1
|
Holliday LS, Neubert JK, Yang X. Gas-powered extracellular vesicles promote bone regeneration. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:158-165. [PMID: 40206801 PMCID: PMC11977345 DOI: 10.20517/evcna.2024.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The signaling gas hydrogen sulfide (H2S) has recently been implicated in the regulation of bone remodeling and the maintenance of periodontal health. Exploring the underlying mechanisms for this regulation holds promise for the development of new treatment strategies to block bone resorption and stimulate bone regeneration. A recent study by Zhou et al. (Bioactive Materials, 2024) showed that treatment with H2S stimulated changes in the extracellular vesicles (EVs) released by M2 macrophages, enhancing their capacity to promote the osteogenic differentiation of mesenchymal stem cells in vitro. The H2S-stimulated EVs, given together with mesenchymal stem cells (MSCs), also promoted bone regeneration in vivo in a mouse calvarial critical-size defect model. This activity was linked to augmented expression of moesin, a membrane-cytoskeletal linkage protein, which was found at increased levels in EVs from cells stimulated by H2S. The study identifies a new strategy for generating EVs that are pro-osteogenic. It also uncovers a surprising role for moesin in stimulating osteogenesis in MSCs.
Collapse
Affiliation(s)
- Lexie Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
2
|
Wang Q, Liu X, Yuan H, Zhang F, Wu J, Yang D, Qian J, Huang YY, Chai G, Luo HB, Guo L. Inhalable Carbonyl Sulfide Donor-Hybridized Selective Phosphodiesterase 10A Inhibitor for Treating Idiopathic Pulmonary Fibrosis by Inhibiting Tumor Growth Factor-β Signaling and Activating the cAMP/Protein Kinase A/cAMP Response Element-Binding Protein (CREB)/p53 Axis. ACS Pharmacol Transl Sci 2025; 8:256-269. [PMID: 39816787 PMCID: PMC11729434 DOI: 10.1021/acsptsci.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear. Herein, we have exploited a novel carbonyl sulfide (COS)/hydrogen sulfide (H2S)-donor hybrid PDE10A inhibitor called COS-2080 with a well-defined mechanism of H2S-releasing action. It exhibited highly potent inhibitory activity against PDE10A and excellent PDE subfamily selectivity. Moreover, COS-2080 demonstrated significant antifibrotic effects by inhibiting cell proliferation and mitigating fibroblast-to-myofibroblast transition (FMT). A dry powder inhalation formulation called COS-2080-DPI has been developed using the ultrasonic spray freeze drying (USFD) technique, demonstrating significant antifibrotic efficacy in mice with bleomycin-induced PF at a dosage approximately 600 times lower than pirfenidone. This remarkable antifibrotic efficacy of COS-2080 on TGF-β1-induced FMT could be primarily attributed to its inhibition of the Smad2/Smad3 phosphorylation. Moreover, COS-2080 effectively attenuated fibrosis in MRC-5 cells by activating the cAMP/protein kinase A (PKA)/CREB pathway and potentially increasing levels of p53 protein. Our findings suggest that effective inhibition of PDE10A potentially confers a protective effect on FMT in PF by impeding TGF-β signaling and activating the cAMP/PKA/CREB/p53 axis.
Collapse
Affiliation(s)
- Quan Wang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Xinyue Liu
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Han Yuan
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Fengcai Zhang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Jiafei Wu
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Dongjing Yang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Jiang Qian
- Laboratory
Animal Center of Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yi-You Huang
- Key
Laboratory of Tropical Biological Resources of Ministry of Education
and Hainan Engineering Research Center for Drug Screening and Evaluation,
School of Pharmaceutical Sciences, Hainan
University, Haikou 570228, P. R. China
| | - Guihong Chai
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- Key
Laboratory of Tropical Biological Resources of Ministry of Education
and Hainan Engineering Research Center for Drug Screening and Evaluation,
School of Pharmaceutical Sciences, Hainan
University, Haikou 570228, P. R. China
| | - Lei Guo
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Ma X, Liu B, Jiang Z, Rao Z, Zheng L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int J Mol Sci 2025; 26:343. [PMID: 39796197 PMCID: PMC11720236 DOI: 10.3390/ijms26010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms. Regular exercise is known to confer health benefits through its anti-inflammatory, antioxidant, and anti-aging effects. Notably, exercise exerts anti-fibrotic effects by modulating multiple pathways, including transforming growth factor-β1/small mother decapentaplegic protein (TGF-β1/Samd), Wnt/β-catenin, nuclear factor kappa-B (NF-kB), reactive oxygen species (ROS), microRNAs (miR-126, miR-29a, miR-101a), and exerkine (FGF21, irisin, FSTL1, and CHI3L1). Therefore, this paper aims to review the specific role and molecular mechanisms of exercise as a potential intervention to ameliorate organ fibrosis.
Collapse
Affiliation(s)
- Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Bing Liu
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China
- Exercise Biological Center, China Institute of Sport Science, Beijing 100061, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| |
Collapse
|
4
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
5
|
Wang XL, Xu YT, Zhang SL, Zhu XY, Zhang HX, Liu YJ. Hydrogen sulfide inhibits alveolar type II cell senescence and limits pulmonary fibrosis via promoting MDM2-mediated p53 degradation. Acta Physiol (Oxf) 2024; 240:e14059. [PMID: 37987182 DOI: 10.1111/apha.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
AIM Senescence of alveolar type II (AT2) cells is an important driver of pulmonary fibrosis. This study aimed to investigate whether and how dysregulation of hydrogen sulfide (H2 S) production affected AT2 cell senescence, and then explored the effect of H2 S on the communication between AT2 and fibroblasts. METHODS ICR mice were intratracheally administered with bleomycin (3 mg/kg). Sodium hydrosulfide (NaHS, 28 μmol/kg/d) was intraperitoneally injected for 2 weeks. The H2 S-generating enzyme cystathionine-β-synthase (CBS) knockout heterozygous (CBS+/- ) mice were used as a low H2 S production model. RESULTS Analysis of microarray datasets revealed downregulation of H2 S-generating enzymes in lung tissues of patients with pulmonary fibrosis. Decreased H2 S production was correlated with higher levels of cell senescence markers p53 and p21 in bleomycin-induced lung fibrosis. CBS+/- mice exhibited increased levels of p53 and p21. The numbers of AT2 cells positive for p53 and p21 were increased in CBS+/- mice as compared to control mice. H2 S donor NaHS attenuated bleomycin-induced AT2 cell senescence both in vivo and in vitro. H2 S donor suppressed bleomycin-induced senescence-associated secretory phenotype (SASP) of AT2 cells via inhibiting p53/p21 pathway, consequently suppressing proliferation and myofibroblast transdifferentiation of fibroblasts. Mechanically, H2 S suppressed p53 expression by enhancing the mouse double-minute 2 homologue (MDM2)-mediated ubiquitination and degradation of p53. CONCLUSION H2 S inactivated p53-p21 pathway, consequently suppressing AT2 cell senescence as well as cell communication between senescent AT2 cells and fibroblasts. Aberrant H2 S synthesis may contribute to the development of pulmonary fibrosis through promoting the activation loop involving senescent AT2 cells and activated fibroblasts.
Collapse
Affiliation(s)
- Xiu-Li Wang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yi-Tong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shu-Li Zhang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Hong-Xia Zhang
- Department of Geriatrics, Kongjiang Hospital, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
6
|
Hao KX, Xie H, Jiang JG, Wang D, Zhu W. Semen Ziziphus jujube Saponins Protects HaCaT Cells against UV Damage and Alleviates the Aging of Caenorhabditis elegans. ACS OMEGA 2023; 8:28080-28089. [PMID: 37576697 PMCID: PMC10413363 DOI: 10.1021/acsomega.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 08/15/2023]
Abstract
The role of Semen Ziziphus jujube saponins in sedative and hypnosis has attracted much attention. The study aimed to investigate its possible UV damage protection and anti-aging effects. Total saponins (SZR I) and purified saponins (SZR II) were analyzed and compared by infrared spectroscopy and high-performance liquid chromatography (HPLC). The protective effects of SZR I, SZR II, and their three monomers on HaCaT cells damaged by UV were studied, and their anti-aging activities were observed by Caenorhabditis elegans with paraquat-induced oxidative stress. The results showed that SZR I and SZR II differ in chemical composition but both have the same three monomers. The cell survival rate treated with SZR I and SZR II at a concentration of 400 μg/mL increased by 34.45 and 88.98%, respectively, indicating that they could promote the proliferation of UVB-damaged HaCaT cells. Jujuboside A, Jujuboside B, and spinosin from the saponins exhibited similar effects on UVB-damaged HaCaT cells. SZR I and SZR II had little effect on reproductive performance but could delay the senescence caused by heat and oxidative stress of the C. elegans model. These results provide useful data that Semen Z. jujube saponin is a potential natural product with UV damage protection and anti-aging characteristics.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College
of Food and Bioengineering, South China
University of Technology, Guangzhou 510640, China
- The
Second Affiliated Hospital, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Hong Xie
- College
of Food and Bioengineering, South China
University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College
of Food and Bioengineering, South China
University of Technology, Guangzhou 510640, China
| | - Dawei Wang
- The
First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wei Zhu
- The
Second Affiliated Hospital, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
7
|
Coavoy-Sánchez SA, Cerqueira ARA, Teixeira SA, Santagada V, Andreozzi G, Corvino A, Scognamiglio A, Sparaco R, Caliendo G, Severino B, Costa SKP, Spolidorio LC, Muscará MN. Beneficial Effects of Two Hydrogen Sulfide (H 2S)-Releasing Derivatives of Dexamethasone with Antioxidant Activity on Atopic Dermatitis in Mice. Pharmaceutics 2023; 15:1907. [PMID: 37514093 PMCID: PMC10383635 DOI: 10.3390/pharmaceutics15071907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Hydrogen sulfide (H2S) is particularly produced in the skin, where it participates in the regulation of inflammation, pruritus, cytoprotection, scarring, and angiogenesis. In this study, we compared the effects of dexamethasone (Dex) with two H2S-releasing Dex derivatives in a murine model of atopic dermatitis (AD) induced by topical application of 2,4-dinitrochlorobenzene (DNCB). After sensitization with DNCB, the animals were topically treated for five consecutive days with either the H2S-releasing compounds 4-hydroxy-thiobenzamide (TBZ) and 5-(p-hydroxyphenyl)-1,2-dithione-3-thione (ADT-OH), Dex, or the derivatives Dex-TBZ or Dex-ADT. Topical treatment with equimolar doses of either Dex, Dex-TBZ, or Dex-ADT resulted in similar reductions in dermatitis score, scratching behavior, edema, eosinophilia, splenomegaly, and histological changes. In contrast with Dex, the H2S-releasing derivatives prevented IL-4 elevation and oxidative modification of skin proteins. On an equimolar dose basis, Dex-TBZ, but not Dex-ADT, promoted the elevation of endogenous H2S production and GPx activity. Neither Dex-TBZ nor Dex-ADT decreased GR activity or caused hyperglycemia, as observed with Dex treatment. We conclude that the presence of H2S-releasing moieties in the Dex structure does not interfere with the anti-inflammatory effects of this corticosteroid and adds beneficial therapeutical actions to the parent compound.
