1
|
Ma M, Zhai Y, Jin Q, Wang D, Wang S, Liu Z, Wang Z, Wang C, Xie Y, Ren Z, Gao X, Gao J. N-terminal PEGylation enhances organophosphorus hydrolase catalysis for a promising fast and long-acting prophylactic candidate. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137336. [PMID: 39889599 DOI: 10.1016/j.jhazmat.2025.137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Organophosphorus compounds (OPs) poisoning poses a significant health risk as an insecticide, and its potent toxicity is characterized by rapid onset and a very narrow window for intervention. Prophylactic medication is crucial for managing OPs poisoning, yet effective and safe drugs are still lacking. The enzyme Organophosphorus hydrolase (OPH) shows promise as a bioscavenger but faces challenges due to its short half-life and strong immunogenicity. Our research reveals that N-terminal PEGylation of OPH significantly extends its pharmacokinetic half-life, reduces immunogenicity, and, surprisingly, enhances its catalytic activity for ethyl paraoxon. Intravenous administration of PEGY40kDa-OPH at a dose of 1 mg/kg effectively protected the rats against 4 doses of 2 ×LD50 ethyl paraoxon challenge with neither death nor toxic symptoms observed. Molecular dynamics simulations suggest that this enhancement is due to increased flexibility and stronger hydrogen bonding between the active site of PEGylated OPH and the substrate. This leads to more stable binding and higher catalytic rate. The study offers a strategy for a rapid and enduring prophylactic against organophosphorus poisoning and introduces a new analytical approach to understand the impact of PEGylation on enzymatic function.
Collapse
Affiliation(s)
- Ming Ma
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Yanan Zhai
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Qiantong Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130012, China
| | - Dan Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Shunye Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Zhuang Liu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ziyang Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chengcai Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Yanwei Xie
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130012, China.
| | - Xiang Gao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| | - Jing Gao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
2
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
3
|
Cruz-Hernandez A, Roney A, Goswami DG, Tewari-Singh N, Brown JM. A review of chemical warfare agents linked to respiratory and neurological effects experienced in Gulf War Illness. Inhal Toxicol 2022; 34:412-432. [PMID: 36394251 PMCID: PMC9832991 DOI: 10.1080/08958378.2022.2147257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Over 40% of veterans from the Persian Gulf War (GW) (1990-1991) suffer from Gulf War Illness (GWI). Thirty years since the GW, the exposure and mechanism contributing to GWI remain unclear. One possible exposure that has been attributed to GWI are chemical warfare agents (CWAs). While there are treatments for isolated symptoms of GWI, the number of respiratory and cognitive/neurological issues continues to rise with minimum treatment options. This issue does not only affect veterans of the GW, importantly these chronic multisymptom illnesses (CMIs) are also growing amongst veterans who have served in the Afghanistan-Iraq war. What both wars have in common are their regions and inhaled exposures. In this review, we will describe the CWA exposures, such as sarin, cyclosarin, and mustard gas in both wars and discuss the various respiratory and neurocognitive issues experienced by veterans. We will bridge the respiratory and neurological symptoms experienced to the various potential mechanisms described for each CWA provided with the most up-to-date models and hypotheses.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Overview of a bioremediation tool: organophosphorus hydrolase and its significant application in the food, environmental, and therapy fields. Appl Microbiol Biotechnol 2021; 105:8241-8253. [PMID: 34665276 DOI: 10.1007/s00253-021-11633-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
In the past decades, the organophosphorus compounds had been widely used in the environment and food industries as pesticides. Owing to the life-threatening and long-lasting problems of organophosphorus insecticide (OPs), an effective detection and removal of OPs have garnered growing attention both in the scientific and practical fields in recent years. Bacterial organophosphorus hydrolases (OPHs) have been extensively studied due to their high specific activity against OPs. OPH could efficiently hydrolyze a broad range of substrates both including the OP pesticides and some nerve agents, suggesting a great potential for the remediation of OPs. In this review, the microbial identification, molecular modification, and practical application of OPHs were comprehensively discussed.Key points• Microbial OPH is a significant bioremediation tool against OPs.• Identification and molecular modification of OPH was discussed in detail.• The applications of OPH in food, environmental, and therapy fields are presented.
Collapse
|
5
|
Choi SK. Nanomaterial-Enabled Sensors and Therapeutic Platforms for Reactive Organophosphates. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:224. [PMID: 33467113 PMCID: PMC7830340 DOI: 10.3390/nano11010224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Unintended exposure to harmful reactive organophosphates (OP), which comprise a group of nerve agents and agricultural pesticides, continues to pose a serious threat to human health and ecosystems due to their toxicity and prolonged stability. This underscores an unmet need for developing technologies that will allow sensitive OP detection, rapid decontamination and effective treatment of OP intoxication. Here, this article aims to review the status and prospect of emerging nanotechnologies and multifunctional nanomaterials that have shown considerable potential in advancing detection methods and treatment modalities. It begins with a brief introduction to OP types and their biochemical basis of toxicity followed by nanomaterial applications in two topical areas of primary interest. One topic relates to nanomaterial-based sensors which are applicable for OP detection and quantitative analysis by electrochemical, fluorescent, luminescent and spectrophotometric methods. The other topic is directed on nanotherapeutic platforms developed as OP remedies, which comprise nanocarriers for antidote drug delivery and nanoscavengers for OP inactivation and decontamination. In summary, this article addresses OP-responsive nanomaterials, their design concepts and growing impact on advancing our capability in the development of OP sensors, decontaminants and therapies.
