1
|
Yasri S, Wiwanitkit V. Drug elimination and renal excretion of drugs. PHYSICO-CHEMICAL ASPECTS OF DOSAGE FORMS AND BIOPHARMACEUTICS 2024:173-178. [DOI: 10.1016/b978-0-323-91818-3.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Wang G, Qiu J, Li A, Ji Y, Zhang J. Apoptosis and oxidative stress of mouse breast carcinoma 4T1 and human intestinal epithelial Caco-2 cell lines caused by the phycotoxin gymnodimine-A. Chem Biol Interact 2023; 384:110727. [PMID: 37739050 DOI: 10.1016/j.cbi.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Gymnodimine-A (GYM-A) is a cyclic imine phycotoxin produced by some marine dinoflagellates. It can cause rapid death of mice via intraperitoneal administration and frequently accumulate in shellfish potentially threatening human health. In this study, four different cell lines were exposed to GYM-A for the viability assessment. Results showed that GYM-A was cytotoxic with concentration-dependent pattern to each cell type, with mean IC50 values ranging from 1.39 to 2.79 μmol L-1. Results suggested that the loss of cell viability of 4T1 and Caco-2 cells was attributed to apoptosis. Furthermore, the collapse of mitochondrial membrane potential and caspases activation were observed in the GYM-A-treated cells. Reactive oxygen species (ROS) and lipid peroxides (LPO) levels were markedly increased in 4T1 and Caco-2 cells exposed to GYM-A at 2 μmol L-1, and the oxidative stress in 4T1 cells was more obvious than that in Caco-2 cells. Additionally, unusual ultrastructure impairment on mitochondria and mitophagosomes occurred in the GYM-A-treated cells. These results suggested that an ROS-mediated mitochondrial pathway for apoptosis and mitophagy was implicated in the cytotoxic effects induced by GYM-A. This is the first report to explore the cytotoxic mechanisms of GYM-A through apoptosis and oxidative stress, and it will provide theoretical foundations for the potential therapeutic applications of GYM-A.
Collapse
Affiliation(s)
- Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
3
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
4
|
Wuerger LT, Hammer HS, Hofmann U, Kudiabor F, Sieg H, Braeuning A. Okadaic acid influences xenobiotic metabolism in HepaRG cells. EXCLI JOURNAL 2022; 21:1053-1065. [PMID: 36172076 PMCID: PMC9489895 DOI: 10.17179/excli2022-5033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Okadaic acid (OA) is an algae-produced lipophilic marine biotoxin that accumulates in the fatty tissue of filter-feeding shellfish. Ingestion of contaminated shellfish leads to the diarrheic shellfish poisoning syndrome. Furthermore, several other effects of OA like genotoxicity, liver toxicity and tumor-promoting properties have been observed, probably linked to the phosphatase-inhibiting properties of the toxin. It has been shown that at high doses OA can disrupt the physical barrier of the intestinal epithelium. As the intestine and the liver do not only constitute a physical, but also a metabolic barrier against xenobiotic exposure, we here investigated the impact of OA on the expression of cytochrome P450 (CYP) enzymes and transporter proteins in human HepaRG cells liver cells in vitro at non-cytotoxic concentrations. The interplay of OA with known CYP inducers was also studied. Data show that the expression of various xenobiotic-metabolizing CYPs was downregulated after exposure to OA. Moreover, OA was able to counteract the activation of CYPs by their inducers. A number of transporters were also mainly downregulated. Overall, we demonstrate that OA has a significant effect on xenobiotic metabolism barrier in liver cells, highlighting the possibility for interactions of OA exposure with the metabolism of drugs and xenobiotics.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany
| | - Felicia Kudiabor
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany,*To whom correspondence should be addressed: Holger Sieg, German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany, E-mail:
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
5
|
Reale O, Bodi D, Huguet A, Fessard V. Role of enteric glial cells in the toxicity of phycotoxins: Investigation with a tri-culture intestinal cell model. Toxicol Lett 2021; 351:89-98. [PMID: 34461197 DOI: 10.1016/j.toxlet.