Collapse
Affiliation(s)
- Silvia Abigail Coavoy-Sánchez
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | | | - Simone Aparecida Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Giorgia Andreozzi
- Department of Pharmacy, School of Medicine, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Antonia Scognamiglio
- Department of Pharmacy, School of Medicine, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, School of Medicine, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Luis Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-903, SP, Brazil
| | - Marcelo Nicolás Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
8
|
Mina S, Elfeky DM, Kabel AM, Hedya SE. Ameliorative Potential of Donepezil with or without Prednisolone in Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of the Anti-Inflammatory, Antioxidant, and the Antifibrotic Pathways. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:980. [PMID: 37241212 PMCID: PMC10223402 DOI: 10.3390/medicina59050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Bleomycin-induced pulmonary fibrosis is one of the serious complications that may limit the use of bleomycin in cancer therapy. To date, there is no effective remedy for the amelioration of this condition. Donepezil, an anti-Alzheimer's medication, has recently been proven to exhibit potent anti-inflammatory, antioxidant, and antifibrotic effects. To the best of our knowledge, this study represents the first study designed to investigate the prophylactic effects of donepezil, either alone or in combination with the classic anti-inflammatory drug prednisolone, in bleomycin-induced pulmonary fibrosis. Methods: This study was carried out on fifty rats, which were divided into five equal groups: control (Saline) group; bleomycin group; bleomycin + prednisolone group; bleomycin + donepezil group; and bleomycin + prednisolone + donepezil group. At the end of the experiments, bronchoalveolar lavage was performed to evaluate the total and differential leucocytic counts. The right lung was processed to assess the oxidative stress markers, proinflammatory cytokines, NLRP3 inflammasome, and transforming growth factor-beta1. The left lung was subjected to histopathological and immunohistochemical examination. Results: The administration of donepezil and/or prednisolone induced a significant amelioration of oxidative stress, inflammation, and fibrosis. In addition, these animals showed a significant amelioration of the histopathological changes of fibrosis, together with a significant decline in nuclear factor kappa B (p65) immunoexpression, compared to the group treated with bleomycin alone. However, the rats treated with the donepezil/prednisolone combination showed non-significant effects on the aforementioned parameters compared to the group treated with prednisolone alone. Conclusions: Donepezil may emerge as a promising drug that shows significant prophylactic effects against bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Shery Mina
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Dina M. Elfeky
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- National Committee of Drugs, Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo 11694, Egypt
| | - Sabeha E. Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
9
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
10
|
Kan Z, Zhao KX, Jiang C, Liu DY, Guo Y, Liu LY, Wang WJ, He ZQ, Zhang ZF, Wang SY. Respiratory exposure to graphene oxide induces pulmonary fibrosis and organ damages in rats involving caspase-1/p38MAPK/TGF-β1 signaling pathways. CHEMOSPHERE 2022; 303:135181. [PMID: 35667501 DOI: 10.1016/j.chemosphere.2022.135181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies have shown that graphene oxide (GO) respiratory exposure led to severe lung injury, but whether pulmonary fibrosis caused by GO respiratory exposure is related to the activation of the caspase-1/p38MAPK/TGF-β1 remains unclear. In this study, rats were administrated GO by intratracheal instillation and fed for three months, and the molecular mechanisms of GO on the pulmonary fibrosis and other organ damage caused by GO respiratory exposure were examined. The results showed that the expression of caspase-1/p38MAPK/TGF-β1 pathway-related factors were significantly elevated with the increase of exposure concentrations of GO. Those data proved that the caspase-1/p38MAPK/TGF-β1 signaling pathway was involved in the pulmonary fibrosis caused by GO respiratory exposure. The trends of related factors also proved that the caspase-1/p38MAPK/TGF-β1 pathway was likely to play a dominant role in the sub-acute and sub-chronic stages. The other organ damage examination found that the liver and spleen were damaged initially by the GO respiratory exposure. Meanwhile for the testicle, although the acute injury was severe, signs of recovery were found during the three-month trial period.
Collapse
Affiliation(s)
- Ze Kan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, PR China
| | - Ke-Xin Zhao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, Heilongjiang, China
| | - Chao Jiang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, PR China
| | - Da-Yang Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, PR China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, And School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, Heilongjiang, China
| | - Wen-Juan Wang
- Heilongjiang Pony Testing Technical Co.,Ltd, Harbin, 150028, Heilongjiang, China
| | - Zhi-Qiang He
- Heilongjiang Pony Testing Technical Co.,Ltd, Harbin, 150028, Heilongjiang, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, Heilongjiang, China.
| | - Su-Yi Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, PR China
| |
Collapse
|
11
|
Pozzi G, Gobbi G, Masselli E, Carubbi C, Presta V, Ambrosini L, Vitale M, Mirandola P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022; 11:cells11030325. [PMID: 35159135 PMCID: PMC8834412 DOI: 10.3390/cells11030325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Giuliana Gobbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Elena Masselli
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (P.M.)
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Valentina Presta
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Luca Ambrosini
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Marco Vitale
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Italian Foundation for the Research in Balneology, Via Po 22, 00198 Rome, Italy
| | - Prisco Mirandola
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- Correspondence: (E.M.); (P.M.)
| |
Collapse
|
12
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
13
|
Pal VK, Agrawal R, Rakshit S, Shekar P, Murthy DTN, Vyakarnam A, Singh A. Hydrogen sulfide blocks HIV rebound by maintaining mitochondrial bioenergetics and redox homeostasis. eLife 2021; 10:68487. [PMID: 34792020 PMCID: PMC8660018 DOI: 10.7554/elife.68487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
A fundamental challenge in human immunodeficiency virus (HIV) eradication is to understand how the virus establishes latency, maintains stable cellular reservoirs, and promotes rebound upon interruption of antiretroviral therapy (ART). Here, we discovered an unexpected role of the ubiquitous gasotransmitter hydrogen sulfide (H2S) in HIV latency and reactivation. We show that reactivation of HIV is associated with downregulation of the key H2S producing enzyme cystathionine-γ-lyase (CTH) and reduction in endogenous H2S. Genetic silencing of CTH disrupts redox homeostasis, impairs mitochondrial function, and remodels the transcriptome of latent cells to trigger HIV reactivation. Chemical complementation of CTH activity using a slow-releasing H2S donor, GYY4137, suppressed HIV reactivation and diminished virus replication. Mechanistically, GYY4137 blocked HIV reactivation by inducing the Keap1-Nrf2 pathway, inhibiting NF-κB, and recruiting the epigenetic silencer, YY1, to the HIV promoter. In latently infected CD4+ T cells from ART-suppressed human subjects, GYY4137 in combination with ART prevented viral rebound and improved mitochondrial bioenergetics. Moreover, prolonged exposure to GYY4137 exhibited no adverse influence on proviral content or CD4+ T cell subsets, indicating that diminished viral rebound is due to a loss of transcription rather than a selective loss of infected cells. In summary, this work provides mechanistic insight into H2S-mediated suppression of viral rebound and suggests exploration of H2S donors to maintain HIV in a latent form.