Collapse
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Cavalcante SFDA, Simas ABC, Barcellos MC, de Oliveira VGM, Sousa RB, Cabral PADM, Kuča K, França TCC. Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules 2020; 10:E414. [PMID: 32155996 PMCID: PMC7175162 DOI: 10.3390/biom10030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
| | - Marcos C. Barcellos
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Victor G. M. de Oliveira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Roberto B. Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Paulo A. de M. Cabral
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
7
|
Parvaz S, Taheri-Ledari R, Esmaeili MS, Rabbani M, Maleki A. A brief survey on the advanced brain drug administration by nanoscale carriers: With a particular focus on AChE reactivators. Life Sci 2019; 240:117099. [PMID: 31760098 DOI: 10.1016/j.lfs.2019.117099] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Obviously, delivery of the medications to the brain is more difficult than other tissues due to the existence of a strong obstacle, which is called blood-brain barrier (BBB). Because of the lipophilic nature of this barrier, it would be a complex (and in many cases impossible) process to cross the medications with hydrophilic behavior from BBB and deliver them to the brain. Thus, novel intricate drug-carriers in nano scales have been recently developed and suitably applied for this purpose. One of the most important categories of these hydrophilic medications, are reactivators for acetyl cholinesterase (AChE) enzyme that facilitates the breakdown of acetylcholine (as a neurotransmitter). The AChE function is inhibited by organophosphorus (OP) nerve agents that are extremely used in military conflicts. In this review, the abilities of the nanosized drug delivery systems to perform as suitable vehicles for AChE reactivators are comprehensively discussed.
Collapse
Affiliation(s)
- Sina Parvaz
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Taheri-Ledari
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
8
|
Bajgar J, Kassa J, Kucera T, Musilek K, Jun D, Kuca K. Some Possibilities to Study New Prophylactics against Nerve Agents. Mini Rev Med Chem 2019; 19:970-979. [PMID: 30827238 DOI: 10.2174/1389557519666190301112530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 11/22/2022]
Abstract
Nerve agents belong to the most dangerous chemical warfare agents and can be/were misused by terrorists. Effective prophylaxis and treatment is necessary to diminish their effect. General principles of prophylaxis are summarized (protection against acetylcholinesterase inhibition, detoxification, treatment "in advance" and use of different drugs). They are based on the knowledge of mechanism of action of nerve agents. Among different examinations, it is necessary to test prophylactic effectivity in vivo and compare the results with protection in vitro. Chemical and biological approaches to the development of new prophylactics would be applied simultaneously during this research. Though the number of possible prophylactics is relatively high, the only four drugs were introduced into military medical practice. At present, pyridostigmine seems to be common prophylactic antidote; prophylactics panpal (tablets with pyridostigmine, trihexyphenidyl and benactyzine), transant (transdermal patch containing HI-6) are other means introduced into different armies as prophylactics. Scavenger commercionally available is Protexia®. Future development will be focused on scavengers, and on other drugs either reversible cholinesterase inhibitors (e.g., huperzine A, gallantamine, physostigmine, acridine derivatives) or other compounds.
Collapse
Affiliation(s)
- J Bajgar
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - J Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - T Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - K Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - D Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - K Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Kobrlova T, Korabecny J, Soukup O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 2019; 423:75-83. [PMID: 31112674 DOI: 10.1016/j.tox.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
The misuse of organophosphate compounds still represents a current threat worldwide. Treatment of poisoning with organophosphates (OPs) remains unsatisfactorily resolved despite the extensive investment in research in academia. There are no universal, effective and centrally-active acetylcholinesterase (AChE) reactivators to countermeasure OP intoxication. One major obstacle is to overcome the blood-brain barrier (BBB). The central compartment is readily accessible by the OPs which are lipophilic bullets that can easily cross the BBB, whereas first-line therapeutics, namely oxime-based AChE reactivators and atropine, do not cross or do so rather slowly. The limitation of oxime-based AChE reactivators can be ascribed to their chemical nature, bearing a positive charge which is essential either for their AChE affinity or their reactivating potency. The aim of this article is to review the methods for targeting the brain by oxime reactivators that have been developed so far. Approaches using prodrugs, lipophilicity enhancement, or sugar-based oximes have been rather unsuccessful. However, other strategies have been more promising, such as the use of nanoparticles or co-administration of the reactivator with efflux transporter inhibitors. Encouraging results have also been associated with intranasal delivery, but research in this field is still at the beginning. Further research of auspicious approaches is inevitable.
