1
|
Liu Y, Wang XQ, Zhang P, Haghparast A, He WB, Zhang JJ. Research progress of DNA methylation on the regulation of substance use disorders and the mechanisms. Front Cell Neurosci 2025; 19:1566001. [PMID: 40230379 PMCID: PMC11994631 DOI: 10.3389/fncel.2025.1566001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Drug abuse can damage the central nervous system and lead to substance use disorder (SUD). SUD is influenced by both genetic and environmental factors. Genes determine an individual's susceptibility to drug, while the dysregulation of epigenome drives the abnormal transcription processes, promoting the development of SUD. One of the most widely studied epigenetic mechanisms is DNA methylation, which can be inherited stably. In ontogeny, DNA methylation pattern is dynamic. DNA dysmethylation is prevalent in drug-related psychiatric disorders, resulting in local hypermethylation and transcriptional silencing of related genes. In this review, we summarize the role and regulatory mechanisms of DNA methylation in cocaine, opioids, and methamphetamine in terms of drug exposure, addiction memory, withdrawal relapse, intergenerational inheritance, and focus on cell-specific aspects of the studies with a view to suggesting possible therapeutic regimens for targeting methylation in both human and animal research.
Collapse
Affiliation(s)
- Ya Liu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiao-Qian Wang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Peng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Abbas Haghparast
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
2
|
Wang L, Wei Q, Xu R, Chen Y, Li S, Bu Q, Zhao Y, Li H, Zhao Y, Jiang L, Chen Y, Dai Y, Zhao Y, Cen X. Cardiolipin and OPA1 Team up for Methamphetamine-Induced Locomotor Activity by Promoting Neuronal Mitochondrial Fusion in the Nucleus Accumbens of Mice. ACS Chem Neurosci 2023; 14:1585-1601. [PMID: 37043723 DOI: 10.1021/acschemneuro.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yue Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| |
Collapse
|
3
|
D'Acunzo P, Ungania JM, Kim Y, Barreto BR, DeRosa S, Pawlik M, Canals-Baker S, Erdjument-Bromage H, Hashim A, Goulbourne CN, Neubert TA, Saito M, Sershen H, Levy E. Cocaine perturbs mitovesicle biology in the brain. J Extracell Vesicles 2023; 12:e12301. [PMID: 36691887 PMCID: PMC9871795 DOI: 10.1002/jev2.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/25/2023] Open
Abstract
Cocaine, an addictive psychostimulant, has a broad mechanism of action, including the induction of a wide range of alterations in brain metabolism and mitochondrial homeostasis. Our group recently identified a subpopulation of non-microvesicular, non-exosomal extracellular vesicles of mitochondrial origin (mitovesicles) and developed a method to isolate mitovesicles from brain parenchyma. We hypothesised that the generation and secretion of mitovesicles is affected by mitochondrial abnormalities induced by chronic cocaine exposure. Mitovesicles from the brain extracellular space of cocaine-administered mice were enlarged and more numerous when compared to controls, supporting a model in which mitovesicle biogenesis is enhanced in the presence of mitochondrial alterations. This interrelationship was confirmed in vitro. Moreover, cocaine affected mitovesicle protein composition, causing a functional alteration in mitovesicle ATP production capacity. These data suggest that mitovesicles are previously unidentified players in the biology of cocaine addiction and that target therapies to fine-tune brain mitovesicle functionality may be beneficial to mitigate the effects of chronic cocaine exposure.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Jonathan M Ungania
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Bryana R Barreto
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Steven DeRosa
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Audrey Hashim
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Mariko Saito
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Henry Sershen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Role of Mitochondrial Dynamics in Cocaine's Neurotoxicity. Int J Mol Sci 2022; 23:ijms23105418. [PMID: 35628228 PMCID: PMC9145816 DOI: 10.3390/ijms23105418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
The dynamic balance of mitochondrial fission and fusion maintains mitochondrial homeostasis and optimal function. It is indispensable for cells such as neurons, which rely on the finely tuned mitochondria to carry out their normal physiological activities. The potent psychostimulant cocaine impairs mitochondria as one way it exerts its neurotoxicity, wherein the disturbances in mitochondrial dynamics have been suggested to play an essential role. In this review, we summarize the neurotoxicity of cocaine and the role of mitochondrial dynamics in cellular physiology. Subsequently, we introduce current findings that link disturbed neuronal mitochondrial dynamics with cocaine exposure. Finally, the possible role and potential therapeutic value of mitochondrial dynamics in cocaine neurotoxicity are discussed.
Collapse
|
5
|
Reymond S, Vujić T, Schvartz D, Sanchez JC. Morphine-induced modulation of Nrf2-antioxidant response element signaling pathway in primary human brain microvascular endothelial cells. Sci Rep 2022; 12:4588. [PMID: 35301408 PMCID: PMC8931063 DOI: 10.1038/s41598-022-08712-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Morphine is one of the most potent opioid analgesic used for pain treatment. Morphine action in the central nervous system requires crossing the blood-brain barrier. Due to the controversial relationship between morphine and oxidative stress, the potential pro- or antioxidant effects of morphine in the blood-brain barrier is important to be understood, as oxidative stress could cause its disruption and predispose to neurodegenerative diseases. However, investigation is scarce in human brain endothelial cells. Therefore, the present study evaluated the impact of morphine exposure at three different concentrations (1, 10 and 100 µM) for 24 h and 48 h on primary human brain microvascular endothelial cells. A quantitative data-independent acquisition mass spectrometry strategy was used to analyze proteome modulations. Almost 3000 proteins were quantified of which 217 were reported to be significantly regulated in at least one condition versus untreated control. Pathway enrichment analysis unveiled dysregulation of the Nrf2 pathway involved in oxidative stress response. Seahorse assay underlined mitochondria dysfunctions, which were supported by significant expression modulations of relevant mitochondrial proteins. In conclusion, our study revealed the dysregulation of the Nrf2 pathway and mitochondria dysfunctions after morphine exposure, highlighting a potential redox imbalance in human brain endothelial cells.