Collapse
Affiliation(s)
- Virender Kumar Pal
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ragini Agrawal
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Pooja Shekar
- BMCRI, Bangalore Medical College and Research Institute, Bangalore, India
| | | | | | - Amit Singh
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
Chen Y, Yuan S, Cao Y, Kong G, Jiang F, Li Y, Wang Q, Tang M, Zhang Q, Wang Q, Liu L. Gasotransmitters: Potential Therapeutic Molecules of Fibrotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3206982. [PMID: 34594474 PMCID: PMC8478550 DOI: 10.1155/2021/3206982] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined as the pathological progress of excessive extracellular matrix (ECM), such as collagen, fibronectin, and elastin deposition, as the regenerative capacity of cells cannot satisfy the dynamic repair of chronic damage. The well-known features of tissue fibrosis are characterized as the presence of excessive activated and proliferated fibroblasts and the differentiation of fibroblasts into myofibroblasts, and epithelial cells undergo the epithelial-mesenchymal transition (EMT) to expand the number of fibroblasts and myofibroblasts thereby driving fibrogenesis. In terms of mechanism, during the process of fibrosis, the activations of the TGF-β signaling pathway, oxidative stress, cellular senescence, and inflammatory response play crucial roles in the activation and proliferation of fibroblasts to generate ECM. The deaths due to severe fibrosis account for almost half of the total deaths from various diseases, and few treatment strategies are available for the prevention of fibrosis as yet. Recently, numerous studies demonstrated that three well-defined bioactive gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), generally exhibited anti-inflammatory, antioxidative, antiapoptotic, and antiproliferative properties. Besides these effects, a number of studies have reported that low-dose exogenous and endogenous gasotransmitters can delay and interfere with the occurrence and development of fibrotic diseases, including myocardial fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, diabetic diaphragm fibrosis, and peritoneal fibrosis. Furthermore, in animal and clinical experiments, the inhalation of low-dose exogenous gas and intraperitoneal injection of gaseous donors, such as SNAP, CINOD, CORM, SAC, and NaHS, showed a significant therapeutic effect on the inhibition of fibrosis through modulating the TGF-β signaling pathway, attenuating oxidative stress and inflammatory response, and delaying the cellular senescence, while promoting the process of autophagy. In this review, we first demonstrate and summarize the therapeutic effects of gasotransmitters on diverse fibrotic diseases and highlight their molecular mechanisms in the process and development of fibrosis.
Collapse
Affiliation(s)
- Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin Province, China
| | - Yuying Cao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Guangyao Kong
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Feng Jiang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Minli Tang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin Province, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Liping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| |
Collapse
|
15
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Liu YP, Yuan XY, Li XY, Wang Y, Sun ZB, Deng WH, Lei YD, Huang L, Jiang TY, Zhang ZH. Hydrogen sulfide alleviates apoptosis and autophagy induced by beryllium sulfate in 16HBE cells. J Appl Toxicol 2021; 42:230-243. [PMID: 34091916 DOI: 10.1002/jat.4205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Beryllium and its compounds are systemic toxicants that are widely applied in many industries. Hydrogen sulfide has been found to protect cells. The present study aimed to determine the protective mechanisms involved in hydrogen sulfide treatment of 16HBE cells following beryllium sulfate-induced injury. 16HBE cells were treated with beryllium sulfate doses ranging between 0 and 300 μM BeSO4 . Additionally, 16HBE cells were subjected to pretreatment with either a 300 μM dose of sodium hydrosulfide (a hydrogen sulfide donor) or 10 mM DL-propargylglycine (a cystathionine-γ-lyase inhibitor) for 6 hr before then being treated with 150 μM beryllium sulfate for 48 hr. This study illustrates that beryllium sulfate induces a reduction in cell viability, increases lactate dehydrogenase (LDH) release, and increases cellular apoptosis and autophagy in 16HBE cells. Interestingly, pretreating 16HBE cells with sodium hydrosulfide significantly reduced the beryllium sulfate-induced apoptosis and autophagy. Moreover, it increased the mitochondrial membrane potential and alleviated the G2/M-phase cell cycle arrest. However, pretreatment with 10 mM DL-propargylglycine promoted the opposite effects. PI3K/Akt/mTOR and Nrf2/ARE signaling pathways are also activated following pretreatment with sodium hydrosulfide. These results indicate the protection provided by hydrogen sulfide in 16HBE cells against beryllium sulfate-induced injury is associated with the inhibition of apoptosis and autophagy through the activation of the PI3K/Akt/mTOR and Nrf2/ARE signaling pathways. Therefore, hydrogen sulfide has the potential to be a promising candidate in the treatment against beryllium disease.
Collapse
Affiliation(s)
- Yan-Ping Liu
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of public health, University of South China, Hengyang, China
| | - Ye Wang
- School of public health, University of South China, Hengyang, China
| | - Zhan-Bing Sun
- School of public health, University of South China, Hengyang, China
| | - Wei-Hua Deng
- School of public health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of public health, University of South China, Hengyang, China
| | - Lian Huang
- School of public health, University of South China, Hengyang, China
| | - Tian-Yi Jiang
- School of public health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| |
Collapse
|
17
|
Schiliro M, Bartman CM, Pabelick C. Understanding hydrogen sulfide signaling in neonatal airway disease. Expert Rev Respir Med 2021; 15:351-372. [PMID: 33086886 PMCID: PMC10599633 DOI: 10.1080/17476348.2021.1840981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Airway dysfunction leading to chronic lung disease is a common consequence of premature birth and mechanisms responsible for early and progressive airway remodeling are not completely understood. Current therapeutic options are only partially effective in reducing the burden of neonatal airway disease and premature decline of lung function. Gasotransmitter hydrogen sulfide (H2S) has been recently recognized for its therapeutic potential in lung diseases. AREAS COVERED Contradictory to its well-known toxicity at high concentrations, H2S has been characterized to have anti-inflammatory, antioxidant, and antiapoptotic properties at physiological concentrations. In the respiratory system, endogenous H2S production participates in late lung development and exogenous H2S administration has a protective role in a variety of diseases such as acute lung injury and chronic pulmonary hypertension and fibrosis. Literature searches performed using NCBI PubMed without publication date limitations were used to construct this review, which highlights the dichotomous role of H2S in the lung, and explores its promising beneficial effects in lung diseases. EXPERT OPINION The emerging role of H2S in pathways involved in chronic lung disease of prematurity along with its recent use in animal models of BPD highlight H2S as a potential novel candidate in protecting lung function following preterm birth.
Collapse
Affiliation(s)
- Marta Schiliro
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | | | - Christina Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Parlar A, Arslan SO, Yumrutas O, Elibol E, Yalcin A, Uckardes F, Aydin H, Dogan MF, Kayhan Kustepe E, Ozer MK. Effects of cannabinoid receptor 2 synthetic agonist, AM1241, on bleomycin induced pulmonary fibrosis. Biotech Histochem 2020; 96:48-59. [PMID: 33325762 DOI: 10.1080/10520295.2020.1758343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Bleomycin (BLM) is a chemotherapeutic agent that can cause pulmonary fibrosis. Little is known about the possible protective role of the CB2 receptor agonist, AM1241. We investigated the effects of CB2 receptor activation by AM1241 on BLM induced lung fibrosis in a rat model. BLM was administered via the trachea. Adult female Wistar rats were divided into five groups: saline (control group), BLM (BLM group), CB2 agonist (AM1241) + BLM (BLMA group), CB2 antagonist (AM630) and CB2 agonist (AM1241) + BLM (BLMA + A group), and vehicle (dimethylsulfoxide) + BLM (BLM + vehicle group). Hydroxyproline, collagen type 1, total protein, glutathione (GSH), malondialdehyde (MDA), interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels were measured in lung fibrosis and control tissue using standard methods. We investigated the histopathology of lung tissue to determine the extent of fibrosis. We found significantly higher levels of hydroxyproline, TNF-α, IL-6 and total protein in the BLM group compared to the BLMA group. The level of GSH also was higher in the BLMA group compared to the BLM group. Inflammation and fibrotic changes were significantly reduced in the BLMA group. Our findings suggest that CB2 receptor activation provided protection against BLM induced pulmonary fibrosis by suppressing oxidative stress and increasing cytokines.
Collapse
Affiliation(s)
- Ali Parlar
- Faculty of Medicine, Department of Pharmacology, University of Adıyaman , Adıyaman, Turkey
| | - Seyfullah Oktay Arslan
- Pharmacology Department, Faculty of Medicine, Yıldırım Beyazıt University , Ankara, Turkey
| | - Onder Yumrutas
- Faculty of Medicine, Department of Medical Biology, University of Adıyaman , Adıyaman, Turkey
| | - Ebru Elibol
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Alper Yalcin
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Fatih Uckardes
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, University of Adıyaman , Adıyaman, Turkey
| | - Hasan Aydin
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, University of Adıyaman , Adıyaman, Turkey
| | - Muhammed Fatih Dogan
- Pharmacology Department, Faculty of Medicine, Yıldırım Beyazıt University , Ankara, Turkey
| | - Elif Kayhan Kustepe
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Mehmet Kaya Ozer
- Faculty of Medicine, Department of Pharmacology, University of Adıyaman , Adıyaman, Turkey
| |
Collapse
|
19
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
20
|
Wang L, Meng J, Wang C, Yang C, Wang Y, Li Y, Li Y. Hydrogen sulfide alleviates cigarette smoke-induced COPD through inhibition of the TGF- β1/smad pathway. Exp Biol Med (Maywood) 2020; 245:190-200. [PMID: 32008357 DOI: 10.1177/1535370220904342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smoking has become a major cause of chronic obstructive pulmonary disease through weakening of the respiratory mucus-ciliary transport system, impairing cough reflex sensitivity, and inducing inflammation. Recent researches have indicated that hydrogen sulfide is essential in the development of various lung diseases. However, the effect and mechanism of hydrogen sulfide on cigarette smoke-induced chronic obstructive pulmonary disease have not been reported. In this study, rats were treated with cigarette smoke to create a chronic obstructive pulmonary disease model followed by treatment with a low concentration of hydrogen sulfide. Pulmonary function, histopathological appearance, lung edema, permeability, airway remodeling indicators, oxidative products/antioxidases levels, inflammatory factors in lung, cell classification in bronchoalveolar lavage fluid were measured to examine the effect of hydrogen sulfide on chronic obstructive pulmonary disease model. The results showed that hydrogen sulfide effectively improved pulmonary function and reduced histopathological changes, lung edema, and permeability. Airway remodeling, oxidative stress, and inflammation were also reduced by hydrogen sulfide treatment. To understand the mechanisms, we measured the expression of TGF-β1, TGF-βIand TGF-βII receptors and Smad7 and phosphorylation of Smad2/Smad3. The results indicated that the TGF-β1 and Smad were activated in cigarette smoke-induced chronic obstructive pulmonary disease model, but inhibited by hydrogen sulfide. In conclusion, this study showed that hydrogen sulfide treatment alleviated cigarette smoke-induced chronic obstructive pulmonary disease through inhibition of the TGF-β1/Smad pathway. Impact statement COPD has become a severe public health issue in the world and smoking has become a major cause of COPD. As a result, it is a demandingly needed to explore new potential therapy for cigarette smoke-associated COPD. The present study suggested that H2S treatment improved pulmonary function and reduced histopathological changes, lung edema, permeability, inflammation, airway remodeling and oxidative injury in a COPD model induced by cigarette smoke. Although additional studies are required to elucidate the pharmacodynamics, pharmacokinetics, and pharmacology of H2S in the cigarette smoke-associated COPD, our findings provide an experimental basis for the potential clinical application of H2S in COPD treatment.