Collapse
Affiliation(s)
- Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents. Chem Biol Interact 2019; 308:80-88. [PMID: 31100274 DOI: 10.1016/j.cbi.2019.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
The organophosphorus chemical warfare agents were initially synthesized in the 1930's and are some of the most toxic compounds ever discovered. The standard means of decontamination are either harsh chemical hydrolysis or high temperature incineration. Given the continued use of chemical warfare agents there are ongoing efforts to develop gentle environmentally friendly means of decontamination and medical counter measures to chemical warfare agent intoxication. Enzymatic decontamination offers the benefits of extreme specificity and mild conditions, allowing their use for both environmental and medical applications. The most promising enzyme for decontamination of the organophosphorus chemical warfare agents is the enzyme phosphotriesterase from Pseudomonas diminuta. However, the catalytic activity of the wild-type enzyme with the chemical warfare agents falls far below that seen with its best substrates, and its stereochemical preference is for the less toxic enantiomer of the chiral phosphorus center found in most chemical warfare agents. Rational design efforts have succeeded in the dramatic improvement of the stereochemical preference of PTE for the more toxic enantiomers. Directed evolution experiments, including site-saturation mutagenesis, targeted error-prone PCR, computational design, and quantitative library analysis, have systematically improved the catalytic activity against the chemical warfare nerve agents. These efforts have resulted in greater than 4-orders of magnitude improvement in catalytic activity and have led to the identification of variants that are highly effective at detoxifying both G-type and V-type nerve agents. The best of these variants have the ability to prevent intoxication when delivered as a post-exposure treatment for VX and as a pre-exposure treatment for G-agent intoxication with observed protective factors up to 60-fold. Combining the best variant, H257Y/L303T, with a PCB polymer coating has enabled the development of a long lasting circulating prophylactic treatment that is highly effective against sarin.
Collapse
|
11
|
Liu EJ, Jiang S. Expressing a Monomeric Organophosphate Hydrolase as an EK Fusion Protein. Bioconjug Chem 2018; 29:3686-3690. [DOI: 10.1021/acs.bioconjchem.8b00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erik J. Liu
- Department of Chemical Engineering University of Washington Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering University of Washington Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Touvrey C, Courageux C, Guillon V, Terreux R, Nachon F, Brazzolotto X. X-ray structures of human bile-salt activated lipase conjugated to nerve agents surrogates. Toxicology 2018; 411:15-23. [PMID: 30359675 DOI: 10.1016/j.tox.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/06/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023]
Abstract
The efficiency of human butyrylcholinesterase (BChE) as a stoichiometric bioscavenger of nerve agents is well established. However, wide use is currently limited by production and purification costs. Aiming at identifying an alternative human protein bioscavenger, we looked for an original scaffold candidate by virtual screening of the Protein Data Bank for functional similarity using the "Surfing the Molecules" software (sumo-pbil.ibcp.fr) and a search model based on the BChE active site topology. Besides the expected acetylcholinesterase and butyrylcholinesterase, we identified a set of bile salt activated lipases structures, among which the human pancreatic lipase (hBAL) that shares 34% identity with BChE. We produced the recombinant enzyme in mammalian cells, purified it, and measured the inhibition constants for paraoxon and surrogates of VX, sarin and tabun. We solved the X-ray structure of apo hBAL and conjugates with paraoxon and the surrogates at resolutions in the 2-Å range. These structures allow the assessment of hBAL for scavenging nerve agents. They revealed that hBAL has inverted stereoselectivity for the surrogates of nerve agent compared to human cholinesterases. We observed a remarkable flip of the catalytic histidine driven by the chelation of Zn2+. Dealkylation of the conjugate, aka aging, was solely observed for paraoxon.
Collapse
Affiliation(s)
- Cédric Touvrey
- Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Charlotte Courageux
- Institut de Recherche Biomédicale des Armées, Département de Toxicologie et Risques Chimiques, Brétigny sur Orge, 91220, France
| | - Virginia Guillon
- Institut de Recherche Biomédicale des Armées, Département de Toxicologie et Risques Chimiques, Brétigny sur Orge, 91220, France
| | - Raphael Terreux
- Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, Département de Toxicologie et Risques Chimiques, Brétigny sur Orge, 91220, France.