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplankton. They can accumulate in edible filtering-shellfish and cause human intoxications, particularly gastrointestinal symptoms. Up to now, the in vitro intestinal effects of these toxins have been mainly investigated on simple monolayers of intestinal cells such as the enterocyte-like Caco-2 cell line. Recently, the combination of Caco-2 cells with mucus secreting HT29-MTX cell line has been also used to mimic the complexity of the human intestinal epithelium. Besides, enteric glial cells (EGC) from the enteric nervous system identified in the gut mucosa have been largely shown to be involved in gut functions. Therefore, using a novel model integrating Caco-2 and HT29-MTX cells co-cultured on inserts with EGC seeded in the basolateral compartment, we examined the toxicological effects of two phycotoxins, pectenotoxin-2 (PTX2) and okadaic acid (OA). Cell viability, morphology, barrier integrity, inflammation, barrier crossing, and the response of some specific glial markers were evaluated using a broad set of methodologies. The toxicity of PTX2 was depicted by a slight decrease of viability and integrity as well as a slight increase of inflammation of the Caco-2/HT29-MTX co-cultures. PTX2 induced some modifications of EGC morphology. OA induced IL-8 release and decreased viability and integrity of Caco-2/HT29-MTX cell monolayers. EGC viability was slightly affected by OA. The presence of EGC reinforced barrier integrity and reduced the inflammatory response of the epithelial barrier following OA exposure. The release of GDNF and BDNF gliomediators by EGC could be implicated in the protection observed.
Collapse
Affiliation(s)
- Océane Reale
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Dorina Bodi
- Unit Contaminants, German Federal Institute for Risk Assessment, Department Safety in the Food Chain, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Antoine Huguet
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (Anses), Fougères Laboratory, 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France.
| |
Collapse
|
6
|
Expression Analyses of Genes Related to Multixenobiotic Resistance in Mytilus galloprovincialis after Exposure to Okadaic Acid-Producing Dinophysis acuminata. Toxins (Basel) 2021; 13:toxins13090614. [PMID: 34564618 PMCID: PMC8471661 DOI: 10.3390/toxins13090614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
The mussel Mytilus galloprovincialis is one of the most important aquaculture species in Europe. Its main production problem is the accumulation of toxins during coastal blooms, which prevents mussel commercialization. P-glycoprotein (ABCB1/MDR1/P-gp) is part of the multixenobiotic resistance system in aquatic organisms, and okadaic acid, the main DSP toxin, is probably a substrate of the P-gp-mediated efflux. In this study, the presence and possible role of P-gp in the okadaic acid detoxification process was studied in M. galloprovincialis. We identified, cloned, and characterized two complete cDNAs of mdr1 and mdr2 genes. MgMDR1 and MgMDR2 predicted proteins had the structure organization of ABCB full transporters, and were identified as P-gp/MDR/ABCB proteins. Furthermore, the expression of mdr genes was monitored in gills, digestive gland, and mantle during a cycle of accumulation-elimination of okadaic acid. Mdr1 significantly increased its expression in the digestive gland and gills, supporting the idea of an important role of the MDR1 protein in okadaic acid efflux out of cells in these tissues. The expression of M. galloprovincialismrp2, a multidrug associated protein (MRP/ABCC), was also monitored. As in the case of mdr1, there was a significant induction in the expression of mrp2 in the digestive gland, as the content of okadaic acid increased. Thus, P-gp and MRP might constitute a functional defense network against xenobiotics, and might be involved in the resistance mechanisms to DSP toxins.
Collapse
|
7
|
Wu Q, Chen Y, Ouyang Y, He Y, Xiao J, Zhang L, Feng N. Effect of catechin on dietary AGEs absorption and cytotoxicity in Caco-2 cells. Food Chem 2021; 355:129574. [PMID: 33799251 DOI: 10.1016/j.foodchem.2021.129574] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022]
Abstract
Maillard reaction produces advanced glycation end products (AGEs) that endanger human health. This study investigated the protective effect of (+)-catechin (CC) on different types of dietary AGEs absorption and cytotoxicity in Caco-2 cells. Our results showed that CC had higher inhibitory rate on peptide bound-AGEs absorption than free Nɛ-carboxymethyl lysine (CML), which dropped to 36.24% and 32.21% when treated with 20 and 50 μM CC. The reasons might be that CC could repair the loose tight junction (ZO-1) and down-regulation of protein-coupling peptide carrier 1 (PEPT-1) expression in Caco-2 cells which were in accordance with molecular docking results. Additionally, CC could remarkably decreased the protein levels of receptor of AGEs (RAGE), mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) that detected by western blotting and immunohistochemical staining method. Taken together, these findings demonstrated that CC may inhibit AGEs absorption and protected Caco-2 cells against RAGE-MAPK-NF-κB signaling suppression.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Chang jiang West Road, Hefei, 230036 Anhui, China.