Collapse
Affiliation(s)
- Liang Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Jing Meng
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Caicai Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Chao Yang
- Department of Gynecology, Shijiazhuang Second Hospital, Shijiazhuang 050048, China
| | - Yuan Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Yamei Li
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Yujing Li
- Department of Laboratory, Hebei Chest Hospital, Hebei 050048, China
| |
Collapse
|
21
|
Guan R, Wang J, Cai Z, Li Z, Wang L, Li Y, Xu J, Li D, Yao H, Liu W, Deng B, Lu W. Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway. Redox Biol 2020; 28:101356. [PMID: 31704583 PMCID: PMC6854091 DOI: 10.1016/j.redox.2019.101356] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022] Open
Abstract
Airway remodeling is one of the characteristics for chronic obstructive pulmonary disease (COPD). The mechanism underlying airway remodeling is associated with epithelial-mesenchymal transition (EMT) in the small airways of smokers and patients with COPD. Sirtuin 1 (SIRT1) is able to reduce oxidative stress, and to modulate EMT. Here, we investigated the effects and mechanisms of hydrogen sulfide (H2S) on pulmonary EMT in vitro and in vivo. We found that H2S donor NaHS inhibited cigarette smoke (CS)-induced airway remodeling, EMT and collagen deposition in mouse lungs. In human bronchial epithelial 16HBE cells, NaHS treatment also reduced CS extract (CSE)-induced EMT, collagen deposition and oxidative stress. Mechanistically, NaHS upregulated SIRT1 expression, but inhibited activation of TGF-β1/Smad3 signaling in vivo and in vitro. SIRT1 inhibition by a specific inhibitor EX527 significantly attenuated or abolished the ability of NaHS to reverse the CSE-induced oxidative stress. SIRT1 inhibition also abolished the protection of NaHS against CSE-induced EMT. Moreover, SIRT1 activation attenuated CSE-induced EMT by modifying TGF-β1-mediated Smad3 transactivation. In conclusion, H2S prevented CS-induced airway remodeling in mice by reversing oxidative stress and EMT, which was partially ameliorated by SIRT1 activation. These findings suggest that H2S may have therapeutic potential for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lan Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingxian Deng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Zhou Y, Zhu X, Wang X, Peng Y, Du J, Yin H, Yang H, Ni X, Zhang W. H 2S alleviates renal injury and fibrosis in response to unilateral ureteral obstruction by regulating macrophage infiltration via inhibition of NLRP3 signaling. Exp Cell Res 2019; 387:111779. [PMID: 31846625 DOI: 10.1016/j.yexcr.2019.111779] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
Renal fibrosis is a key pathological feature in chronic kidney diseases (CKDs). Dysregulation of hydrogen sulfide (H2S) homeostasis is implicated in the pathogenesis of CKDs. Here, C57/BL6 mice were allocated to Sham and unilateral ureteral obstruction (UUO) groups, which were treated with NaHS or NLRP3 inflammasome inhibitor 16673-34-0 for 3-14 days. UUO mice displayed downregulation of H2S production and increased macrophage infiltration in obstructed kidneys. H2S donor NaHS treatment attenuated renal damage and fibrosis and inhibited M1 and M2 macrophage infiltration. NLPR3 inflammasome was activated and levels of phosphorylated nuclear factor κB (NF-κB) p65 subunit, phosphorylated signal transducer and activator of transcription 6 (STAT6) and interleukin (IL)-4 protein were increased in the kidneys after UUO. NLRP3 inhibitor inactivated NF-κB and IL-4/STAT6 signaling, suppressed M1 and M2 macrophage infiltration and attenuated renal damage and fibrosis in UUO mice. NaHS treatment also suppressed NLRP3, NF-κB and IL-4/STAT6 activation in the obstructed kidneys. In conclusion, the therapeutic effects of H2S on UUO-induced renal injury and fibrosis are at least in part by inhibition of M1 and M2 macrophage infiltration. H2S suppresses NLRP3 activation and subsequently inactivates NF-κB and IL-4/STAT6 signaling, which may contribute to the anti-inflammatory and anti-fibrotic effects of H2S.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Peng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiankui Du
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, Second Military Medical University, Shanghai, China
| | - Hongling Yin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Ni
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, Second Military Medical University, Shanghai, China.
| | - Weiru Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Yuan G, Han A, Wu J, Lu Y, Zhang D, Sun Y, Zhang J, Zhao M, Zhang B, Cui X. Bao Yuan decoction and Tao Hong Si Wu decoction improve lung structural remodeling in a rat model of myocardial infarction: Possible involvement of suppression of inflammation and fibrosis and regulation of the TGF-β1/Smad3 and NF-κB pathways. Biosci Trends 2019; 12:491-501. [PMID: 30473557 DOI: 10.5582/bst.2018.01242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic heart failure (CHF) leads to pulmonary structural remodeling, which may be a key factor for poor clinical outcomes in patients with end-stage heart failure, and few effective therapeutic options are presently available. The aim of the current study was to explore the mechanism of action and pulmonary-protective effects of treatment with Bao Yuan decoction combined with Tao Hong Si Wu decoction (BYTH) on lung structural remodeling in rats with ischemic heart failure. In a model of myocardial infarction (MI) induced by ligation of the left anterior descending (LAD) artery, rats were treated with BYTH. Heart function and morphometry were measured followed by echocardiography, histological staining, and immunohistochemical analysis of lung sections. The levels of transforming growth factor-β1 (TGF-β1), type I collagen, phosphorylated-Smad3 (p-Smad3), tumor necrosis factor-α (TNF-α), toll-like receptor 4 (TLR4), active nuclear factor κB (NF-κB) and alpha smooth muscle actin (α-SMA) were detected using Western blotting. Lung weight increased after an infarct with no evidence of pulmonary edema and returned to normal as a result of BYTH. In addition, BYTH treatment reduced levels of type I collagen, TGF-β1, and α-SMA expression and decreased the phosphorylation of Smad3 in the lungs of rats after MI. BYTH treatment also reduced the elevated levels of lung inflammatory mediators such as TNF-α, TLR4, and NF-κB. Results suggested that BYTH could effectively improve lung structural remodeling after MI because of its anti-inflammatory and anti-fibrotic action, which may be mediated by suppression of the TGF-β1/Smad3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Guozhen Yuan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Anbang Han
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Jing Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Yingdong Lu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Dandan Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Yuxiu Sun
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | | | - Mingjing Zhao
- The Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine
| | - Bingbing Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| | - Xiangning Cui
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences
| |
Collapse
|
24
|
Du SF, Wang XL, Ye CL, He ZJ, Li DX, Du BR, Liu YJ, Zhu XY. Exercise training ameliorates bleomycin-induced epithelial mesenchymal transition and lung fibrosis through restoration of H 2 S synthesis. Acta Physiol (Oxf) 2019; 225:e13177. [PMID: 30136377 DOI: 10.1111/apha.13177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/26/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022]
Abstract
AIMS Clinical trials have shown the beneficial effects of exercise training against pulmonary fibrosis. This study aimed to investigate whether prophylactic intervention with exercise training attenuates lung fibrosis via modulating endogenous hydrogen sulphde (H2 S) generation. METHODS First, ICR mice were allocated to Control, Bleomycin, Exercise, and Bleomycin + Exercise groups. Treadmill exercise began on day 1 and continued for 4 weeks. A single intratracheal dose of bleomycin (3 mg/kg) was administered on day 15. Second, ICR mice were allocated to Control, Bleomycin, H2 S, and Bleomycin + H2 S groups. H2 S donor NaHS (28 μmol/kg) was intraperitoneally injected once daily for 2 weeks. RESULTS Bleomycin-treated mice exhibited increased levels of collagen deposition, hydroxyproline, collagen I, transforming growth factor (TGF)-β1, Smad2/Smad3/low-density lipoprotein receptor-related proteins (LRP-6)/glycogen synthase kinase-3β (GSK-3β) phosphorylation, and Smad4/β-catenin expression in lung tissues (P < 0.01), which was alleviated by exercise training (P < 0.01 except for Smad4 and phosphorylated GSK-3β: P < 0.05). Bleomycin-induced lung fibrosis was associated with increased α smooth muscle actin (α-SMA) and decreased E-cadherin expression (P < 0.01). Double immunofluorescence staining showed the co-localization of E-cadherin/α-SMA, indicating epithelial-mesenchymal transition (EMT) formation, which was ameliorated by exercise training. Moreover, exercise training restored bleomycin-induced downregulation of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) expression, as well as H2 S generation in lung tissue (P < 0.01). NaHS treatment attenuated bleomycin-induced TGF-β1 production, activation of LRP-6/β-catenin signalling, EMT and lung fibrosis (P < 0.01 except for β-catenin: P < 0.05). CONCLUSION Exercise training restores bleomycin-induced downregulation of pulmonary CBS/CSE expression, thus contributing to the increased H2 S generation and suppression of TGF-β1/Smad and LRP-6/β-catenin signalling pathways, EMT and lung fibrosis.