Collapse
Affiliation(s)
- Sandrine Reymond
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Tatjana Vujić
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Domitille Schvartz
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Swiss Center for Applied Human Toxicology, Geneva, Switzerland.
| |
Collapse
|
6
|
Fontes MK, Dourado PLR, Campos BGD, Maranho LA, Almeida EAD, Abessa DMDS, Pereira CDS. Environmentally realistic concentrations of cocaine in seawater disturbed neuroendrocrine parameters and energy status in the marine mussel Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109198. [PMID: 34601085 DOI: 10.1016/j.cbpc.2021.109198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 11/25/2022]
Abstract
Cocaine (COC) is a powerful illicit drug frequently detected in the aquatic environment. COC acts by inhibiting the reuptake of dopamine (DOPA) and 5-hydroxytryptamine (5-HT - serotonin) and causes endocrine disturbances in mammals. This study investigated similar effects from cocaine exposure in the marine mussel Perna perna, as well as neurotoxicity and energy imbalances. Mussels were exposed to COC (0.2 μg.L-1 and 2 μg.L-1) for periods of 48, 96, and 168 h. Acetylcholinesterase (AChE) was measured in adductor muscle tissue to determine neurotoxicity, and neurotransmitter levels (DOPA and 5-HT), monoamine oxidase (MAO) and cyclooxygenase (COX) activity, and energy status (mitrochondrial electron transport, MET, and total lipids, TLP) were evaluated in the mussels' gonads. COC decreased AChE activity in the mussels exposed to 0.2 μg.L-1 and 2 μg.L -1 after 168 h, and all concentrations of COC increased neurotransmitter levels. Increases in MET (0.2 μg.L -1, for all exposure periods) and TLP (0.2 μg.L 1 after 48 h, and 2 μg.L -1 after 96 h and 168 h) were also observed. No significant change was detected in MAO activity. COC also decreased COX activity in the mussels exposed to 0.2 μg.L -1 (48 h and 96 h) and 2 μg.L -1 (96 h). These results suggest that COC may compromise neurotransmitter levels and COX activity. Furthermore, the changes in MET and LPT suggest that COC affects the energy balance of the mussels, and could negatively affect physiological processes such as metabolism, hormone production, and embryonic development.
Collapse
Affiliation(s)
- Mayana Karoline Fontes
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Infante Dom Henrique s/n, PC 11330-900 São Vicente, Brazil
| | - Priscila Leocadio Rosa Dourado
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Campus de São José do Rio Preto R. Cristóvão Colombo, 2265, PC 15054-000, São José do Rio Preto, SP, Brazil
| | - Bruno Galvão de Campos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Infante Dom Henrique s/n, PC 11330-900 São Vicente, Brazil
| | - Luciane Alves Maranho
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Infante Dom Henrique s/n, PC 11330-900 São Vicente, Brazil
| | - Eduardo Alves de Almeida
- Departmento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, PC 89030-903 Blumenau, Santa Catarina, Brazil
| | - Denis Moledo de Souza Abessa
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Infante Dom Henrique s/n, PC 11330-900 São Vicente, Brazil
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, PC 11030-100 Santos, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, PC 11045-907 Santos, Brazil.
| |
Collapse
|
7
|
Pereira SP, Santos SMA, Fernandes MAS, Deus CM, Martins JD, Pedroso de Lima MC, Vicente JAF, Videira RA, Jurado AS. Improving pollutants environmental risk assessment using a multi model toxicity determination with in vitro, bacterial, animal and plant model systems: The case of the herbicide alachlor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117239. [PMID: 33990048 DOI: 10.1016/j.envpol.2021.117239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Several environmental pollutants, including pesticides, herbicides and persistent organic pollutants play an important role in the development of chronic diseases. However, most studies have examined environmental pollutants toxicity in target organisms or using a specific toxicological test, losing the real effect throughout the ecosystem. In this sense an integrative environmental risk of pollutants assessment, using different model organisms is necessary to predict the real impact in the ecosystem and implications for target and non-target organisms. The objective of this study was to use alachlor, a chloroacetanilide herbicide responsible for chronic toxicity, to understand its impact in target and non-target organisms and at different levels of biological organization by using several model organisms, including membranes of dipalmitoylphosphatidylcholine (DPPC), rat liver mitochondria, bacterial (Bacillus stearothermophilus), plant (Lemna gibba) and mammalian cell lines (HeLa and neuro2a). Our results demonstrated that alachlor strongly interacted with membranes of DPPC and interfered with mitochondrial bioenergetics by reducing the respiratory control ratio and the transmembrane potential. Moreover, alachlor also decreased the growth of B. stearothermophilus and its respiratory activity, as well as decreased the viability of both mammalian cell lines. The values of TC50 increased in the following order: Lemna gibba < neuro2a < HeLa cells < Bacillus stearothermophilus. Together, the results suggest that biological membranes constitute a putative target for the toxic action of this lipophilic herbicide and point out the risks of its dissemination on environment, compromising ecosystem equilibrium and human health.
Collapse
Affiliation(s)
- Susana P Pereira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | - Sandra M A Santos
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | | | - Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | - João D Martins
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| | | | - Romeu A Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Amália S Jurado
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, IIIUC - Institute for Interdisciplinary Research, Coimbra, Portugal.
| |
Collapse
|
8
|
Activation of proline metabolism maintains ATP levels during cocaine-induced polyADP-ribosylation. Amino Acids 2021; 53:1903-1915. [PMID: 34417893 PMCID: PMC8651605 DOI: 10.1007/s00726-021-03065-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
Cocaine is a commonly abused drug worldwide. Acute as well as repeated exposure to cocaine activates persistent cellular and molecular changes in the brain reward regions. The effects of cocaine are predominantly mediated via alterations in neuronal gene expression by chromatin remodeling. Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation of chromatin has been reported as an important regulator of cocaine-mediated gene expression. PARP-1 dependent ADP-ribosylation is an energy-dependent process. In this study, we investigated the cellular energy response to cocaine-induced upregulation of PARP-1 expression. Exposure of differentiated SH-SY5Y cells to varying concentrations of cocaine resulted in the induction of PARP-1 dependent PARylation of p53 tumor suppressor. Further analysis revealed that PARylation of p53 by cocaine treatment resulted in nuclear accumulation of p53. However, induction and nuclear accumulation of p53 did not correlate with neuronal apoptosis/cell death upon cocaine exposure. Interestingly, cocaine-induced p53 PARylation resulted in the induction of proline oxidase (POX)—a p53 responsive gene involved in cellular metabolism. Given that cocaine-induced p53 PARylation is an energy-dependent process, we observed that cocaine-induced PARP-1/p53/POX axes alters cellular energy metabolism. Accordingly, using pharmacological and genetic studies of PARP-1, p53, and POX, we demonstrated the contribution of POX in maintaining cellular energy during neuronal function. Collectively, these studies highlight activation of a novel metabolic pathway in response to cocaine treatment.