| | - Yuanyuan Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Yu Ouyang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Yi He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| | - Juan Xiao
- College of Food Science and Engineering, Hainan University Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Chang jiang West Road, Hefei, 230036 Anhui, China.
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, Hubei 430068, China; School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
8
|
Wang H, Liu S, Xun X, Li M, Lou J, Zhang Y, Shi J, Hu J, Bao Z, Hu X. Toxin- and species-dependent regulation of ATP-binding cassette (ABC) transporters in scallops after exposure to paralytic shellfish toxin-producing dinoflagellates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105697. [PMID: 33254068 DOI: 10.1016/j.aquatox.2020.105697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
ATP-binding cassette (ABC) transporters are membrane-bound proteins involved in exporting various xenobiotic compounds from living cells. Bivalve mollusks can accumulate large amounts of paralytic shellfish toxins (PSTs) from marine dinoflagellates. For aquatic invertebrates, the importance of ABC proteins in multi-xenobiotic resistance has been demonstrated, however, the systematic identification of ABC transporters is very limited. In this study, 64 and 67 ABC genes containing all eight described subfamilies (A to H) were identified in Yesso scallop (Patinopecten yessoensis) and Zhikong scallop (Chlamys farreri), respectively, with massive gene expansion being observed in the ABCC and ABCG subfamilies. The kidney harbored more specifically expressed ABC genes than other organs/tissues, most of which belonged to ABCB, ABCC, and ABCG subfamilies. After feeding the scallops with PST-producing dinoflagellates, the expression of scallop ABC genes in the kidney was regulated in toxin- and species-dependent manners. In total, 20 and 24 ABC genes in Zhikong scallop (CfABCs) were induced after exposure to Alexandrium minutum and A. catenella, with the up-regulated members from both ABCC and ABCG subfamilies mainly showing acute and chronic induction by A. minutum and A. catenella, respectively, while the up-regulated CfABCBs mainly showing chronic induction by both dinoflagellates. In Yesso scallop, only eight ABC genes (PyABCs) were regulated after A. catenella exposure, and all the five up-regulated PyABCs were acutely induced. Our findings imply the functional diversity of scallop ABC genes in coping with PST accumulation, which may contribute to the lineage-specific adaptation of scallops for dealing with algal toxins challenge.
Collapse
Affiliation(s)
- Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shiqi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiarun Lou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yihan Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Reale O, Huguet A, Fessard V. Co-culture model of Caco-2/HT29-MTX cells: A promising tool for investigation of phycotoxins toxicity on the intestinal barrier. CHEMOSPHERE 2020; 273:128497. [PMID: 34756374 DOI: 10.1016/j.chemosphere.2020.128497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 06/13/2023]
Abstract
Most lipophilic phycotoxins have been involved in human intoxications but some of these toxins have never been proven to induce human gastro-intestinal symptoms, although intestinal damage in rodents has been documented. For investigating the in vitro toxicological profile of lipophilic phycotoxins on intestine, the epithelial Caco-2 cell line has been the most commonly used model. Nevertheless, considering the complexity of the intestinal epithelium, in vitro co-cultures integrating enterocyte-like and mucus-secreting cell types are expected to provide more relevant data. In this study, the toxic effects (viability, inflammation, cellular monolayer integrity, modulation of cell type proportion and production of mucus) of four lipophilic phycotoxins (PTX2, YTX, AZA1 and OA) were evaluated in Caco-2/HT29-MTX co-cultured cells. The four toxins induced a reduction of viability from 20% to 50% and affected the monolayer integrity. Our results showed that the HT29-MTX cells population were more sensitive to OA and PTX2 than Caco-2 cells. Among the four phycotoxins, OA induced inflammation (28-fold increase of IL-8 release) and also a slight increase of both mucus production (up-regulation of mucins mRNA expression) and mucus secretion (mucus area and density). For PTX2 we observed an increase of IL-8 release but weaker than OA. Intestinal cell models integrating several cell types can contribute to improve hazard characterization and to describe more accurately the modes of action of phycotoxins.