Collapse
Affiliation(s)
- Shu-Fang Du
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
- Department of Physiology; Second Military Medical University; Shanghai China
| | - Xiu-Li Wang
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Chang-Lin Ye
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Ze-Jia He
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Dong-Xia Li
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Bai-Ren Du
- Institute of Sport; Anqing Normal University; Anhui China
| | - Yu-Jian Liu
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Xiao-Yan Zhu
- Department of Physiology; Second Military Medical University; Shanghai China
| |
Collapse
|
25
|
Liu Q, Shi X, Tang L, Xu W, Jiang S, Ding W, Feng Q, Chu H, Ma Y, Li Y, Lu J, Pu W, Zhou X, Jin L, Wang J, Wu W. Salvianolic acid B attenuates experimental pulmonary inflammation by protecting endothelial cells against oxidative stress injury. Eur J Pharmacol 2018; 840:9-19. [PMID: 30273543 DOI: 10.1016/j.ejphar.2018.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
Endothelial cell injury and subsequent inflammation play pivotal roles in the pathogenesis of pulmonary fibrosis, a progressive and fatal disorder. We found previously that salvianolic acid B (SAB) attenuated experimental pulmonary fibrosis. Pulmonary fibrosis is driven by inflammation, but the anti-inflammatory role and mechanism of SAB on the treatment of pulmonary fibrosis is still unknown. Here, our in vivo studies showed that SAB had a strong anti-inflammatory effect on bleomycin-instilled mice by inhibiting inflammatory cell infiltration and inflammatory cytokine production. Moreover, SAB protected endothelial cells against oxidative stress injury and inhibited endothelial cell apoptosis in bleomycin-treated mice. The in vitro studies also showed that SAB decreased the H2O2-induced overproduction of reactive oxygen species to protect EA.hy926 endothelial cells from oxidative damage, and further inhibited H2O2-induced permeability and overexpression of pro-inflammatory molecules. The next studies revealed that SAB inhibited the H2O2-induced cell apoptosis and attenuated the decrease of tight junction-related gene expression, resulting in a decrease of the endothelial permeability in injured endothelial cells. Furthermore, Western blot analysis suggested that SAB decreased endothelial cell permeability and expression of pro-inflammatory cytokines by inhibiting MAPK and NF-κB signaling pathways. Taken together, these data indicate that SAB exerted anti-inflammatory roles in pulmonary fibrosis by protection of the endothelial cells against oxidative stress injury, mediated by inhibition of endothelial permeability and expression of pro-inflammatory cytokine via the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Luyan Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weihong Xu
- The Clinical Laboratory of Shanghai Tongren Hosipital, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weifeng Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian Feng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Haiyan Chu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuan Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaodong Zhou
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China.
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; Department of Dermatology, Jing'an District Central Hospital, Shanghai, China.
| |
Collapse
|
26
|
Zhang Q, Tu W, Tian K, Han L, Wang Q, Chen P, Zhou X. Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor-β1/Smad2 and nuclear factor-κB signaling pathways in human fetal lung fibroblasts. J Cell Biochem 2018; 120:93-104. [PMID: 30230565 DOI: 10.1002/jcb.27128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/02/2018] [Indexed: 12/24/2022]
Abstract
Fibroblast-to-myofibroblast differentiation, which is characterized by increased expression of α-smooth muscle actin, is known to be involved in the pathogenesis of idiopathic pulmonary fibrosis. Sirtuin 6 (SIRT6), a member of the sirtuin family, has been proved to inhibit epithelial-to-mesenchymal transition during idiopathic pulmonary fibrosis. However, the function of SIRT6 in lung myofibroblast differentiation is still obscure. Transforming growth factor-β1 (TGF-β1) is one of the main factors that can powerfully promote myofibroblast differentiation. In the current study, we aimed to explore the role of SIRT6 in the cellular model of fibroblast-to-myofibroblast differentiation induced by TGF-β1 using human fetal lung fibroblasts (HFL1). We demonstrated that the SIRT6 protein level is upregulated by TGF-β1 in HFL1 cells. Overexpression of SIRT6 significantly suppresses TGF-β1-induced myofibroblast differentiation in HFL1 cells. Mechanistically, SIRT6 decreases phosphorylation and nuclear translocation of Smad2 under TGF-β1 stimulation. Nevertheless, mutant SIRT6 (H133Y) without histone deacetylase activity fails to inhibit phosphorylation and nuclear translocation of Smad2. Meanwhile, SIRT6 interacts with the nuclear factor-κB (NF-κB) subunit p65 and represses TGF-β1-induced NF-κB-dependent transcriptional activity, which is also dependent on its deacetylase activity. Overexpression of wild-type SIRT6 but not the H133Y mutant inhibits the expression of NF-κB-dependent genes including interleukin (IL)-1β, IL-6 and matrix metalloproteinase-9 (MMP-9) induced by TGF-β1, all of which have been demonstrated to promote myofibroblast differentiation. Collectively, our study reveals that SIRT6 prevents TGF-β1-induced lung myofibroblast differentiation through inhibiting TGF-β1/Smad2 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Tu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunming Tian
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianyong Han
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Panpan Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
27
|
Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy. Front Physiol 2018; 9:1177. [PMID: 30197602 PMCID: PMC6117399 DOI: 10.3389/fphys.2018.01177] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.
Collapse
Affiliation(s)
- Amaal E. Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gilles F. H. Diercks
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Douwe J. Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
Bao L, Hao C, Liu S, Zhang L, Wang J, Wang D, Li Y, Yao W. Dendritic cells trigger imbalance of Th1/Th2 cells in silica dust exposure rat model via MHC-II, CD80, CD86 and IL-12. RSC Adv 2018; 8:26108-26115. [PMID: 35541981 PMCID: PMC9083086 DOI: 10.1039/c8ra03970d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/07/2018] [Indexed: 12/24/2022] Open
Abstract
Silicosis is one of the most common occupational respiratory diseases caused by inhaling silica dust over a prolonged period of time, and the progression of silicosis is accompanied with chronic inflammation and progressive pulmonary fibrosis, in which dendritic cells (DCs), the most powerful antigen presentation cell (APC) in the immune response, play a crucial role. To investigate the role of DCs in the development of silicosis, we established an experimental silicosis rat model and examined the number of DCs and alveolar macrophages (AMs) in lung tissues using immunofluorescence over 84 days. Additionally, to obtain an overview of the immunological changes in rat lung tissues, a series of indicators including Th1/Th2 cells, IFN-γ, IL-4, MHC-II, CD80/86 and IL-12 were detected using flow cytometry and an enzyme-linked immunosorbent assay (ELISA) as well as a real-time polymerase chain reaction (PCR) assay. We observed that the number of DCs slightly increased at the inflammatory stage, and it increased significantly at the final stage of fibrosis. Polarization of Th1 cells and IFN-γ expressions were dominant during the inflammatory stage, whereas polarization of Th2 cells and IL-4 expressions were dominant during the fibrotic stage. The subsequent mechanistic study found that the expressions of MHC-II, CD80/86 and IL-12, which are the key molecules that connect DCs and Th cells, changed dynamically in the experimental silicosis rat model. The data obtained in this study indicated that the increase in DCs may contribute to polarization of Th1/Th2 cells via MHC-II, CD80/86, and IL-12 in silica dust-exposed rats.
Collapse
Affiliation(s)
- Lei Bao
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Changfu Hao
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Suna Liu
- The Third Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450001 China
| | - Lin Zhang
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Juan Wang
- Hebei General Hospital Shijiazhuang Hebei 050000 China
| | - Di Wang
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Yiping Li
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Wu Yao
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| |
Collapse
|
29
|
Yang JM, Zhou R, Zhang M, Tan HR, Yu JQ. Betaine Attenuates Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats via Inhibiting Inflammatory Response. Molecules 2018; 23:molecules23061274. [PMID: 29861433 PMCID: PMC6100216 DOI: 10.3390/molecules23061274] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance, leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. Several studies have demonstrated that betaine possesses outstanding anti-inflammatory effects. However, whether betaine exerts protective effects on PAH by inhibiting inflammatory responses in the lungs needs to be explored. To test our hypothesis, we aimed to investigate the effects of betaine on monocrotaline-induced PAH in rats and attempted to further clarify the possible mechanisms. Methods: PAH was induced by monocrotaline (50 mg/kg) and oral administration of betaine (100, 200, and 400 mg/kg/day). The mean pulmonary arterial pressure, right ventricular systolic pressure, and right ventricle hypertrophy index were used to evaluate the development of PAH. Hematoxylin and eosin staining and Masson staining were performed to measure the extents of vascular remodeling and proliferation in fibrous tissue. Monocyte chemoattractant protein-1 (MCP-1) and endothelin-1 (ET-1) were also detected by immunohistochemical staining. Nuclear factor-κB (NF-κB), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) were assessed by Western blot. Results: This study showed that betaine improved the abnormalities in right ventricular systolic pressure, mean pulmonary arterial pressure, right ventricle hypertrophy index, and pulmonary arterial remodeling induced by monocrotaline compared with the PAH group. The levels of MCP-1 and ET-1 also decreased. Western blot indicated that the protein expression levels of NF-κB, TNF-α, and IL-1β significantly decreased (p < 0.01). Conclusion: Our study demonstrated that betaine attenuated PAH through its anti-inflammatory effects. Hence, the present data may offer novel targets and promising pharmacological perspectives for treating monocrotaline-induced PAH.