Collapse
|
9
|
Cole SL, Chandra R, Harris M, Patel I, Wang T, Kim H, Jensen L, Russo SJ, Turecki G, Gancarz-Kausch AM, Dietz DM, Lobo MK. Cocaine-induced neuron subtype mitochondrial dynamics through Egr3 transcriptional regulation. Mol Brain 2021; 14:101. [PMID: 34187517 PMCID: PMC8240292 DOI: 10.1186/s13041-021-00800-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial function is required for brain energy homeostasis and neuroadaptation. Recent studies demonstrate that cocaine affects mitochondrial dynamics and morphological characteristics within the nucleus accumbens (NAc). Further, mitochondria are differentially regulated by cocaine in dopamine receptor-1 containing medium spiny neurons (D1-MSNs) vs dopamine receptor-2 (D2)-MSNs. However, there is little understanding into cocaine-induced transcriptional mechanisms and their role in regulating mitochondrial processes. Here, we demonstrate that cocaine enhances binding of the transcription factor, early growth response factor 3 (Egr3), to nuclear genes involved in mitochondrial function and dynamics. Moreover, cocaine exposure regulates mRNA of these mitochondria-associated nuclear genes in both contingent or noncontingent cocaine administration and in both rodent models and human postmortem tissue. Interestingly, several mitochondrial nuclear genes showed distinct profiles of expression in D1-MSNs vs D2-MSNs, with cocaine exposure generally increasing mitochondrial-associated nuclear gene expression in D1-MSNs vs suppression in D2-MSNs. Further, blunting Egr3 expression in D1-MSNs blocks cocaine-enhancement of the mitochondrial-associated transcriptional coactivator, peroxisome proliferator-activated receptor gamma coactivator (PGC1α), and the mitochondrial fission molecule, dynamin related protein 1 (Drp1). Finally, reduction of D1-MSN Egr3 expression attenuates cocaine-induced enhancement of small-sized mitochondria, causally demonstrating that Egr3 regulates mitochondrial morphological adaptations. Collectively, these studies demonstrate cocaine exposure impacts mitochondrial dynamics and morphology by Egr3 transcriptional regulation of mitochondria-related nuclear gene transcripts; indicating roles for these molecular mechanisms in neuronal function and plasticity occurring with cocaine exposure.
Collapse
Affiliation(s)
- Shannon L Cole
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Maya Harris
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ishan Patel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Torrance Wang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Hyunjae Kim
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Leah Jensen
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences At the Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Amy M Gancarz-Kausch
- Department of Pharmacology and Toxicology, The Research Institution On Addictions, State University of New York At Buffalo, Buffalo, NY, USA
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, The Research Institution On Addictions, State University of New York At Buffalo, Buffalo, NY, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Rm S265, 20 Penn Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|
11
|
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 2021; 22:ijms22052434. [PMID: 33670945 PMCID: PMC7957817 DOI: 10.3390/ijms22052434] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.
Collapse
|
12
|
Doke M, Jeganathan V, McLaughlin JP, Samikkannu T. HIV-1 Tat and cocaine impact mitochondrial epigenetics: effects on DNA methylation. Epigenetics 2020; 16:980-999. [PMID: 33100130 PMCID: PMC8451453 DOI: 10.1080/15592294.2020.1834919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection and the psychostimulant drug cocaine are known to induce epigenetic changes in DNA methylation that are linked with the severity of viral replication and disease progression, which impair neuronal functions. Increasing evidence suggests that changes in DNA methylation and hydroxymethylation occur in mitochondrial DNA (mtDNA) and represent mitochondrial genome epigenetic modifications (mitoepigenetic modifications). These modifications likely regulate both mtDNA replication and gene expression. However, mtDNA methylation has not been studied extensively in the contexts of cocaine abuse and HIV-1 infection. In the present study, epigenetic factors changed the levels of the DNA methyltransferases (DNMTs) DNMT1, DNMT3a, and DNMT3b, the Ten-eleven translocation (TET) enzymes 1, 2, and 3, and mitochondrial DNMTs (mtDNMTs) both in vitro and in vivo. These changes resulted in alterations in mtDNA methylation levels at CpG and non-CpG sites in human primary astrocytes as measured using targeted next-generation bisulphite sequencing (TNGBS). Moreover, mitochondrial methylation levels in the MT-RNR1, MT-ND5, MT-ND1, D-loop and MT-CYB regions of mtDNA were lower in the HIV-1 Tat and cocaine treatment groups than in the control group. In summary, the present findings suggest that mitoepigenetic modification in the human brain causes the mitochondrial dysfunction that gives rise to neuro-AIDS.