Collapse
Affiliation(s)
- Océane Reale
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| | - Antoine Huguet
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| | - Valérie Fessard
- ANSES, Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères, 35306, France.
| |
Collapse
|
10
|
Dietrich J, Schindler M, Lampen A, Braeuning A, Hessel-Pras S. Comparison of long-term versus short-term effects of okadaic acid on the apoptotic status of human HepaRG cells. Chem Biol Interact 2020; 317:108937. [PMID: 31926150 DOI: 10.1016/j.cbi.2020.108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/14/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
The biotoxin okadaic acid (OA) is a lipophilic secondary metabolite of marine microalgae. Therefore, OA accumulates in the fatty tissue of various shellfish and may thus enter the food chain. The ingestion of OA via contaminated marine species can lead to the diarrhetic shellfish poisoning syndrome characterized by the occurrence of a series of acute gastrointestinal symptoms in humans. In addition, genotoxicity and tumor-promoting properties of OA might constitute a long-term threat to human health. In order to deepen our understanding of the molecular effects of OA, we compared long-term (14 d) and short-term (24 h and 48 h) apoptotic effects of the compound on human HepaRG hepatocarcinoma cells. Cells were treated either with single doses for 24 and 48 h, respectively, or seven times over a period of 14 d, so that the cumulated quantities of OA in the long-term approach were equal to the single doses upon short-term treatment. Both short-term treatment scenarios led to the induction of apoptosis. Specific caspase activation assays and transcriptional analysis of mRNAs encoding proteins involved in the regulation of apoptosis suggest that OA-induced apoptosis occurs presumably by activation of the intrinsic apoptotic pathway. In contrast, effects were much less pronounced in case of long-term treatment. This is possibly linked to cellular protective mechanisms against low amounts of toxins, e.g. transporter-mediated efflux. In conclusion, our results show a clear concentration- and time-dependency of OA-mediated apoptotic effects in HepaRG cells and contribute to the elucidation of molecular effects of OA.
Collapse
Affiliation(s)
- Jessica Dietrich
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Magdalena Schindler
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department of Food Safety, 10589, Berlin, Germany.
| |
Collapse
|
11
|
Clerbaux LA, Paini A, Lumen A, Osman-Ponchet H, Worth AP, Fardel O. Membrane transporter data to support kinetically-informed chemical risk assessment using non-animal methods: Scientific and regulatory perspectives. ENVIRONMENT INTERNATIONAL 2019; 126:659-671. [PMID: 30856453 PMCID: PMC6441651 DOI: 10.1016/j.envint.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 03/01/2019] [Indexed: 06/01/2023]
Abstract
Humans are continuously exposed to low levels of thousands of industrial chemicals, most of which are poorly characterised in terms of their potential toxicity. The new paradigm in chemical risk assessment (CRA) aims to rely on animal-free testing, with kinetics being a key determinant of toxicity when moving from traditional animal studies to integrated in vitro-in silico approaches. In a kinetically informed CRA, membrane transporters, which have been intensively studied during drug development, are an essential piece of information. However, how existing knowledge on transporters gained in the drug field can be applied to CRA is not yet fully understood. This review outlines the opportunities, challenges and existing tools for investigating chemical-transporter interactions in kinetically informed CRA without animal studies. Various environmental chemicals acting as substrates, inhibitors or modulators of transporter activity or expression have been shown to impact TK, just as drugs do. However, because pollutant concentrations are often lower in humans than drugs and because exposure levels and internal chemical doses are not usually known in contrast to drugs, new approaches are required to translate transporter data and reasoning from the drug sector to CRA. Here, the generation of in vitro chemical-transporter interaction data and the development of transporter databases and classification systems trained on chemical datasets (and not only drugs) are proposed. Furtheremore, improving the use of human biomonitoring data to evaluate the in vitro-in silico transporter-related predicted values and developing means to assess uncertainties could also lead to increase confidence of scientists and regulators in animal-free CRA. Finally, a systematic characterisation of the transportome (quantitative monitoring of transporter abundance, activity and maintenance over time) would reinforce confidence in the use of experimental transporter/barrier systems as well as in established cell-based toxicological assays currently used for CRA.