Collapse
Affiliation(s)
- Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Min Zhang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Huan-Ran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
30
|
Ni X, Zhang L, Peng M, Shen TW, Yu XS, Shan LY, Li L, Si JQ, Li XZ, Ma KT. Hydrogen Sulfide Attenuates Hypertensive Inflammation via Regulating Connexin Expression in Spontaneously Hypertensive Rats. Med Sci Monit 2018; 24:1205-1218. [PMID: 29485979 PMCID: PMC5841927 DOI: 10.12659/msm.908761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) has anti-inflammatory and anti-hypertensive effects, and connexins (Cxs) are involved in regulation of immune homeostasis. In this study, we explored whether exogenous H2S prevents hypertensive inflammation by regulating Cxs expression of T lymphocytes in spontaneously hypertensive rats (SHR). MATERIAL AND METHODS We treated SHR with sodium hydrosulfide (NaHS) for 9 weeks. Vehicle-treated Wistar-Kyoto rats (WKYs) were used as a control. The arterial pressure was monitored by the tail-cuff method, and vascular function in basilar arteries was examined by pressure myography. Hematoxylin and eosin staining was used to show vascular remodeling and renal injury. The percentage of T cell subtypes in peripheral blood, surface expressions of Cx40/Cx43 on T cell subtypes, and serum cytokines level were determined by flow cytometry or ELISA. Expression of Cx40/Cx43 proteins in peripheral blood lymphocytes was analyzed by Western blot. RESULTS Chronic NaHS treatment significantly attenuated blood pressure elevation, and inhibited inflammation of target organs, vascular remodeling, and renal injury in SHR. Exogenous NaHS also improved vascular function by attenuating KCl-stimulated vasoconstrictor response in basilar arteries of SHR. In addition, chronic NaHS administration significantly suppressed inflammation of peripheral blood in SHR, as evidenced by the decreased serum levels of IL-2, IL-6, and CD4/CD8 ratio and the increased IL-10 level and percentage of regulatory T cells. NaHS treatment decreased hypertension-induced Cx40/Cx43 expressions in T lymphocytes from SHR. CONCLUSIONS Our data demonstrate that H2S reduces hypertensive inflammation, at least partly due to regulation of T cell subsets balance by Cx40/Cx43 expressions inhibition.
Collapse
Affiliation(s)
- Xin Ni
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi Universit, Shihezi, Xinjiang, China (mainland)
| | - Liang Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Min Peng
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Tu-Wang Shen
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Xiu-Shi Yu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Li-Ya Shan
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Xin-Zhi Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Department of Pathophysiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland).,Key Laoratory of Xingjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| |
Collapse
|
31
|
Mojiri-Forushani H, Hemmati AA, Khodadadi A, Rashno M. Valsartan attenuates bleomycin-induced pulmonary fibrosis by inhibition of NF-κB expression and regulation of Th1/Th2 cytokines. Immunopharmacol Immunotoxicol 2018; 40:225-231. [PMID: 29447007 DOI: 10.1080/08923973.2018.1431924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Pulmonary fibrosis (PF) is a chronic respiratory system disease. The role of inflammation and angiotensin in the development and progression of PF has previously been demonstrated. Alternation in antifibrotic/profibrotic mediators and NF-κB activation have important roles in PF development. NF-κB, a nuclear factor, induces the transcription of inflammatory and pro-inflammatory cytokines. The aim of this study was to evaluate the effect of valsartan as an angiotensin receptor blocker on IL-4, INF-γ, and NF-κB expression in the treatment of PF. MATERIALS AND METHODS Rats were divided into five groups: groups I (bleomycin) and II (control) received a single injection of bleomycin (7.5 IU/kg) or vehicle, respectively. Groups III-V received valsartan (20, 40, and 80 mg/kg, respectively) orally a week before and for 3 weeks after the bleomycin injection. Serum levels of IL-4 and INF- γ were then measured. Relative NF-κB expression was investigated by real-time PCR. RESULTS Histopathological examination showed the anti-inflammation effect of valsartan. Bleomycin significantly increased IL-4 serum level and decreased that of INF-γ in the serum. Valsartan could restore their levels to normal. Valsartan raised the decreased ratio of INF-γ/IL-4. Exposure to bleomycin elevated NF-κB expression; and valsartan decreased the increased gene expression. DISCUSSION Valsartan as an angiotensin receptor antagonist presumably by blocking angiotensin receptor causes to ameliorated PF, which was at least partly due to antifibrotic/profibrotic cytokine regulation and reduced NF-κB expression. CONCLUSIONS Valsartan showed a significant protective effect against bleomycin-induced PF.
Collapse
Affiliation(s)
| | - Ali Asghar Hemmati
- b Department of Pharmacology, Faculty of Pharmacy , Ahvaz Jundishapur University of Medical Sciences (AJUMS) , Ahvaz , Iran
| | - Ali Khodadadi
- c Department of Immunology, Faculty of Medicine , Ahvaz Jundishapur University of Medical Sciences (AJUMS) , Ahvaz , Iran
| | - Mohammad Rashno
- c Department of Immunology, Faculty of Medicine , Ahvaz Jundishapur University of Medical Sciences (AJUMS) , Ahvaz , Iran
| |
Collapse
|
32
|
Is hydrogen sulfide a potential novel therapy to prevent renal damage during ureteral obstruction? Nitric Oxide 2018; 73:15-21. [DOI: 10.1016/j.niox.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/12/2017] [Accepted: 12/17/2017] [Indexed: 12/28/2022]
|
33
|
Long-Term Effects of TCM Yangqing Kangxian Formula on Bleomycin-Induced Pulmonary Fibrosis in Rats via Regulating Nuclear Factor- κB Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2089027. [PMID: 29387126 PMCID: PMC5745787 DOI: 10.1155/2017/2089027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/04/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
Objective We aimed to evaluate the therapeutic effects and long-term effects of YKF and dissect the potential mechanisms. Materials and Methods IPF rats were given YKF, prednisone, or pirfenidone, respectively, from day 1 to day 42, followed by a 28-day nonintervention interval through day 70. Forced vital capacity (FVC), histopathology, hydroxyproline (HYP) contents, lung coefficient, blood inflammatory cell populations, inflammatory cytokine levels of the lung tissues, and the expression of proteins involved in nuclear factor- (NF-) κB signaling pathway were evaluated on days 7, 14, 28, 42, and 70. Results HYP contents, Ashcroft scores, lung coefficient, and pulmonary fibrosis blood cell populations increased significantly in IPF rats, while FVC declined. All the above-mentioned parameters were improved in treatment groups from day 7 up to day 70, especially in YKF group. The mRNA and protein expressions of tumor necrosis factor- (TNF-) α significantly decreased, while interferon- (IFN-) γ significantly increased, and phosphorylations of cytoplasm inhibitor of nuclear factor kappa-B kinase β (IKKβ), inhibitor of nuclear factor kappa-B α (IκBα), and NF-κB were obviously downregulated in YKF group from day 7 to day 70. Conclusion YKF has beneficial protective and long-term effects on pulmonary fibrosis by anti-inflammatory response and alleviating fibrosis.
Collapse
|
34
|
He Y, Liu S, Zhang Z, Liao C, Lin F, Yao W, Chen Y. Imbalance of Endogenous Hydrogen Sulfide and Homocysteine in Chronic Obstructive Pulmonary Disease Combined with Cardiovascular Disease. Front Pharmacol 2017; 8:624. [PMID: 28955229 PMCID: PMC5600942 DOI: 10.3389/fphar.2017.00624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Considerable studies showed associations between chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD), we evaluated the role of endogenous hydrogen sulfide (H2S)/homocysteine (Hcy) in patients with COPD combined with CVD. Methods: Fifty one stable patients with COPD were enrolled (25 COPD, 26 COPD + CVD). Lung function, sputum, peripheral blood samples, serum H2S, Hcy, high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor-α (TNF-α) levels were measured. Dyspnea, symptoms and quality of life were quantified by modified Medical Research Council dyspnea scale (mMRC), COPD assessment test (CAT) and St. George’s Respiratory Questionnaire (SGRQ). Results: Compared with COPD group, waist circumference and body mass index (BMI) were higher in COPD + CVD group, mMRC, CAT and activity scores were also higher, high density lipoprotein cholesterol (HDL-C) was lower, total cells, neutrophils (%) in sputum and serum hs-CRP level were higher, whereas macrophages (% ) in sputum was lower. H2S and Hcy levels from COPD + CVD group were higher than those from COPD group, but H2S/Hcy ratio was lower. With increasing COPD severity, H2S level was decreased, however, Hcy level was increased. H2S level was positively correlated with FEV1/FVC, FEV1% predicted, lymphocytes (%) and macrophages (%) in sputum, but negatively correlated with smoking pack-years and neutrophils (%) in sputum. Hcy level was positively correlated with BMI and total cells in sputum. The ratio of H2S/Hcy was also positively correlated with FEV1/FVC, but negatively correlated with total cells in sputum. Conclusion: The imbalance of H2S/Hcy may be involved in the pathogenesis of COPD combined with CVD and provide novel targets for therapy.