Collapse
Affiliation(s)
- Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Venkatesh Jeganathan
- Department of Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, USA
| |
Collapse
|
13
|
Guleken Z, Kuruca SE, Ünübol B, Toraman S, Bilici R, Sarıbal D, Gunduz O, Depciuch J. Biochemical assay and spectroscopic analysis of oxidative/antioxidative parameters in the blood and serum of substance use disorders patients. A methodological comparison study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118625. [PMID: 32593029 DOI: 10.1016/j.saa.2020.118625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/31/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Substance abuse such as opioids, cannabis, and alcohol causes activation on the immune system and the release of reactive oxygen species (ROS) into the blood and serum. These substances cause an effect on oxidant and antioxidant status in patients with substance abuse. Mainly, wide-open to the ROS are lipids and proteins included blood, which suffers peroxidation. In this study, for the first-time differentiation of the effects of cannabis, alcohol and other synthetic substances on blood and serum samples, were performed. For this purpose, the level of the malondialdehyde (MDA) and glutathione (GSH) in serum and red blood cells, was measured using biochemical assay methods and Fourier Transform InfraRed spectroscopy (FTIR). The results showed, that peroxidation which is dignified as the production of MDA was increased for substance use disorder (SUD) patients (18.01 ± 2.97) compared to the control group (10.75 ± 2.28) (p < 0.001) and for antioxidant capacity, GSH level were significantly increased for SUD patients (p < 0.001). For the discrimination of protein and lipid region obtained from FTIR spectroscopy, we extracted features by principal component analyze (PCA) of protein (1800 cm-1 to 900 cm-1) and lipid (3200 cm-1 to 2800 cm-1) regions for blood and serum samples collected from patients with different types of SUD and healthy control (HC) participants. For the consideration of lipid oxidation, lipid saturation, lipid desaturation and protein aggregation the peak heights at 1740 cm-1 to 2960 cm-1, 2920 cm-1 to 2960 cm-1, 3012 cm-1 to 2960 cm-1, and 1630 cm-1 to 1650 cm-1 regions were studied for SUD and HC. Moreover, more visible changes were noticed for proteins region, than for lipids. The most notice structural changes were observed in amide II in serum spectra. Then we classified protein and lipid region's PCA results of blood and serum by Linear discriminant analysis (LDA) and Support vector machine (SVM). Confidence of the specificity, sensitivity and accuracy of blood and serum were obtained as 100%, 100% and 100% individually. This is the first comparative study on the spectrochemical tool and biochemical assay on SUD. Our results presented 100% discrimination of disorder region compared to healthy subjects.
Collapse
Affiliation(s)
- Zozan Guleken
- Department of Physiology, Istanbul University Faculty of Medicine, Istanbul, Turkey; Uskudar University, Istanbul, Turkey.
| | - Serap Erdem Kuruca
- Department of Physiology, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Başak Ünübol
- Department of Psychiatry, Erenköy Mental Health and Neurological Diseases Research and Training Hospital, University of Health Science, Istanbul, Turkey
| | - Suat Toraman
- Department of Informatics, Fırat University, Elazığ, Turkey
| | - Rabia Bilici
- Department of Psychiatry, Erenköy Mental Health and Neurological Diseases Research and Training Hospital, University of Health Science, Istanbul, Turkey
| | - Devrim Sarıbal
- Department of Biophysics, Istanbul University Cerrahpaşa Medical School, Istanbul, Turkey
| | - Oğuzhan Gunduz
- Department of Advanced Nanomaterials Research Laboratory, Department of Metallurgy and Materials Engineering, Faculty of Technology, Marmara University, Turkey
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, 31-342 Krakow, Poland.
| |
Collapse
|
14
|
Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants (Basel) 2020; 9:antiox9090830. [PMID: 32899889 PMCID: PMC7555323 DOI: 10.3390/antiox9090830] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Drug abuse is a major global health and economic problem. However, there are no pharmacological treatments to effectively reduce the compulsive use of most drugs of abuse. Despite exerting different mechanisms of action, all drugs of abuse promote the activation of the brain reward system, with lasting neurobiological consequences that potentiate subsequent consumption. Recent evidence shows that the brain displays marked oxidative stress and neuroinflammation following chronic drug consumption. Brain oxidative stress and neuroinflammation disrupt glutamate homeostasis by impairing synaptic and extra-synaptic glutamate transport, reducing GLT-1, and system Xc− activities respectively, which increases glutamatergic neurotransmission. This effect consolidates the relapse-promoting effect of drug-related cues, thus sustaining drug craving and subsequent drug consumption. Recently, promising results as experimental treatments to reduce drug consumption and relapse have been shown by (i) antioxidant and anti-inflammatory synthetic molecules whose effects reach the brain; (ii) natural biomolecules secreted by mesenchymal stem cells that excel in antioxidant and anti-inflammatory properties, delivered via non-invasive intranasal administration to animal models of drug abuse and (iii) potent anti-inflammatory microRNAs and anti-miRNAs which target the microglia and reduce neuroinflammation and drug craving. In this review, we address the neurobiological consequences of brain oxidative stress and neuroinflammation that follow the chronic consumption of most drugs of abuse, and the current and potential therapeutic effects of antioxidants and anti-inflammatory agents and biomolecules to reduce these drug-induced alterations and to prevent relapse.
Collapse
|
15
|
Huggett SB, Stallings MC. Genetic Architecture and Molecular Neuropathology of Human Cocaine Addiction. J Neurosci 2020; 40:5300-5313. [PMID: 32457073 PMCID: PMC7329314 DOI: 10.1523/jneurosci.2879-19.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/12/2023] Open
Abstract
We integrated genomic and bioinformatic analyses, using data from the largest genome-wide association study of cocaine dependence (CD; n = 6546; 82.37% with CD; 57.39% male) and the largest postmortem gene-expression sample of individuals with cocaine use disorder (CUD; n = 36; 51.35% with CUD; 100% male). Our genome-wide analyses identified one novel gene (NDUFB9) associated with the genetic predisposition to CD in African-Americans. The genetic architecture of CD was similar across ancestries. Individual genes associated with CD demonstrated modest overlap across European-Americans and African-Americans, but the genetic liability for CD converged on many similar tissue types (brain, heart, blood, liver) across ancestries. In a separate sample, we investigated the neuronal gene expression associated with CUD by using RNA sequencing of dorsal-lateral prefrontal cortex neurons. We identified 133 genes differentially expressed between CUD case patients and cocaine-free control subjects, including previously implicated candidates for cocaine use/addiction (FOSB, ARC, KCNJ9/GIRK3, NR4A2, JUNB, and MECP2). Differential expression analyses significantly correlated across European-Americans and African-Americans. While genes significantly associated with CD via genome-wide methods were not differentially expressed, two of these genes (NDUFB9 and C1qL2) were part of a robust gene coexpression network associated with CUD involved in neurotransmission (GABA, acetylcholine, serotonin, and dopamine) and drug addiction. We then used a "guilt-by-association" approach to unravel the biological relevance of NDUFB9 and C1qL2 in the context of CD. In sum, our study furthers the understanding of the genetic architecture and molecular neuropathology of human cocaine addiction and provides a framework for translating biological meaning into otherwise obscure genome-wide associations.SIGNIFICANCE STATEMENT Our study further clarifies the genetic and neurobiological contributions to cocaine addiction, provides a rapid approach for generating testable hypotheses for specific candidates identified by genome-wide research, and investigates the cross-ancestral biological contributions to cocaine use disorder/dependence for individuals of European-American and African-American ancestries.