| | - Xavier Brazzolotto
- Institut de Recherche Biomédicale des Armées, Département de Toxicologie et Risques Chimiques, Brétigny sur Orge, 91220, France
| |
Collapse
|
13
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
14
|
Katz FS, Pecic S, Schneider L, Zhu Z, Hastings-Robinson A, Luzac M, Macdonald J, Landry DW, Stojanovic MN. New therapeutic approaches and novel alternatives for organophosphate toxicity. Toxicol Lett 2018; 291:1-10. [PMID: 29614332 DOI: 10.1016/j.toxlet.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
Abstract
Organophosphate compounds (OPCs) are commonly used as pesticides and were developed as nerve agents for chemical warfare. Exposure to OPCs results in toxicity due to their covalent binding and inhibition of acetylcholinesterase (AChE). Treatment for toxicity due to OPC exposure has been largely focused on the reactivation of AChE by oxime-based compounds via direct nucleophilic attack on the phosphorous center. However, due to the disadvantages to existing oxime-based reactivators for treatment of OPC poisoning, we considered non-oxime mechanisms of reactivation. A high throughput screen of compound libraries was performed to discover previously unidentified reactivation compounds, followed by studies on their analogs. In the process, we discovered multiple non-oxime classes of compounds, the most robust of which we have already reported [1]. Herein, we report other classes of compounds we identified in our screen that are efficient at reactivation. During biochemical characterization, we also found some compounds with other activities that may inspire novel therapeutic approaches to OPC toxicity. Specifically, we found compounds that [1] increase the rate of substrate hydrolysis by AChE and, [2] protect the enzyme from inhibition by OPC. Further, we discovered that a subset of reactivator compounds recover activity from both AChE and the related enzyme butyrylcholinesterase (BuChE). We now report these compounds, their activities and discuss how each relates to therapeutic approaches that would provide alternatives to traditional oxime-based reactivation.
Collapse
Affiliation(s)
- Francine S Katz
- Department of Medicine, Columbia University, 630 W 168th Street, BB8-444, New York, NY, 10032, USA.
| | - Stevan Pecic
- Department of Medicine, Columbia University, 630 W 168th Street, BB8-444, New York, NY, 10032, USA.
| | - Laura Schneider
- Department of Medicine, Columbia University, 630 W 168th Street, BB8-444, New York, NY, 10032, USA
| | - Zhengxiang Zhu
- Department of Medicine, Columbia University, 630 W 168th Street, BB8-444, New York, NY, 10032, USA
| | - Ashley Hastings-Robinson
- Department of Medicine, Columbia University, 630 W 168th Street, BB8-444, New York, NY, 10032, USA
| | - Michal Luzac
- Department of Medicine, Columbia University, 630 W 168th Street, BB8-444, New York, NY, 10032, USA
| | - Joanne Macdonald
- Genecology Research Centre, Inflammation and Healing Research Cluster, School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive Sippy Downs, QLD 4556, Australia
| | - Donald W Landry
- Department of Medicine, Columbia University, 630 W 168th Street, BB8-444, New York, NY, 10032, USA
| | - Milan N Stojanovic
- Department of Medicine, Columbia University, 630 W 168th Street, BB8-444, New York, NY, 10032, USA
| |
Collapse
|
15
|
Alejo-González K, Hanson-Viana E, Vazquez-Duhalt R. Enzymatic detoxification of organophosphorus pesticides and related toxicants. JOURNAL OF PESTICIDE SCIENCE 2018; 43:1-9. [PMID: 30363124 PMCID: PMC6140661 DOI: 10.1584/jpestics.d17-078] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 05/20/2023]
Abstract
Millions of cases of pesticide intoxication occur yearly and represent a public health problem. In addition, pesticide poisoning is the preferred suicidal method in rural areas. The use of enzymes for the treatment of intoxication due to organophosphorus pesticides was proposed decades ago. Several enzymes are able to transform organophosphorus compounds such as pesticides and nerve agents. Some specific enzymatic treatments have been proposed, including direct enzyme injection, liposome and erythrocytes carriers, PEGylated preparations and extracorporeal enzymatic treatments. Nevertheless, no enzymatic treatments are currently available. In this work, the use of enzymes for treating of organophosphorus pesticide intoxication is critically reviewed and the remaining challenges are discussed.
Collapse
Affiliation(s)
- Karla Alejo-González
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California 22760 México
| | - Erik Hanson-Viana
- Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California 22760 México
| |
Collapse
|
16
|
Alejo-González K, Quester K, Hanson E, Secundino I, Rosenstein Y, Huerta-Saquero A, Vazquez-Duhalt R. PEGylation of cytochrome P450 enhances its biocatalytic performance for pesticide transformation. Int J Biol Macromol 2017; 105:163-170. [DOI: 10.1016/j.ijbiomac.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
17
|
Gorecki L, Korabecny J, Musilek K, Nepovimova E, Malinak D, Kucera T, Dolezal R, Jun D, Soukup O, Kuca K. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: a patent review (2006-2016). Expert Opin Ther Pat 2017; 27:971-985. [PMID: 28569609 DOI: 10.1080/13543776.2017.1338275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION organophosphorus compounds act as irreversible inhibitors of the vital enzyme acetylcholinesterase (AChE). this leads in the accumulation of acetylcholine (ACh) leading to cholinergic crisis and death. The main therapeutic approach is based on immediate administration of an ache reactivator as an antidote enabling recovery of the ache function. Areas covered: This review covers the development of AChE reactivators in order to introduce a new efficient drug that will overcome significant failures of common antidotes. Further options together with methods of detection are also discussed in order to assure a complete insight into the treatment of intoxication. Expert opinion: Since organophosphates belong to the most toxic chemical warfare agents, efficient antidotes are a matter of importance. The solution of how to limit the basic drawbacks of clinically used reactivators remained a spotlight for many researches worldwide. Recent strategies of the treatment of OP exposure bring us new possibilities which may overcome classic antidotes. The importance of detection of OP also has to be taken into consideration. Especially, with the fast spreading toxic effect when death can occur within minutes.