Collapse
Affiliation(s)
| | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy.
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR, USA
| | | | - Andrew P Worth
- European Commission, Joint Research Centre, Ispra, Italy
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environment et travail), UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
12
|
ABC Transporters in Prorocentrum lima and Their Expression Under Different Environmental Conditions Including Okadaic Acid Production. Mar Drugs 2019; 17:md17050259. [PMID: 31052268 PMCID: PMC6563122 DOI: 10.3390/md17050259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Prorocentrum lima is a typical benthic toxic dinoflagellate, which can produce phycotoxins such as okadaic acid (OA). In this study, we identified three ABC transporter genes (ABCB1, ABCC1 and ABCG2) and characterized their expression patterns, as well as OA production under different environmental conditions in P. lima. We found that the three ABC transporters all showed high identity with related ABC proteins from other species, and contained classical features of ABC transport proteins. Among them, ABCG2 was a half size transporter. The three ABC transporter genes displayed various expression profiles under different conditions. The high concentration of Cu2+ could up-regulate ABCB1, ABCC1 and ABCG2 transcripts in P. lima, suggesting the potential defensive role of ABC transporters against metal ions in surrounding waters. Cu2+, in some concentration, could induce OA production; meanwhile, tributyltin inhibited OA accumulation. The grazer Artemia salina could induce OA production, and P. lima displayed some toxicity to the grazer, indicating the possibility of OA as an anti-grazing chemical. Collectively, our results revealed intriguing data about OA production and the expression patterns of three ABC transporter genes. However, we could not find any significant correlation between OA production and expression pattern of the three ABC transporters in P. lima. Our results might provide new molecular insights on the defensive responses of P. lima to the surrounding environment.
Collapse
|
13
|
Feng S, Zheng L, Tang S, Gu J, Jiang X, Wang L. In-vitro and in situ assessment of the efflux of five antidepressants by breast cancer resistance protein. J Pharm Pharmacol 2019; 71:1133-1141. [PMID: 31037729 DOI: 10.1111/jphp.13100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/07/2019] [Indexed: 01/08/2023]
Abstract
Abstract
Objectives
Antidepressants need to penetrate the blood–brain barrier (BBB) to exert their functions in the central nervous system. Breast cancer resistance protein (BCRP), an efflux transporter abundantly expressed in the BBB, prevents the accumulation of many drugs in the brain. This study aimed to identify whether five commonly used antidepressants (sertraline, duloxetine, fluoxetine, amitriptyline and mirtazapine) are BCRP substrates.
Methods
A combination of bidirectional transport and intracellular accumulation experiments was conducted on BCRP-overexpressing MDCKII and wild-type (WT) cells, and in situ brain perfusion was conducted in rats.
Key findings
The bidirectional transport study revealed that the net efflux ratio (NER) of sertraline reached 2.08 but decreased to 1.06 when co-incubated with Ko143, a selective BCRP inhibitor. Conversely, the other four antidepressants did not appear to be BCRP substrates, due to their low NER values (<1.5). The accumulation of sertraline in MDCKII-BCRP cells was significantly lower than that in MDCKII-WT cells. The presence of Ko143 significantly increased the sertraline accumulation in MDCKII-BCRP cells but not in MDCKII-WT cells. Brain perfusion showed that the permeability of 1 and 5 μm sertraline was significantly higher in the presence of Ko143.
Conclusions
Taken together, BCRP is involved in sertraline efflux.