Collapse
Affiliation(s)
- Spencer B Huggett
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309-0345
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado 80309-0447
| | - Michael C Stallings
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309-0345
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado 80309-0447
| |
Collapse
|
16
|
Morphine Induces Apoptosis, Inflammation, and Mitochondrial Oxidative Stress via Activation of TRPM2 Channel and Nitric Oxide Signaling Pathways in the Hippocampus. Mol Neurobiol 2020; 57:3376-3389. [PMID: 32524520 DOI: 10.1007/s12035-020-01975-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Morphine as an opioid is an important drug in the treatment of moderate to severe pain. Several stress factors via generation of nitric oxide (NO) and oxidative stress (OS) are responsible for the adverse effects of morphine-induced analgesia, addiction, and antinociceptive tolerance, including altered Ca2+ concentration, inflammation, OS, and release of apoptotic factors. TRPM2 is a Ca2+-permeable cation channel and it is activated by OS and NO. Hence, adverse effect of morphine addiction may occur via the OS and NO-induced TRPM2 activation. Because of the unclear etiology of morphine-induced adverse effects in the hippocampus, investigating the involvement of TRPM2 and NO synthetase (NOS) activations in the treatment of morphine-induced OS, apoptosis, and neuroinflammation is a major challenge. The hippocampal neuron of TRPM2 wild-type (TRPM2-WT) and knockout (TRPM2-KO) mice were divided into control, morphine, NOS inhibitor (L-NAME) + morphine, and TRPM2 channel blockers (ACA and 2-APB) + morphine. The morphine-induced increases of apoptosis, neuron death, OS, lipid peroxidation, caspase-3 and caspase-9, neuroinflammatory cytokines (IL-1β, TNF-α, IL-6), and Ca2+ levels in the hippocampal neuron of TRPM2-WT mouse were decreased by the L-NAME, ACA, and 2-APB treatments, although cell viability, neuron count, and reduced glutathione and glutathione peroxidase levels were increased by the treatments. However, the effects of morphine were not observed in the hippocampus of TRPM2-KO mice. Taken together, our data show that neurodegeneration adverse effects of morphine were induced by activation of TRPM2, and excessive generations of NO and OS. Thus, inhibition of TRPM2 may modulate morphine-induced neurodegeneration in the hippocampus.
Collapse
|
17
|
Braidy N, Villalva MD, van Eeden S. Sobriety and Satiety: Is NAD+ the Answer? Antioxidants (Basel) 2020; 9:antiox9050425. [PMID: 32423100 PMCID: PMC7278809 DOI: 10.3390/antiox9050425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that has garnered considerable interest in the last century due to its critical role in cellular processes associated with energy production, cellular protection against stress and longevity. Research in NAD+ has been reinvigorated by recent findings that components of NAD+ metabolism and NAD-dependent enzymes can influence major signalling processes associated with the neurobiology of addiction. These studies implicate raising intracellular NAD+ levels as a potential target for managing and treating addictive behaviour and reducing cravings and withdrawal symptoms in patients with food addiction and/or substance abuse. Since clinical studies showing the use of NAD+ for the treatment of addiction are limited, this review provides literature evidence that NAD+ can influence the neurobiology of addiction and may have benefits as an anti-addiction intervention.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence:
| | - Maria D. Villalva
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Sam van Eeden
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
18
|
Repeated exposure of cocaine alters mitochondrial dynamics in mouse neuroblastoma Neuro2a. Neurotoxicology 2019; 75:70-77. [DOI: 10.1016/j.neuro.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/10/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022]
|
19
|
Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, Riggs LM, Francis TC, McGlincy M, Evans B, Nam H, Das S, Girven K, Konkalmatt P, Gancarz AM, Golden SA, Iñiguez SD, Russo SJ, Turecki G, Mathur BN, Creed M, Dietz DM, Lobo MK. Drp1 Mitochondrial Fission in D1 Neurons Mediates Behavioral and Cellular Plasticity during Early Cocaine Abstinence. Neuron 2019; 96:1327-1341.e6. [PMID: 29268097 DOI: 10.1016/j.neuron.2017.11.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.
