1
|
Yang Z, Shi L, Zheng M, Hou M, Zhou M, Su N, Lang H, Zhao L, Gu M, Tang N, Chang Y. The role of exosomal lncRNAs in acetaminophen-induced induced liver injury in SD rats. Noncoding RNA Res 2024; 9:1190-1202. [PMID: 39026604 PMCID: PMC11254842 DOI: 10.1016/j.ncrna.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Background Drug-induced liver injury (DILI) is a leading cause of drug development failures during clinical trials and post-market introduction. Current biomarkers, such as ALT and AST, lack the necessary specificity and sensitivity needed for accurate detection. Exosomes, which protect LncRNAs from RNase degradation, could provide reliable and easily accessible options for biomarkers. Materials and methods RNA-sequencing was used to identify differentially expressed LncRNAs (DE-LncRNAs), followed by isolation of LncRNAs from plasma exosomes in this study. Exosome characterization was conducted by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB). Bioinformatics analysis included functional enrichment and co-expression network analysis. Five rat models were established, and quantitative real-time PCR was used to verify the specificity and sensitivity of two candidate exosomal LncRNAs. Results The APAP-induced hepatocellular injury model was successfully established for RNA-sequencing, leading to the identification of several differentially expressed exosomal LncRNAs. Eight upregulated exosomal DE-LncRNAs were selected for validation. Among them, NONRATT018001.2 (p < 0.05) and MSTRG.73954.4 (p < 0.05) exhibited a more than 2-fold increase in expression levels. In hepatocellular injury and intrahepatic cholestasis models, both NONRATT018001.2 and MSTRG.73954.4 showed earlier increases compared to serum biomarkers ALT and AST. However, no histological changes were observed until the final time point. In the fatty liver model, NONRATT018001.2 and MSTRG.73954.4 increased earlier than ALT and AST at 21 days. By the 7th day, minor steatosis was evident in liver tissue, while the expression levels of the two candidate exosomal LncRNAs exceeded 2 and 4 times, respectively. In the hepatic fibrosis model, NONRATT018001.2 and MSTRG.73954.4 showed increases at every time point. By the 49th day, hepatocellular necrosis and fibrosis were observed in the liver tissue, with NONRATT018001.2 showing an increase of more than 8 times. The specificity of the identified exosomal DE-LncRNAs was verified using a myocardial injury model and they showed no significant differences between the case and control groups. Conclusion NONRATT018001.2 and MSTRG.73954.4 hold potential as biomarkers for distinguishing different types of organ injury induced by drugs, particularly enabling early prediction of liver injury. Further experiments, such as siRNA interference or gene knockout, are warranted to explore the underlying mechanisms of these LncRNAs.
Collapse
Affiliation(s)
- Zixuan Yang
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| | - Lei Shi
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| | - Minhui Zheng
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| | - Minbo Hou
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| | - Mengdi Zhou
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| | - Naying Su
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| | - Hui Lang
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| | - Liyuan Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230000, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu, 226133, China
| | - Mengyun Gu
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| | - Naping Tang
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu, 226133, China
| | - Yan Chang
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
- Shanghai Innostar Bio-Technology Co., Ltd, Shanghai, 201203, China
| |
Collapse
|
2
|
Lu X, Yu L, Zheng J, Li A, Li J, Lou H, Zhang W, Guo H, Wang Y, Li X, Gao Y, Fan X, Borlak J. miR-106b-5p protects against drug-induced liver injury by targeting vimentin to stimulate liver regeneration. MedComm (Beijing) 2024; 5:e692. [PMID: 39170945 PMCID: PMC11337467 DOI: 10.1002/mco2.692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Understanding the endogenous mechanism of adaptive response to drug-induced liver injury (arDILI) may discover innovative strategies to manage DILI. To gain mechanistic insight into arDILI, we investigated exosomal miRNAs in the adaptive response to toosendanin-induced liver injury (TILI) of mice. Exosomal miR-106b-5p was identified as a specific regulator of arDILI by comprehensive miRNA profiling. Outstandingly, miR-106b-5p agomir treatment alleviated TILI and other DILI by inhibiting apoptosis and promoting hepatocyte proliferation. Conversely, antagomir treatments had opposite effects, indicating that miR-106b-5p protects mice from liver injury. Injured hepatocytes released miR-106b-5p-enriched exosomes taken up by surrounding hepatocytes. Vim (encodes