Collapse
Affiliation(s)
- Lukas Gorecki
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jan Korabecny
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Kamil Musilek
- b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Eugenie Nepovimova
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - David Malinak
- b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Physiology and Pathophysiology, Faculty of Medicine , University of Ostrava , Ostrava , Czech Republic
| | - Tomas Kucera
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Rafael Dolezal
- b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Daniel Jun
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Ondrej Soukup
- a Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic.,b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Kamil Kuca
- b Biomedical Research Centre , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Faculty of Science, Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
18
|
Masson P, Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J Neurochem 2017; 142 Suppl 2:26-40. [PMID: 28542985 DOI: 10.1111/jnc.14026] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Organophosphorus agents (OPs) irreversibly inhibit acetylcholinesterase (AChE) causing a major cholinergic syndrome. The medical counter-measures of OP poisoning have not evolved for the last 30 years with carbamates for pretreatment, pyridinium oximes-based AChE reactivators, antimuscarinic drugs and neuroprotective benzodiazepines for post-exposure treatment. These drugs ensure protection of peripheral nervous system and mitigate acute effects of OP lethal doses. However, they have significant limitations. Pyridostigmine and oximes do not protect/reactivate central AChE. Oximes poorly reactivate AChE inhibited by phosphoramidates. In addition, current neuroprotectants do not protect the central nervous system shortly after the onset of seizures when brain damage becomes irreversible. New therapeutic approaches for pre- and post-exposure treatments involve detoxification of OP molecules before they reach their molecular targets by administrating catalytic bioscavengers, among them phosphotriesterases are the most promising. Novel generation of broad spectrum reactivators are designed for crossing the blood-brain barrier and reactivate central AChE. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, Cédex, France
| |
Collapse
|
19
|
Yun H, Yu J, Kim S, Lee N, Lee J, Lee S, Kim ND, Yu C, Rho J. Expression and purification of biologically active recombinant human paraoxonase 1 from a Drosophila S2 stable cell line. Protein Expr Purif 2017; 131:34-41. [DOI: 10.1016/j.pep.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
|
20
|
Driant T, Nachon F, Ollivier C, Renard PY, Derat E. On the Influence of the Protonation States of Active Site Residues on AChE Reactivation: A QM/MM Approach. Chembiochem 2017; 18:666-675. [PMID: 28106328 DOI: 10.1002/cbic.201600646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 11/10/2022]
Abstract
Acetylcholinesterase (AChE), an enzyme of the serine hydrolase superfamily, is a mediator of signal transmission at cholinergic synapses by catalyzing acetylcholine cleavage into acetate and choline. This enzyme is vulnerable to covalent inhibition by organophosphate compounds (like VX). Covalent inhibition of AChE does not revert spontaneously. Known reactivator compounds have limited action in restoring catalytic activity. QM/MM simulations of VX-inhibited AChE reactivation by pralidoxime (2-PAM), a classical reactivator, were performed. These afforded a broad view of the effect of protonation states of active-site residues, and provide evidence for the role of Glu202, which needs to be protonated for reactivation to occur. In situ deprotonation of 2-PAM for both protonation states of Glu202 showed that His447 is able to deprotonate 2-PAM with the assistance of Glu202. Because the active site of serine hydrolases is highly conserved, this work provides new insights on the interplay between the catalytic triad residues and this glutamate, newly identified as protonatable.