Collapse
Affiliation(s)
- Yanjing He
- Department of Pulmonary and Critical Care Medicine, Peking University Third HospitalBeijing, China.,Department of Laboratory Medicine, The First Hospital of Sanming Affiliated to Fujian Medical UniversitySanming, China
| | - Shaoyu Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third HospitalBeijing, China
| | - Zhe Zhang
- Department of Cardiac Surgery, Peking University Third HospitalBeijing, China
| | - Chengcheng Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third HospitalBeijing, China
| | - Fan Lin
- Department of Pulmonary and Critical Care Medicine, Peking University Third HospitalBeijing, China
| | - Wanzhen Yao
- Department of Pulmonary and Critical Care Medicine, Peking University Third HospitalBeijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third HospitalBeijing, China
| |
Collapse
|
35
|
Bazhanov N, Escaffre O, Freiberg AN, Garofalo RP, Casola A. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Sci Rep 2017; 7:41029. [PMID: 28106111 PMCID: PMC5247713 DOI: 10.1038/srep41029] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide is an important endogenous mediator that has been the focus of intense investigation in the past few years, leading to the discovery of its role in vasoactive, cytoprotective and anti-inflammatory responses. Recently, we made a critical observation that H2S also has a protective role in paramyxovirus infection by modulating inflammatory responses and viral replication. In this study we tested the antiviral and anti-inflammatory activity of the H2S slow-releasing donor GYY4137 on enveloped RNA viruses from Ortho-, Filo-, Flavi- and Bunyavirus families, for which there is no FDA-approved vaccine or therapeutic available, with the exception of influenza. We found that GYY4137 significantly reduced replication of all tested viruses. In a model of influenza infection, GYY4137 treatment was associated with decreased expression of viral proteins and mRNA, suggesting inhibition of an early step of replication. The antiviral activity coincided with the decrease of viral-induced pro-inflammatory mediators and viral-induced nuclear translocation of transcription factors from Nuclear Factor (NF)-kB and Interferon Regulatory Factor families. In conclusion, increasing cellular H2S is associated with significant antiviral activity against a broad range of emerging enveloped RNA viruses, and should be further explored as potential therapeutic approach in relevant preclinical models of viral infections.
Collapse
Affiliation(s)
- Nikolay Bazhanov
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
36
|
Chen F, Wang PL, Fan XS, Yu JH, Zhu Y, Zhu ZH. Effect of Renshen Pingfei Decoction, a traditional Chinese prescription, on IPF induced by Bleomycin in rats and regulation of TGF-β1/Smad3. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:289-297. [PMID: 27013092 DOI: 10.1016/j.jep.2016.03.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/16/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
AIM OF THE STUDY Idiopathic pulmonary fibrosis (IPF), one of the clinical common diseases, shares similar pathogenesis with ancient disease "Feibi" in Chinese medicine, Renshen pingfei decoction (RPFS), a classical prescription, was commonly used in treating Feibi. In the current study, the protective role of RPFS in rats model of IPF and the mechanism via regulation of TGF-β1/Smad3, were evaluated and explored. METHODS The chemicals of RPFS were analyzed by UPLC-QTOF-MS. Under the optimized chromatographic and MS condition, the major components in RPFS were well separated and detected. An IPF model was established in rats which were induced with Bleomycin (BLM). After treated with corresponding medicine for 7 days, 14 days, 21 days and 28 days respectively, lung function of rats were measured; peripheral blood and bronchoalveolar lavage fluid (BALF) were assessed; histopathological changes and homogenate of lung tissue were detected; TGF-β1 and Smad3 mRNA and protein expressions in lung tissue were examined as well. RESULTS 43 signal peaks of chemical components in RPFS were identified by UPLC-QTOF-MS method. Compared with model group, RPFS group exerted significant effects on IPF model rats in improving lung function and decreasing HYP content of lung tissue (P<0.01), reducing the level of TGF-β1 and NFκB in BALF (P<0.05), decreasing SOD and MDA level in serum (P<0.01), as well as down-regulating TGF-β1 and Smad3 mRNA and protein expressions of lung tissue (P<0.01). CONCLUSION RPFS could reduce the lung injury and fibrosis degree and improve lung function of IPF model rats. The protective role might mediated by down-regulating TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Fei Chen
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng-Li Wang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin-Sheng Fan
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jing-Hua Yu
- College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
37
|
Hydrogen Sulfide and Cellular Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6043038. [PMID: 26881033 PMCID: PMC4736422 DOI: 10.1155/2016/6043038] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/06/2023]
Abstract
Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review.
Collapse
|
38
|
Yang S, Deng D, Luo Y, Wu Y, Zhu R, Xue K, Zhou Y. NaHS inhibits NF-κB signal against inflammation and oxidative stress in post-infectious irritable bowel syndrome. RSC Adv 2016. [DOI: 10.1039/c6ra13849g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the alleviating role of hydrogen sulfide (H2S) was investigated in a Post-Infectious Irritable Bowel Syndrome (PI-IBS) murine model and Caco-2 cells.
Collapse
Affiliation(s)
- Shenglan Yang
- Department of Integrated Traditional Chinese and Western Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Danfang Deng
- Department of Integrated Traditional Chinese and Western Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Yingying Luo
- Department of Integrated Traditional Chinese and Western Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Yanran Wu
- Department of Integrated Traditional Chinese and Western Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Yanping Zhou
- Department of Integrated Traditional Chinese and Western Medicine
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| |
Collapse
|
39
|
Yoon YS, Kim SY, Kim MJ, Lim JH, Cho MS, Kang JL. PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol 2015; 8:1031-46. [PMID: 25586556 PMCID: PMC4762910 DOI: 10.1038/mi.2014.130] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/05/2014] [Indexed: 02/04/2023]
Abstract
Changes in macrophage phenotype have been implicated in apoptotic cell-mediated immune modulation via induction of peroxisome proliferator-activated receptor-γ (PPARγ). In this study, we characterized PPARγ induction by apoptotic cell instillation over the course of bleomycin-induced lung injury in C57BL/6 mice. Next, the role of PPARγ activation in resolving lung inflammation and fibrosis was investigated. Our data demonstrate that apoptotic cell instillation after bleomycin results in immediate and prolonged enhancement of PPARγ mRNA and protein in alveolar macrophages and lung. Moreover, PPARγ activity and expression of its target molecules, including CD36, macrophage mannose receptor, and arginase 1, were persistently enhanced following apoptotic cell instillation. Coadministration of the PPARγ antagonist, GW9662, reversed the enhanced efferocytosis, and the reduced proinflammatory cytokine expression, neutrophil recruitment, myeloperoxidase activity, hydroxyproline contents, and fibrosis markers, including type 1 collagen α2, fibronectin and α-smooth muscle actin (α-SMA), in the lung by apoptotic cell instillation. In addition, inhibition of PPARγ activity reversed the expression of transforming growth factor-β (TGF-β), interleukin (IL)-10, and hepatocyte growth factor (HGF). These findings indicate that one-time apoptotic cell instillation contributes to anti-inflammatory and antifibrotic responses via upregulation of PPARγ expression and subsequent activation, leading to regulation of efferocytosis and production of proresolving cytokines.
Collapse
Affiliation(s)
- Y-S Yoon
- Department of Physiology, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
| | - S-Y Kim
- Department of Physiology, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
| | - M-J Kim
- Department of Physiology, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
| | - J-H Lim
- Department of Microbiology, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
| | - M-S Cho
- Department of Pathology, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
| | - J L Kang
- Department of Physiology, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
- Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
- Global Top 5 Research Program, School of Medicine, Ewha Womans University, Yangcheon-ku, Seoul, Korea
| |
Collapse
|
40
|
Chen SW, Zhu J, Zuo S, Zhang JL, Chen ZY, Chen GW, Wang X, Pan YS, Liu YC, Wang PY. Protective effect of hydrogen sulfide on TNF-α and IFN-γ-induced injury of intestinal epithelial barrier function in Caco-2 monolayers. Inflamm Res 2015; 64:789-97. [PMID: 26249853 DOI: 10.1007/s00011-015-0862-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND AIM Studies have verified the protective effect of Hydrogen Sulfide (H2S) on gastric ulcer and ulcerative colitis, but the mechanisms are not fully illustrated. In this study, the possible protective effect of H2S on TNF-α/IFN-γ induced barrier dysfunction was investigated in Caco-2 cell monolayers. METHOD The barrier function of Caco-2 monolayers was evaluated by measuring trans-epithelial electrical resistance (TEER) and FITC-Dextran 4 kDa (FD-4) trans-membrane flux. ZO-1 and Occludin were chosen as markers of the localization of tight junction (TJ) proteins for immunofluorescence. The expression of MLCK and phosphorylation level of myosin light chain (MLC) were measured by immunoblotting. The activation of NF-kB p65 was analyzed by EMSA and immunofluorescence. RESULTS NaHS at 500 uM significantly attenuated TNF-α/IFN-γ-indueced Caco-2 monolayer barrier injury. The increased expression of MLCK and increased phosphorylation level of MLC induced by TNF-α/IFN-γ was also inhibited significantly by NaHS. Additionally, NaHS inhibited TNF-α/IFN-γ induced activation and nuclear translocation of NF-kB p65. CONCLUSION The present study reveals the protective effect of H2S on TNF-α and IFN-γ-induced injury of intestinal epithelial barrier function in Caco-2 monolayers and suggests that the suppression of MLCK-P-MLC signaling mediated by NF-kB P65 might be one of the mechanisms underlying the protective effect of H2S.
Collapse
Affiliation(s)
- Shan-Wen Chen
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Jing Zhu
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Shuai Zuo
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Jun-Ling Zhang
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Zi-Yi Chen
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Guo-Wei Chen
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Xin Wang
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Yi-Sheng Pan
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Yu-Cun Liu
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China
| | - Peng-Yuan Wang
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing, 100034, People's Republic of China.
| |
Collapse
|
41
|
Hatziefthimiou A, Stamatiou R. Role of hydrogen sulphide in airways. World J Respirol 2015; 5:152-159. [DOI: 10.5320/wjr.v5.i2.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
The toxicity of hydrogen sulfide (H2S) has been known for a long time, as it is prevalent in the atmosphere. However accumulative data suggest that H2S is also endogenously produced in mammals, including man, and is the third important gas signaling molecule, besides nitric oxide and carbon monoxide. H2S can be produced via non enzymatic pathways, but is mainly synthesized from L-cysteine by the enzymes cystathionine-γ-lyase, cystathionine-β-synthetase, cysteine amino transferase and 3-mercaptopyruvate sulfurtransferase (3MTS). The formation of H2S from D-cysteine via the enzyme D-amino acid oxidase and 3MTS has also been described. Endogenous H2S not only participates in the regulation of physiological functions of the respiratory system, but also seems to contribute to the pathophysiology of airway diseases such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis, as well as in inflammation, suggesting its possible use as a biomarker for these diseases. This review summarizes the different implications of hydrogen sulfide in the physiology of airways and the pathophysiology of airway diseases.
