) cells stably transfected with rabbit (rb) OCT2], LLC-PK1, and intact mouse renal cortical slices. We found that both in the CHO-K1 cells expressing rbOCT2 and in LLC-PK1 cells, fenofibrate significantly inhibited [³H]-MPP⁺ uptake whereas clofibrate and WY14643 had no effect. Surprisingly, the inhibitory effect of fenofibrate was not attenuated by GW6471, a PPARα antagonist, indicating that the inhibitory process observed was via a PPARα-independent pathway. Fenofibrate decreased [³H]-MPP⁺ uptakes through a reduction of the maximal transport (J(max)) but without effect on the transporter affinity (K(t)) corresponding to a decrease in membrane expression of OCT2. Since the inhibitory effect of fenofibrate was not prevented by pretreatment with cycloheximide, its inhibitory action did not involve an inhibition of protein synthesis. Similar to the effect seen in the cell-cultured system, the inhibitory effect of fenofibrate was also observed in intact renal cortical slices. Taken together, our data showed that fenofibrate decreased the activity of OCT2 by reducing the number of functional transporters on the membrane, which is likely to be a PPARα-independent pathway.
Collapse
Affiliation(s)
- Nithi Asavapanumas
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|