Collapse
Affiliation(s)
- Thomas Driant
- Sorbonne Universités, UPMC UNIV Paris 06, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Case 229, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 1 Place Général Valérie André, 91223, Brétigny-sur-Orge Cédex, France
| | - Cyril Ollivier
- Sorbonne Universités, UPMC UNIV Paris 06, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Case 229, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Pierre-Yves Renard
- Normandie Université, COBRA, UMR 6014 and FR 3038, Université Rouen-Normandie, INSA Rouen, CNRS, 1 rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France
| | - Etienne Derat
- Sorbonne Universités, UPMC UNIV Paris 06, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Case 229, 4 Place Jussieu, 75252, Paris Cedex 05, France
| |
Collapse
|
21
|
Efremenko EN, Lyagin IV, Klyachko NL, Bronich T, Zavyalova NV, Jiang Y, Kabanov AV. A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins. J Control Release 2017; 247:175-181. [PMID: 28043864 DOI: 10.1016/j.jconrel.2016.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
A simple and highly efficient catalytic scavenger of poisonous organophosphorus compounds, based on organophosphorus hydrolase (OPH, EC 3.1.8.1), is produced in aqueous solution by electrostatic coupling of the hexahistidine tagged OPH (His6-OPH) and poly(ethylene glycol)-b-poly(l-glutamic acid) diblock copolymer. The resulting polyion complex, termed nano-OPH, has a spherical morphology and a diameter from 25nm to 100nm. Incorporation of His6-OPH in nano-OPH preserves catalytic activity and increases stability of the enzyme allowing its storage in aqueous solution for over a year. It also decreases the immune and inflammatory responses to His6-OPH in vivo as determined by anti-OPH IgG and cytokines formation in Sprague Dawley rats and Balb/c mice, respectively. The nano-OPH pharmacokinetic parameters are improved compared to the naked enzyme suggesting longer blood circulation after intravenous (iv) administrations in rats. Moreover, nano-OPH is bioavailable after intramuscular (im), intraperitoneal (ip) and even transbuccal (tb) administration, and has shown ability to protect animals from exposure to a pesticide, paraoxon and a warfare agent, VX. In particular, a complete protection against the lethal doses of paraoxon was observed with nano-OPH administered iv and ip as much as 17h, im 5.5h and tb 2h before the intoxication. Further evaluation of nano-OPH as a catalytic bioscavenger countermeasure against organophosphorus chemical warfare agents and pesticides is warranted.
Collapse
Affiliation(s)
- Elena N Efremenko
- Chemistry Department, Lomonosov Moscow State University, 1 Lenin Hills, Building 3, Moscow 119991, Russia.
| | - Ilya V Lyagin
- Chemistry Department, Lomonosov Moscow State University, 1 Lenin Hills, Building 3, Moscow 119991, Russia
| | - Natalia L Klyachko
- Chemistry Department, Lomonosov Moscow State University, 1 Lenin Hills, Building 3, Moscow 119991, Russia; Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599-7362, United States
| | - Tatiana Bronich
- Chemistry Department, Lomonosov Moscow State University, 1 Lenin Hills, Building 3, Moscow 119991, Russia; Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, S 42nd St. & Emile St., Omaha, NE 68198, United States
| | - Natalia V Zavyalova
- 27th Scientific Center of Ministry of Defense, 13 Brigadirsky Pereulok, Moscow 105005, Russia
| | - Yuhang Jiang
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599-7362, United States
| | - Alexander V Kabanov
- Chemistry Department, Lomonosov Moscow State University, 1 Lenin Hills, Building 3, Moscow 119991, Russia; Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC 27599-7362, United States; Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, S 42nd St. & Emile St., Omaha, NE 68198, United States.
| |
Collapse
|
22
|
Iyengar ARS, Pande AH. Organophosphate-Hydrolyzing Enzymes as First-Line of Defence Against Nerve Agent-Poisoning: Perspectives and the Road Ahead. Protein J 2016; 35:424-439. [DOI: 10.1007/s10930-016-9686-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Masson P, Lushchekina SV. Emergence of catalytic bioscavengers against organophosphorus agents. Chem Biol Interact 2016; 259:319-326. [DOI: 10.1016/j.cbi.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/16/2015] [Accepted: 02/10/2016] [Indexed: 02/05/2023]
|
24
|
Masson P. Novel approaches in prophylaxis/pretreatment and treatment of organophosphorus poisoning. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2016.1211652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
25
|
Schenk G, Mateen I, Ng TK, Pedroso MM, Mitić N, Jafelicci M, Marques RF, Gahan LR, Ollis DL. Organophosphate-degrading metallohydrolases: Structure and function of potent catalysts for applications in bioremediation. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Alkanaimsh S, Karuppanan K, Guerrero A, Tu AM, Hashimoto B, Hwang MS, Phu ML, Arzola L, Lebrilla CB, Dandekar AM, Falk BW, Nandi S, Rodriguez RL, McDonald KA. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2016; 7:743. [PMID: 27379103 PMCID: PMC4909763 DOI: 10.3389/fpls.2016.00743] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/17/2016] [Indexed: 05/08/2023]
Abstract
To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed.