Collapse
Affiliation(s)
- Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michel Engeln
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Schiefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary H Patton
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Craig T Werner
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lace M Riggs
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Madeleine McGlincy
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brianna Evans
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shweta Das
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kasey Girven
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, D.C., USA
| | - Amy M Gancarz
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Sam A Golden
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meaghan Creed
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Thangaraj A, Periyasamy P, Guo ML, Chivero ET, Callen S, Buch S. Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy 2019; 16:289-312. [PMID: 30990365 DOI: 10.1080/15548627.2019.1607686] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although cocaine exposure has been shown to potentiate neuroinflammation by upregulating glial activation in the brain, the role of mitophagy in this process remains an enigma. In the present study, we sought to examine the role of impaired mitophagy in cocaine-mediated activation of microglia and to determine the ameliorative potential of superoxide dismutase mimetics in this context. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to cocaine resulted in decreased mitochondrial membrane potential, that was accompanied by increased expression of mitophagy markers, PINK1 and PRKN. Exposure of microglia to cocaine also resulted in increased expression of DNM1L and OPTN with a concomitant decrease in the rate of mitochondrial oxygen consumption as well as impaired mitochondrial functioning. Additionally, in the presence of cocaine, microglia also exhibited upregulated expression of autophagosome markers, BECN1, MAP1LC3B-II, and SQSTM1. Taken together, these findings suggested diminished mitophagy flux and accumulation of mitophagosomes in the presence of cocaine. These findings were further confirmed by imaging techniques such as transmission electron microscopy and confocal microscopy. Cocaine-mediated activation of microglia was further monitored by assessing the expression of the microglial marker (ITGAM) and the inflammatory cytokine (Tnf, Il1b, and Il6) mRNAs. Pharmacological, as well as gene-silencing approaches aimed at blocking both the autophagy/mitophagy and SIGMAR1 expression, underscored the role of impaired mitophagy in cocaine-mediated activation of microglia. Furthermore, superoxide dismutase mimetics such as TEMPOL and MitoTEMPO were shown to alleviate cocaine-mediated impaired mitophagy as well as microglial activation.Abbreviations: 3-MA: 3-methyladenine; Δψm: mitochondrial membrane potential; ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATP: adenosine triphosphate; BAF: bafilomycin A1; BECN1: beclin 1, autophagy related; CNS: central nervous system; DNM1L: dynamin 1 like; DMEM: Dulbecco modified Eagle medium; DAPI: 4,6-Diamidino-2-phenylindole; DRD2: dopamine receptor D2; ECAR: extracellular acidification rate; FBS: fetal bovine serum; FCCP: Trifluoromethoxy carbonylcyanide phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IL1B: interleukin 1, beta; IL6: interleukin 6; ITGAM: integrin subunit alpha M; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mPMs: mouse primary microglial cells; MRC: maximal respiratory capacity; NFKB: nuclear factor kappa B; NLRP3: NLR family pyrin domain containing 3; NTRK2: neurotrophic receptor tyrosine kinase 2; OCR: oxygen consumption rate; OPTN: optineurin; PBS: phosphate buffered saline; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
21
|
Navarro-Zaragoza J, Ros-Simó C, Milanés MV, Valverde O, Laorden ML. Binge ethanol and MDMA combination exacerbates HSP27 and Trx-1 (biomarkers of toxic cardiac effects) expression in right ventricle. Life Sci 2019; 220:50-57. [DOI: 10.1016/j.lfs.2019.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 01/16/2023]
|
22
|
Mai HN, Sharma N, Jeong JH, Shin EJ, Pham DT, Trinh QD, Lee YJ, Jang CG, Nah SY, Bing G, Kim HC. P53 knockout mice are protected from cocaine-induced kindling behaviors via inhibiting mitochondrial oxidative burdens, mitochondrial dysfunction, and proapoptotic changes. Neurochem Int 2019; 124:68-81. [DOI: 10.1016/j.neuint.2018.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
|
23
|
Mai HN, Lee SH, Sharma G, Kim DJ, Sharma N, Shin EJ, Pham DT, Trinh QD, Jang CG, Nah SY, Jeong JH, Kim HC. Protein kinase Cδ knockout mice are protected from cocaine-induced hepatotoxicity. Chem Biol Interact 2018; 297:95-108. [PMID: 30393195 DOI: 10.1016/j.cbi.2018.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/09/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022]
Abstract
We investigated whether protein kinase Cδ (PKCδ) mediates cocaine-induced hepatotoxicity in mice. Cocaine treatment (60 mg/kg, i.p.) significantly increased cleaved PKCδ expression in the liver of wild-type (WT) mice, and led to significant increases in oxidative parameters (i.e., reactive oxygen species, 4-hydroxylnonenal and protein carbonyl). These cocaine-induced oxidative burdens were attenuated by pharmacological (i.e., rottlerin) or genetic depletion of PKCδ. We also demonstrated that treatment with cocaine resulted in significant increases in nuclear factor erythroid-2-related factor 2 (Nrf-2) nuclear translocation and increased Nrf-2 DNA-binding activity in wild-type (WT) mice. These increases were more pronounced in the rottlerin-treated WT or PKCδ knockout mice than in the saline-treated WT mice. Although cocaine treatment increased Nrf-2 nuclear translocation, DNA binding activity, and γ-glutamyl cysteine ligases (i.e., GCLc and GCLm) mRNA expressions, while it reduced the glutathione level and GSH/GSSG ratio. These decreases were attenuated by PKCδ depletion. Cocaine treatment significantly increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the serum of WT mice signifying the hepatic damage. These increases were also attenuated by PKCδ depletion. In addition, cocaine-induced hepatic degeneration in WT mice was evident 1 d post-cocaine. At that time, cocaine treatment decreased Bcl-2 and Bcl-xL levels, and increased Bax, cytosolic cytochrome c, and cleaved caspase-3 levels. Pharmacological or genetic depletion of PKCδ significantly ameliorated the pro-apoptotic properties and hepatic degeneration. Therefore, our results suggest that inhibition of PKCδ, as well as activation of Nrf-2, is important for protecting against hepatotoxicity induced by cocaine.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea.
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Quynh Dieu Trinh
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
24
|
Chan SHH, Chan JYH. Mitochondria and Reactive Oxygen Species Contribute to Neurogenic Hypertension. Physiology (Bethesda) 2018; 32:308-321. [PMID: 28615314 DOI: 10.1152/physiol.00006.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Beyond its primary role as fuel generators, mitochondria are engaged in a variety of cellular processes, including redox homeostasis. Mitochondrial dysfunction, therefore, may have a profound impact on high-energy-demanding organs such as the brain. Here, we review the roles of mitochondrial biogenesis and bioenergetics, and their associated signaling in cellular redox homeostasis, and illustrate their contributions to the oxidative stress-related neural mechanism of hypertension, focusing on specific brain areas that are involved in the generation or modulation of sympathetic outflows to the cardiovascular system. We also highlight future challenges of research on mitochondrial physiology and pathophysiology.