Collapse
Affiliation(s)
- Suqin Feng
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Liang Zheng
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shiwei Tang
- Department of Pharmacy, People's Hospital of Dujiangyan City, Dujiangyan, China
| | - Juan Gu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Dietrich J, Grass I, Günzel D, Herek S, Braeuning A, Lampen A, Hessel-Pras S. The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicol In Vitro 2019; 58:150-160. [PMID: 30926360 DOI: 10.1016/j.tiv.2019.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Okadaic acid (OA) is a lipophilic phycotoxin that accumulates in the hepatopancreas and fatty tissue of shellfish. Consumption of highly OA-contaminated seafood leads to diarrhetic shellfish poisoning which provokes severe gastrointestinal symptoms associated with a disruption of the intestinal epithelium. Since the molecular mechanisms leading to intestinal barrier disruption are not fully elucidated, we investigated the influence of OA on intestinal tight junction proteins (TJPs) in differentiated Caco-2 cells. We found a concentration- and time-dependent deregulation of genes encoding for intestinal TJPs of the claudin family, occludin, as well as zonula occludens (ZO) 1 and 2. Immunofluorescence staining showed concentration-dependent effects on the structural organization of TJPs already after treatment with a subtoxic but human-relevant concentration of OA. In addition, changes in the structural organization of cytoskeletal F-actin as well as its associated protein ZO-1 were observed. In summary, we demonstrated effects of OA on TJPs in intestinal Caco-2 cells. TJP expressions were affected after treatment with food-relevant OA concentrations. These results might explain the high potential of OA to disrupt the intestinal barrier in vivo as its first target. Thereby the present data contribute to a better understanding of the OA-dependent induction of molecular effects within the intestinal epithelium.
Collapse
Affiliation(s)
- Jessica Dietrich
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Irina Grass
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology, Campus Benjamin Franklin, Charité Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Saadet Herek
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
15
|
PXR: Structure-specific activation by hepatotoxic pyrrolizidine alkaloids. Chem Biol Interact 2018; 288:38-48. [DOI: 10.1016/j.cbi.2018.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/03/2023]
|
16
|
Ramos P, Schmitz M, Gama S, Portantiolo A, Durruthy MG, de Souza Votto AP, Cornetet LR, dos Santos Machado K, Werhli A, Tonel MZ, Fagan SB, Yunes JS, Monserrat JM. Cytoprotection of lipoic acid against toxicity induced by saxitoxin in hippocampal cell line HT-22 through in silico modeling and in vitro assays. Toxicology 2018; 393:171-184. [DOI: 10.1016/j.tox.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
|
17
|
Bicker J, Fortuna A, Alves G, Soares-da-Silva P, Falcão A. Elucidation of the Impact of P-glycoprotein and Breast Cancer Resistance Protein on the Brain Distribution of Catechol- O-Methyltransferase Inhibitors. Drug Metab Dispos 2017; 45:1282-1291. [PMID: 28916530 DOI: 10.1124/dmd.117.077883] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are clinically important efflux transporters that act cooperatively at the blood-brain barrier, limiting the entry of several drugs into the central nervous system (CNS) and affecting their pharmacokinetics, therapeutic efficacy, and safety. In the present study, the interactions of catechol-O-methyltransferase (COMT) inhibitors (BIA 9-1059, BIA 9-1079, entacapone, nebicapone, opicapone, and tolcapone) with P-gp and BCRP were investigated to determine the contribution of these transporters in their access to the brain. In vitro cellular accumulation and bidirectional transport assays were conducted in Madin-Darby canine kidney (MDCK) II, MDCK-MDR1, and MDCK-BCRP cells. In vivo pharmacokinetic studies were carried out for tolcapone and BIA 9-1079 in rats, with and without elacridar, a well-known P-gp and BCRP modulator. The results suggest that BIA 9-1079, nebicapone, and tolcapone inhibit BCRP in a concentration-dependent manner. Moreover, with net flux ratios higher than 2 and decreased over 50% in the presence of verapamil or Ko143, BIA 9-1079 was identified as a P-gp substrate while BIA 9-1059, entacapone, opicapone, and nebicapone were revealed to be BCRP substrates. In vivo, brain exposure was limited for tolcapone and BIA 9-1079, although tolcapone crossed the blood-brain barrier at a greater rate and to a greater extent than BIA 9-1079. The extent of brain distribution of both compounds was significantly increased in the presence of elacridar, attesting to the involvement of efflux transporters. These findings provide relevant information and improve the understanding of the mechanisms that govern the access of these COMT inhibitors to the CNS.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Benzophenones/pharmacokinetics