Collapse
Affiliation(s)
- Salem Alkanaimsh
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Andrés Guerrero
- Department of Chemistry, University of California, DavisDavis, CA, USA
| | - Aye M. Tu
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Bryce Hashimoto
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | - Min Sook Hwang
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - My L. Phu
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Lucas Arzola
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
| | | | - Abhaya M. Dandekar
- Department of Plant Science, University of California, DavisDavis, CA, USA
| | - Bryce W. Falk
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Somen Nandi
- Department of Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
| | - Raymond L. Rodriguez
- Department of Molecular and Cellular Biology, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, DavisDavis, CA, USA
- Department of Global HealthShare Initiative, University of California, DavisDavis, CA, USA
- *Correspondence: Karen A. McDonald,
| |
Collapse
|
27
|
Jang YJ, Kim K, Tsay OG, Atwood DA, Churchill DG. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem Rev 2015; 115:PR1-76. [DOI: 10.1021/acs.chemrev.5b00402] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoon Jeong Jang
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - Olga G. Tsay
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
| | - David A. Atwood
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, KAIST, Daejeon, 305-701, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305−701, Republic of Korea
| |
Collapse
|
28
|
Atsmon J, Brill-Almon E, Nadri-Shay C, Chertkoff R, Alon S, Shaikevich D, Volokhov I, Haim KY, Bartfeld D, Shulman A, Ruderfer I, Ben-Moshe T, Shilovitzky O, Soreq H, Shaaltiel Y. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R. Toxicol Appl Pharmacol 2015; 287:202-9. [PMID: 26051873 DOI: 10.1016/j.taap.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.
Collapse
Affiliation(s)
- Jacob Atsmon
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | - Sari Alon
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | - Dimitri Shaikevich
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Inna Volokhov
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Kirsten Y Haim
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Avidor Shulman
- Protalix Biotherapeutics, Science Park, Carmiel, Israel.
| | - Ilya Ruderfer
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | | | | | - Hermona Soreq
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
29
|
Legler PM, Boisvert SM, Compton JR, Millard CB. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase. Front Chem 2014; 2:46. [PMID: 25077141 PMCID: PMC4100338 DOI: 10.3389/fchem.2014.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/19/2014] [Indexed: 01/10/2023] Open
Abstract
We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its k cat/K m for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.
Collapse
Affiliation(s)
- Patricia M. Legler
- Naval Research Laboratory, Center for Bio/Molecular Science and EngineeringWashington, DC, USA
| | | | | | - Charles B. Millard
- United States Army Medical Research and Materiel CommandFort Detrick, MD, USA
| |
Collapse
|
30
|
Podestà A, Rossi S, Massarelli I, Carpi S, Adinolfi B, Fogli S, Bianucci AM, Nieri P. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli. MAbs 2014; 6:1084-93. [PMID: 24675419 DOI: 10.4161/mabs.28635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1-14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1-14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1-14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1-14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis.
Collapse
|
31
|
Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 2013; 206:536-44. [PMID: 23811386 DOI: 10.1016/j.cbi.2013.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
Collapse
Affiliation(s)
- Florian Nachon
- Institut de Recherche Biomédicale des Armées, BP87, 38702 La Tronche Cédex, France.
| | | | | | | |
Collapse
|
32
|
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11:315-35. [PMID: 24179466 PMCID: PMC3648782 DOI: 10.2174/1570159x11311030006] [Citation(s) in RCA: 1518] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/04/2013] [Accepted: 02/02/2013] [Indexed: 12/12/2022] Open
Abstract
Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.
Collapse
Affiliation(s)
- Mirjana B Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Danijela Z Krstić
- University School of Medicine, Institute of Medical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara D Lazarević-Pašti
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra M Bondžić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vesna M Vasić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
33
|
Chemical polysialylation of human recombinant butyrylcholinesterase delivers a long-acting bioscavenger for nerve agents in vivo. Proc Natl Acad Sci U S A 2013; 110:1243-8. [PMID: 23297221 DOI: 10.1073/pnas.1211118110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The creation of effective bioscavengers as a pretreatment for exposure to nerve agents is a challenging medical objective. We report a recombinant method using chemical polysialylation to generate bioscavengers stable in the bloodstream. Development of a CHO-based expression system using genes encoding human butyrylcholinesterase and a proline-rich peptide under elongation factor promoter control resulted in self-assembling, active enzyme multimers. Polysialylation gives bioscavengers with enhanced pharmacokinetics which protect mice against 4.2 LD(50) of S-(2-(diethylamino)ethyl) O-isobutyl methanephosphonothioate without perturbation of long-term behavior.
Collapse
|
34
|
Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology 2012; 307:115-22. [PMID: 22884923 DOI: 10.1016/j.tox.2012.07.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/21/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022]
Abstract
Paraoxonase (PON1) is an A-esterase capable of hydrolyzing the active metabolites (oxons) of a number of organophosphorus (OP) insecticides such as parathion, diazinon and chlorpyrifos. PON1 activity is highest in liver and in plasma. Human PON1 displays two polymorphisms in the coding region (Q192R and L55M) and several polymorphisms in the promoter and the 3'-UTR regions. The Q192R polymorphism imparts differential catalytic activity toward some OP substrates, while the polymorphism at position -108 (C/T) is the major contributor of differences in the levels of PON1 expression. Both contribute to determining an individual's PON1 "status". Animal studies have shown that PON1 is an important determinant of OP toxicity. Administration of exogenous PON1 to rats or mice protects them from the toxicity of specific OPs. PON1 knockout mice display a high sensitivity to the toxicity of diazoxon and chlorpyrifos oxon, but not of paraoxon. In vitro catalytic efficiencies of purified PON192 alloforms for hydrolysis of specific oxon substrates accurately predict the degree of in vivo protection afforded by each isoform. Evidence is slowly emerging that a low PON1 status may increase susceptibility to OP toxicity in humans. Low PON1 activity may also contribute to the developmental toxicity and neurotoxicity of OPs, as shown by animal and human studies.