Collapse
Affiliation(s)
- Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Mai HN, Jung TW, Kim DJ, Sharma G, Sharma N, Shin EJ, Jang CG, Nah SY, Lee SH, Chung YH, Lei XG, Jeong JH, Kim HC. Protective potential of glutathione peroxidase-1 gene against cocaine-induced acute hepatotoxic consequences in mice. J Appl Toxicol 2018; 38:1502-1520. [DOI: 10.1002/jat.3666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/10/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Tae Woo Jung
- Research Administration Team; Seoul National University Bundang Hospital; Seongnam 13620 Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science; Cornell University; Ithaca New York 14853 USA
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy; Kangwon National University; Chunchon 24341 Republic of Korea
| |
Collapse
|
26
|
Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3034245. [PMID: 28593024 PMCID: PMC5448156 DOI: 10.1155/2017/3034245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/08/2017] [Accepted: 03/26/2017] [Indexed: 12/12/2022]
Abstract
Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol) in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.
Collapse
|
27
|
Hsieh VC, Krane EJ, Morgan PG. Mitochondrial Disease and Anesthesia. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817707770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Vincent C. Hsieh
- Department of Anesthesiology and Perioperative Medicine, University of Washington, Seattle, WA, USA
| | - Elliot J. Krane
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Philip G. Morgan
- Department of Anesthesiology and Perioperative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Hakimian J, Minasyan A, Zhe-Ying L, Loureiro M, Beltrand A, Johnston C, Vorperian A, Romaneschi N, Atallah W, Gomez-Pinilla F, Walwyn W. Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids. PLoS One 2017; 12:e0175090. [PMID: 28380057 PMCID: PMC5381919 DOI: 10.1371/journal.pone.0175090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA), could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2)-enriched indirect pathway but not of genes found in dopamine receptor 1(D1)-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and cellular effects of morphine that can be reduced or reversed by dietary n-3 PUFAs.
Collapse
Affiliation(s)
- Joshua Hakimian
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Ani Minasyan
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Lily Zhe-Ying
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
- UCLA Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California
| | - Mariana Loureiro
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Austin Beltrand
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Camille Johnston
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Alexander Vorperian
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Nicole Romaneschi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Waleed Atallah
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| | - Fernando Gomez-Pinilla
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
- UCLA Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California
| | - Wendy Walwyn
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
29
|
Affiliation(s)
- Teresa Summavielle
- Addiction Biology Group, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal Laboratory Animal Science, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal Laboratory Animal Science, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
30
|
Kowalczyk-Pachel D, Iciek M, Wydra K, Nowak E, Górny M, Filip M, Włodek L, Lorenc-Koci E. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment. PLoS One 2016; 11:e0147238. [PMID: 26808533 PMCID: PMC4726505 DOI: 10.1371/journal.pone.0147238] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase in MDA level was visible. The repeated cocaine decreased 3-MST and increased γ-GT activities in both organs but reduced GST in the kidney. Our results show that cocaine administered at a relatively low dose shifts Cys metabolism towards the formation of sulfane sulfur compounds which possess antioxidant and redox regulatory properties and are a source of H2S which can support mitochondrial bioenergetics.
Collapse
Affiliation(s)
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Ewa Nowak
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Lidia Włodek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
- * E-mail:
| |
Collapse
|
31
|
Cocaine and mitochondria-related signaling in the brain: A mechanistic view and future directions. Neurochem Int 2016; 92:58-66. [DOI: 10.1016/j.neuint.2015.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/05/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023]
|
32
|
Womersley JS, Uys JD. S-Glutathionylation and Redox Protein Signaling in Drug Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:87-121. [PMID: 26809999 DOI: 10.1016/bs.pmbts.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
33
|
Moreno AJ, Santos DL, Magalhães-Novais S, Oliveira PJ. Measuring Mitochondrial Membrane Potential with a Tetraphenylphosphonium-Selective Electrode. ACTA ACUST UNITED AC 2015; 65:25.5.1-25.5.16. [PMID: 26250398 DOI: 10.1002/0471140856.tx2505s65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondrial bioenergetics is based on the generation of the protonmotive force by the electron transport chain. The protonmotive force is used by mitochondria for different critical aspects of its normal function, ranging from calcium accumulation to the synthesis of ATP. The transmembrane electric potential (ΔΨ) is the major component of the protonmotive force and is also the main responsible for ATP synthesis by mitochondrial ATP synthase. Although several methods can be used to measure the ΔΨ, the use of the tetraphenylphosphonium cation (TPP(+))-selective electrode is still a method of election due to its sensitivity. The method is based on the accumulation of TPP(+) by energized mitochondria, which develop a negative charge in the matrix due to the ejection of protons. This unit describes how to build a custom-made TPP(+)-selective electrode and how to establish the necessary set-up to follow ΔΨ fluctuations in isolated mitochondrial fractions.