Collapse
|
42
|
Tao W, Su Q, Wang H, Guo S, Chen Y, Duan J, Wang S. Platycodin D attenuates acute lung injury by suppressing apoptosis and inflammation in vivo and in vitro. Int Immunopharmacol 2015; 27:138-47. [DOI: 10.1016/j.intimp.2015.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/24/2015] [Accepted: 05/04/2015] [Indexed: 12/20/2022]
|
43
|
Zhang S, Pan C, Zhou F, Yuan Z, Wang H, Cui W, Zhang G. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:593407. [PMID: 26078809 PMCID: PMC4442300 DOI: 10.1155/2015/593407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/29/2014] [Indexed: 12/24/2022]
Abstract
Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself.
Collapse
Affiliation(s)
- Shufang Zhang
- Department of Cardiovascular Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Binjiang Branch, Hangzhou 310009, China
| | - Chuli Pan
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feifei Zhou
- Department of Critical Care Medicine, Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo 315041, China
| | - Zhi Yuan
- Department of Respiratory Medicine, Fenghua People's Hospital, Fenghua, Ningbo 315000, China
| | - Huiying Wang
- Department of Allergy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
44
|
Role of hydrogen sulfide in paramyxovirus infections. J Virol 2015; 89:5557-68. [PMID: 25740991 DOI: 10.1128/jvi.00264-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Hydrogen sulfide (H2S) is an endogenous gaseous mediator that has gained increasing recognition as an important player in modulating acute and chronic inflammatory diseases. However, its role in virus-induced lung inflammation is currently unknown. Respiratory syncytial virus (RSV) is a major cause of upper and lower respiratory tract infections in children for which no vaccine or effective treatment is available. Using the slow-releasing H2S donor GYY4137 and propargylglycin (PAG), an inhibitor of cystathionine-γ-lyase (CSE), a key enzyme that produces intracellular H2S, we found that RSV infection led to a reduced ability to generate and maintain intracellular H2S levels in airway epithelial cells (AECs). Inhibition of CSE with PAG resulted in increased viral replication and chemokine secretion. On the other hand, treatment of AECs with the H2S donor GYY4137 reduced proinflammatory mediator production and significantly reduced viral replication, even when administered several hours after viral absorption. GYY4137 also significantly reduced replication and inflammatory chemokine production induced by human metapneumovirus (hMPV) and Nipah virus (NiV), suggesting a broad inhibitory effect of H2S on paramyxovirus infections. GYY4137 treatment had no effect on RSV genome replication or viral mRNA and protein synthesis, but it inhibited syncytium formation and virus assembly/release. GYY4137 inhibition of proinflammatory gene expression occurred by modulation of the activation of the key transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3) at a step subsequent to their nuclear translocation. H2S antiviral and immunoregulatory properties could represent a novel treatment strategy for paramyxovirus infections. IMPORTANCE RSV is a global health concern, causing significant morbidity and economic losses as well as mortality in developing countries. After decades of intensive research, no vaccine or effective treatment, with the exception of immunoprophylaxis, is available for this infection as well as for other important respiratory mucosal viruses. This study identifies hydrogen sulfide as a novel cellular mediator that can modulate viral replication and proinflammatory gene expression, both important determinants of lung injury in respiratory viral infections, with potential for rapid translation of such findings into novel therapeutic approaches for viral bronchiolitis and pneumonia.
Collapse
|
45
|
Sun X, Chen E, Dong R, Chen W, Hu Y. Nuclear factor (NF)-κB p65 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-β. Life Sci 2015; 122:8-14. [DOI: 10.1016/j.lfs.2014.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/03/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
|
46
|
Agné AM, Baldin JP, Benjamin AR, Orogo-Wenn MC, Wichmann L, Olson KR, Walters DV, Althaus M. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption. Am J Physiol Regul Integr Comp Physiol 2015; 308:R636-49. [PMID: 25632025 DOI: 10.1152/ajpregu.00489.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance.
Collapse
Affiliation(s)
- Alisa M Agné
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Jan-Peter Baldin
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Audra R Benjamin
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Maria C Orogo-Wenn
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Lukas Wichmann
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana; and
| | - Dafydd V Walters
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Mike Althaus
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany;
| |
Collapse
|
47
|
Abstract
Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths.
Collapse
|
48
|
Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NF-κB in mice. Int Immunopharmacol 2014; 22:498-504. [PMID: 25111852 DOI: 10.1016/j.intimp.2014.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality and poor prognosis. Previous studies confirmed that NF-κB plays a critical role in the pathogenesis of pulmonary fibrosis and glucagon like peptide-1 (GLP-1) has a property of anti-inflammation by inactivation of NF-κB. Furthermore, the GLP-1 receptor was detected in the lung tissues. Our aim was to investigate the potential value and mechanisms of GLP-1 on BLM-induced pulmonary fibrosis in mice. Mice with BLM-induced pulmonary fibrosis were treated with or without GLP-1 administration. 28 days after BLM infusion, the number of total cells, macrophages, neutrophils, lymphocytes, and the content of TGF-β1 in BALF were measured. Hematoxylin-eosin (HE) staining and Masson's trichrome (MT) staining were performed. The Ashcroft score and hydroxyproline content were analyzed. RT-qPCR and western blot were used to evaluate the expression of α-SMA and VCAM-1. The phosphorylation of NF-κB p65 was also assessed by western blot. DNA binding of NF-κB p65 was measured through Trans(AM) p65 transcription factor ELISA kit. GLP-1 reduced inflammatory cell infiltration and the content of TGF-β1 in BLAF in mice with BLM injection. The Ashcroft score and hydroxyproline content were decreased by GLP-1 administration. Meanwhile, BLM-induced overexpression of α-SMA and VCAM-1 were blocked by GLP-1 treatment in mice. GLP-1 also reduced the ratio of phosphor-NF-κB p65/total-NF-κB p65 and NF-κB p65 DNA binding activity in BLM-induced pulmonary fibrosis in mice. Our data found that BLM-induced lung inflammation and pulmonary fibrosis were significantly alleviated by GLP-1 treatment in mice, possibly through inactivation of NF-κB.
Collapse
|
49
|
Erb A, Althaus M. Actions of hydrogen sulfide on sodium transport processes across native distal lung epithelia (Xenopus laevis). PLoS One 2014; 9:e100971. [PMID: 24960042 PMCID: PMC4069190 DOI: 10.1371/journal.pone.0100971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/30/2014] [Indexed: 01/04/2023] Open
Abstract
Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned whether H2S may interfere with transepithelial electrolyte absorption. Electrolyte absorption was electrophysiologically measured across native distal lung preparations (Xenopus laevis) in Ussing chambers. The exposure of lung epithelia to H2S decreased net transepithelial electrolyte absorption. This was due to an impairment of amiloride-sensitive sodium transport. H2S inhibited the activity of the Na+/K+-ATPase as well as lidocaine-sensitive potassium channels located in the basolateral membrane of the epithelium. Inhibition of these transport molecules diminishes the electrochemical gradient which is necessary for transepithelial sodium absorption. Since sodium absorption osmotically facilitates alveolar fluid clearance, interference of H2S with the epithelial transport machinery provides a mechanism which enhances edema formation in H2S-exposed lungs.
Collapse
Affiliation(s)
- Alexandra Erb
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mike Althaus
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
50
|
Song JA, Park HJ, Yang MJ, Jung KJ, Yang HS, Song CW, Lee K. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy. Food Chem Toxicol 2014; 69:267-75. [PMID: 24769016 DOI: 10.1016/j.fct.2014.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 02/02/2023]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG-P) has been widely used as a disinfectant because of its strong bactericidal activity and low toxicity. However, in 2011, the Korea Centers for Disease Control and Prevention and the Ministry of Health and Welfare reported that a suspicious outbreak of pulmonary disease might have originated from humidifier disinfectants. The purpose of this study was to assess the toxicity of PHMG-P following direct exposure to the lung. PHMG-P (0.3, 0.9, or 1.5 mg/kg) was instilled into the lungs of mice. The levels of proinflammatory markers and fibrotic markers were quantified in lung tissues and flow cytometry was used to evaluate T cell distribution in the thymus. Administration of PHMG-P induced proinflammatory cytokines elevation and infiltration of immune cells into the lungs. Histopathological analysis revealed a dose-dependent exacerbation of both inflammation and pulmonary fibrosis on day 14. PHMG-P also decreased the total cell number and the CD4(+)/CD8(+) cell ratio in the thymus, with the histopathological examination indicating severe reduction of cortex and medulla. The mRNA levels of biomarkers associated with T cell development also decreased markedly. These findings suggest that exposure of lung tissue to PHMG-P leads to pulmonary inflammation and fibrosis as well as thymic atrophy.
Collapse
Affiliation(s)
- Jeong Ah Song
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea
| | - Hyun-Ju Park
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea
| | - Mi-Jin Yang
- Toxicopathology Center, Non-human Primate Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea
| | - Kyung Jin Jung
- Analytical Center, Korea Institute of Toxicology, Daejeon 305-343, Republic of Korea
| | - Hyo-Seon Yang
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea
| | - Chang-Woo Song
- Division of Toxicological Research, Korea Institute of Toxicology, Daejeon 305-343, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea.
| |
Collapse
|