Collapse
|
35
|
Mercey G, Verdelet T, Renou J, Kliachyna M, Baati R, Nachon F, Jean L, Renard PY. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc Chem Res 2012; 45:756-66. [PMID: 22360473 DOI: 10.1021/ar2002864] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since the September 11, 2001, terrorist attacks in the United States, the specter of a chemical threat against civilian populations has renewed research interest in chemical warfare agents, their mechanisms of action, and treatments that reverse their effects. In this Account, we focus specifically on organophosphorus nerve agents (OPNAs). Although some OPNAs are used as pest control, the most toxic chemicals in this class are used as chemical warfare agents in armed conflicts. The acute toxicity of OPNAs results from the irreversible inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) via the formation of a covalent P-O bond at the serine hydroxyl group in the enzyme active site. AChE breaks down the neurotransmitter acetylcholine at neuronal synapses and neuromuscular junctions. The irreversible inhibition of AChE causes the neurotransmitter to accumulate in the synaptic cleft, leading to overstimulation of cholinergic receptors, seizures, respiratory arrest, and death. The current treatment for OPNA poisoning combines an antimuscarinic drug (e.g., atropine), an anticonvulsant drug (e.g., diazepam), and an AChE reactivator of the pyridinium aldoxime family (pralidoxime, trimedoxime, obidoxime, HI-6, HLö-7). Because of their high nucleophilicity, oximes can displace the phosphyl group from the catalytic serine, thus restoring the enzyme's catalytic activity. During 50 years of research in the reactivator field, researchers have synthesized and tested numerous structural modifications of monopyridinium oximes and bispyridinium oximes. In the past decade, medicinal chemists have focused their research on the more efficient bispyridinium reactivators, but all known reactivators have several drawbacks. First, due to their permanent positive charge, they do not cross the blood-brain barrier (BBB) efficiently and do not readily reactivate AChE in the central nervous system. Second, no single oxime is efficient against a wide variety of OPNAs. Third, oximes cannot reactivate "aged" AChE. This Account summarizes recent strategies for the development of AChE reactivators capable of crossing the BBB. The use of nanoparticulate transport and inhibition of P-glycoprotein efflux pumps improves BBB transport of these AChE reactivators. Chemical modifications that increased the lipophilicity of the pyridinium aldoximes, the addition of a fluorine atom and the replacement of a pyridyl ring with a dihydropyridyl moiety, enhances BBB permeability. The glycosylation of pyridine aldoximes facilitates increased BBB penetration via the GLUT-1 transport system. The development of novel uncharged reactivators that can move efficiently across the BBB represents one of the most promising of these new strategies.
Collapse
Affiliation(s)
- Guillaume Mercey
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
| | - Tristan Verdelet
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
| | - Julien Renou
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
| | - Maria Kliachyna
- Faculté de Pharmacie, Université de Strasbourg, CNRS UMR 7199, Laboratoire des Systèmes Chimiques Fonctionnels, 74 route du Rhin, BP 60024, 67401 Illkirch, France
| | - Rachid Baati
- Faculté de Pharmacie, Université de Strasbourg, CNRS UMR 7199, Laboratoire des Systèmes Chimiques Fonctionnels, 74 route du Rhin, BP 60024, 67401 Illkirch, France
| | - Florian Nachon
- Département de Toxicologie, Institut de Recherche Biomédicale des Armées, 24 Avenue des Maquis du Grésivaudan, BP87, 38702 La Tronche, France
| | - Ludovic Jean
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
| | - Pierre-Yves Renard
- Equipe de Chimie Bio-Organique, COBRA - CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
- Université de Rouen, Place Emile Blondel, 76821, Mont-Saint-Aignan, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, 75005 Paris, France
| |
Collapse
|
36
|
Wales ME, Reeves TE. Organophosphorus hydrolase as an in vivo catalytic nerve agent bioscavenger. Drug Test Anal 2012; 4:271-81. [DOI: 10.1002/dta.381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Melinda E. Wales
- Department of Biochemistry & Biophysics; Texas A&M University; College Station; TX; USA
| | - Tony E. Reeves
- Southwest Research Institute; Microencapsulation and Nanomaterials, Chemistry and Chemical Engineering Division; San Antonio; TX; USA
| |
Collapse
|