Collapse
Affiliation(s)
- António J Moreno
- DCV - Department of Life Sciences, Universidade de Coimbra, Coimbra, Portugal
| | - Dario L Santos
- Department of Biology & Environment, School of Life & Environmental Sciences, Universidade de Trás-os-Montes & Alto Douro (UTAD), Vila Real, Portugal.,Centre for the Research & Technology of Agro-Environmental & Biological Sciences (CITAB), Universidade de Trás-os-Montes & Alto Douro (UTAD), Vila Real, Portugal
| | - Sílvia Magalhães-Novais
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech Building, Biocant Park, Universidade de Coimbra, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech Building, Biocant Park, Universidade de Coimbra, Cantanhede, Portugal
| |
Collapse
|
34
|
Pereira RB, Andrade PB, Valentão P. A Comprehensive View of the Neurotoxicity Mechanisms of Cocaine and Ethanol. Neurotox Res 2015; 28:253-67. [PMID: 26105693 DOI: 10.1007/s12640-015-9536-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
Substance use disorder is an emerging problem concerning to human health, causing severe side effects, including neurotoxicity. The use of illegal drugs and the misuse of prescription or over-the-counter drugs are growing in this century, being one of the major public health problems. Ethanol and cocaine are one of the most frequently used drugs and, according to the National Institute on Drug Abuse, their concurrent consumption is one of the major causes for emergency hospital room visits. These molecules act in the brain through different mechanisms, altering the nervous system function. Researchers have focused the attention not just in the mechanism of action of these drugs, but also in the mechanism by which they damage the nervous tissue (neurotoxicity). Therefore, the goal of the present review is to provide a global perspective about the mechanisms of the neurotoxicity of cocaine and ethanol.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | | | | |
Collapse
|
35
|
Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S. Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep 2015; 67:230-5. [DOI: 10.1016/j.pharep.2014.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/08/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022]
|
36
|
Hellem TL, Sung YH, Shi XF, Pett MA, Latendresse G, Morgan J, Huber RS, Kuykendall D, Lundberg KJ, Renshaw PF. Creatine as a Novel Treatment for Depression in Females Using Methamphetamine: A Pilot Study. J Dual Diagn 2015; 11:189-202. [PMID: 26457568 PMCID: PMC4684979 DOI: 10.1080/15504263.2015.1100471] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Depression among methamphetamine users is more prevalent in females than males, but gender-specific treatment options for this comorbidity have not been described. Reduced brain phosphocreatine levels have been shown to be lower in female methamphetamine users compared to males, and, of relevance, studies have demonstrated an association between treatment-resistant depression and reduced brain phosphocreatine concentrations. The nutritional supplement creatine monohydrate has been reported to reduce symptoms of depression in female adolescents and adults taking antidepressants, as well as to increase brain phosphocreatine in healthy volunteers. Therefore, the purpose of this pilot study was to investigate creatine monohydrate as a treatment for depression in female methamphetamine users. METHODS Fourteen females with depression and comorbid methamphetamine dependence were enrolled in an 8-week open label trial of 5 g of daily creatine monohydrate and of these 14, 11 females completed the study. Depression was measured using the Hamilton Depression Rating Scale (HAMD) and brain phosphocreatine levels were measured using phosphorus magnetic resonance spectroscopy pre- and post-creatine treatment. Secondary outcome measures included anxiety symptoms, measured with the Beck Anxiety Inventory (BAI), as well as methamphetamine use, monitored by twice weekly urine drug screens and self-reported use. RESULTS The results of a linear mixed effects repeated measures model showed significantly reduced HAMD and BAI scores as early as week 2 when compared to baseline scores. This improvement was maintained through study completion. Brain phosphocreatine concentrations were higher at the second phosphorus magnetic resonance spectroscopy scan compared to the baseline scan; Mbaseline = 0.223 (SD = 0.013) vs. Mpost-treatment = 0.233 (SD = 0.009), t (9) = 2.905, p <.01, suggesting that creatine increased phosphocreatine levels. Also, a reduction in methamphetamine positive urine drug screens of greater than 50% was observed by week 6. Finally, creatine was well tolerated and adverse events that were related to gastrointestinal symptoms and muscle cramping were determined as possibly related to creatine. CONCLUSIONS The current study suggests that creatine treatment may be a promising therapeutic approach for females with depression and comorbid methamphetamine dependence. This study is registered on clinicaltrials.gov (NCT01514630).
Collapse
Affiliation(s)
- Tracy L Hellem
- a The Brain Institute, University of Utah , Salt Lake City , Utah , USA.,b The College of Nursing, University of Utah , Salt Lake City , Utah , USA
| | - Young-Hoon Sung
- a The Brain Institute, University of Utah , Salt Lake City , Utah , USA
| | - Xian-Feng Shi
- a The Brain Institute, University of Utah , Salt Lake City , Utah , USA.,c The Department of Psychiatry , University of Utah , Salt Lake City , Utah , USA
| | - Marjorie A Pett
- b The College of Nursing, University of Utah , Salt Lake City , Utah , USA
| | - Gwen Latendresse
- b The College of Nursing, University of Utah , Salt Lake City , Utah , USA
| | - Jubel Morgan
- a The Brain Institute, University of Utah , Salt Lake City , Utah , USA.,c The Department of Psychiatry , University of Utah , Salt Lake City , Utah , USA
| | - Rebekah S Huber
- a The Brain Institute, University of Utah , Salt Lake City , Utah , USA
| | | | - Kelly J Lundberg
- c The Department of Psychiatry , University of Utah , Salt Lake City , Utah , USA
| | - Perry F Renshaw
- a The Brain Institute, University of Utah , Salt Lake City , Utah , USA.,c The Department of Psychiatry , University of Utah , Salt Lake City , Utah , USA.,d VISN 19 MIRECC , Salt Lake City , Utah , USA
| |
Collapse
|
37
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
38
|
|
39
|
Planeta CS, Lepsch LB, Alves R, Scavone C. Influence of the dopaminergic system, CREB, and transcription factor-κB on cocaine neurotoxicity. Braz J Med Biol Res 2013; 46:909-915. [PMID: 24141554 PMCID: PMC3854330 DOI: 10.1590/1414-431x20133379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/19/2013] [Indexed: 01/04/2023] Open
Abstract
Cocaine is a widely used drug and its abuse is associated with physical, psychiatric
and social problems. Abnormalities in newborns have been demonstrated to be due to
the toxic effects of cocaine during fetal development. The mechanism by which cocaine
causes neurological damage is complex and involves interactions of the drug with
several neurotransmitter systems, such as the increase of extracellular levels of
dopamine and free radicals, and modulation of transcription factors. The aim of this
review was to evaluate the importance of the dopaminergic system and the
participation of inflammatory signaling in cocaine neurotoxicity. Our study showed
that cocaine activates the transcription factors NF-κB and CREB, which regulate genes
involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine
(a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine.
However, the attenuation of NF-κB activity after the pretreatment of the cells with
SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine
is, at least partially, due to activation of D1 receptors. NF-κB seems to have a
protective role in these cells because its inhibition increased cellular death caused
by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be
related to the protective role of both CREB and NF-κB transcription factors. An
understanding of the mechanisms by which cocaine induces cell death in the brain will
contribute to the development of new therapies for drug abusers, which can help to
slow down the progress of degenerative processes.
Collapse
Affiliation(s)
- C S Planeta
- Universidade Estadual Paulista, Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, AraraquaraSP, Brasil
| | | | | | | |
Collapse
|