- Benzophenones/pharmacology
- Blood-Brain Barrier/metabolism
- Brain/metabolism
- Catechol O-Methyltransferase Inhibitors/pharmacokinetics
- Cell Survival
- Dogs
- Dose-Response Relationship, Drug
- Drug Interactions
- Madin Darby Canine Kidney Cells
- Male
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Nitrophenols/pharmacokinetics
- Nitrophenols/pharmacology
- Protein Binding
- Rats
- Rats, Wistar
- Tolcapone
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| | - Gilberto Alves
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| | - Patrício Soares-da-Silva
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| |
Collapse
|
18
|
Modulation of CYP3A4 activity alters the cytotoxicity of lipophilic phycotoxins in human hepatic HepaRG cells. Toxicol In Vitro 2016; 33:136-46. [DOI: 10.1016/j.tiv.2016.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 11/23/2022]
|
19
|
Ferron PJ, Dumazeau K, Beaulieu JF, Le Hégarat L, Fessard V. Combined Effects of Lipophilic Phycotoxins (Okadaic Acid, Azapsiracid-1 and Yessotoxin) on Human Intestinal Cells Models. Toxins (Basel) 2016; 8:50. [PMID: 26907345 PMCID: PMC4773803 DOI: 10.3390/toxins8020050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/02/2022] Open
Abstract
Phycotoxins are monitored in seafood because they can cause food poisonings in humans. Phycotoxins do not only occur singly but also as mixtures in shellfish. The aim of this study was to evaluate the in vitro toxic interactions of binary combinations of three lipophilic phycotoxins commonly found in Europe (okadaic acid (OA), yessotoxin (YTX) and azaspiracid-1 (AZA-1)) using the neutral red uptake assay on two human intestinal cell models, Caco-2 and the human intestinal epithelial crypt-like cells (HIEC). Based on the cytotoxicity of individual toxins, we studied the interactions between toxins in binary mixtures using the combination index-isobologram equation, a method widely used in pharmacology to study drug interactions. This method quantitatively classifies interactions between toxins in mixtures as synergistic, additive or antagonistic. AZA-1/OA, and YTX/OA mixtures showed increasing antagonism with increasing toxin concentrations. In contrast, the AZA-1/YTX mixture showed increasing synergism with increasing concentrations, especially for mixtures with high YTX concentrations. These results highlight the hazard potency of AZA-1/YTX mixtures with regard to seafood intoxication.
Collapse
Affiliation(s)
- Pierre-Jean Ferron
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Kevin Dumazeau
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, University of Sherbrooke, Sherbrooke, QC J1G 0A2, Canada.
| | - Ludovic Le Hégarat
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| |
Collapse
|
20
|
Kolrep F, Hessel S, These A, Ehlers A, Rein K, Lampen A. Differences in metabolism of the marine biotoxin okadaic acid by human and rat cytochrome P450 monooxygenases. Arch Toxicol 2015; 90:2025-36. [DOI: 10.1007/s00204-015-1591-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
|
21
|
Abstract
PURPOSE OF REVIEW To review recent developments in the field of gastroduodenal mucosal defense. RECENT FINDINGS Research in the field of gastroduodenal mucosal defense has focused on continued elucidation of molecular mechanisms that protect the mucosa and influence healing at the cellular level. Review of literature over the past year reveals that familiar proteins and mediators, such as nitric oxide, toll-like receptors, nucleotide-binding oligomerization domain-containing proteins (NOD2), β-defensins, macrophages, dendritic cells, mucins, autophagy, and the influence of aging and diet, are still subjects of study, but also brings into light new processes and mediators, such as dual oxidases, defense against radiation injuries, and novel proteins such as ZBP-89. SUMMARY These new published findings contribute to our overall understanding of gastroduodenal defense and suggest innovative avenues of future research and possible novel therapeutic targets.
Collapse
Affiliation(s)
- Thomas Kemmerly
- Cedars-Sinai Medical Residency Program, Los Angeles, CA 90048
| | - Jonathan D. Kaunitz
- Greater Los Angeles Veteran Affairs Healthcare System, WLAVA Medical Center, Los Angeles, CA, 90073,Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024,Department of Surgery, UCLA School of Medicine, Los Angeles, CA 90024,CURE: Digestive Diseases Research Center Department of Medicine, Los Angeles, CA, 90073 USA,Brentwood Biomedical Research Institute, Los Angeles, CA, 90073 USA
| |
Collapse
|