vimentin) was identified as an important target of miR-106b-5p by dual luciferase reporter and siRNA assays. Furthermore, single-cell RNA-sequencing analysis of toosendanin-injured mouse liver revealed a cluster of Vim + hepatocytes; nonetheless declined following miR-106b-5p cotreatment. More importantly, Vim knockout protected mice from acetaminophen poisoning and TILI. In the clinic, serum miR-106b-5p expression levels correlated with the severity of DILI. Indeed, liver biopsies of clinical cases exposed to different DILI causing drugs revealed marked vimentin expression among harmed hepatocytes, confirming clinical relevance. Together, we report mechanisms of arDILI whereby miR-106b-5p safeguards restorative tissue repair by targeting vimentin.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lingqi Yu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Jie Zheng
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Anyao Li
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Junying Li
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - He Lou
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Wentao Zhang
- Department of Hepatobiliarythe First Affiliated Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Hui Guo
- Department of Hepatobiliarythe First Affiliated Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzhen Wang
- Department of PharmacySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xuemei Li
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Gao
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of Pharmaceutical SciencesBeijing Institute of Radiation MedicineBeijingChina
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- The Joint‐Laboratory of Clinical Multi‐Omics Research Between Zhejiang University and Ningbo Municipal Hospital of TCMNingbo Municipal Hospital of TCMNingboChina
| | - Jürgen Borlak
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
4
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|
5
|
Jackson KK, Powell RR, Bruce TF, Marcus RK. Rapid isolation of extracellular vesicles from diverse biofluid matrices via capillary-channeled polymer fiber solid-phase extraction micropipette tips. Analyst 2021; 146:4314-4325. [PMID: 34105528 DOI: 10.1039/d1an00373a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) play essential roles in biological systems based on their ability to carry genetic and protein cargos, intercede in cellular communication and serve as vectors in intercellular transport. As such, EVs are species of increasing focus from the points of view of fundamental biochemistry, clinical diagnostics, and therapeutics delivery. Of particular interest are 30-200 nm EVs called exosomes, which have demonstrated high potential for use in diagnostic and targeted delivery applications. The ability to collect exosomes from patient biofluid samples would allow for comprehensive yet remote diagnoses to be performed. While several exosome isolation methods are in common use, they generally produce low recoveries, whose purities are compromised by concomitant inclusion of lipoproteins, host cell proteins, and protein aggregates. Those methods often work on lengthy timescales (multiple hours) and result in very low throughput. In this study, capillary-channeled polymer (C-CP) fiber micropipette tips were employed in a hydrophobic interaction chromatography (HIC) solid-phase extraction (SPE) workflow. Demonstrated is the isolation of exosomes from human urine, saliva, cervical mucus, serum, and goat milk matrices. This method allows for quick (<15 min) and low-cost (<$1 per tip) isolations at sample volume and time scales relevant for clinical applications. The tip isolation was evaluated using absorbance (scattering) detection, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). Exosome purity was assessed by Bradford assay, based on the removal of free proteins. An enzyme-linked immunosorbent assay (ELISA) to the CD81 tetraspanin protein was used to confirm the presence of the known exosomal-biomarker on the vesicles.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Clemson University, Department of Chemistry, Clemson, SC 29634, USA.
| | - Rhonda R Powell
- Clemson University, Clemson Light Imaging Facility, Clemson, SC 29634, USA
| | - Terri F Bruce
- Clemson University, Department of Bioengineering, Clemson, SC 29634, USA
| | - R Kenneth Marcus
- Clemson University, Department of Chemistry, Clemson, SC 29634, USA.
| |
Collapse
|
6
|
Li Y, Liu Z, Shi X, Tong H, Su L. Prognostic value of plasma exosomal levels of histone H3 protein in patients with heat stroke. Exp Ther Med 2021; 22:922. [PMID: 34335883 PMCID: PMC8290468 DOI: 10.3892/etm.2021.10354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Heat stroke (HS) is a condition that can lead to multiple organ dysfunction syndrome and death; however, there is no reliable method for stratifying mortality risk in HS. The abundance of exosomes in the circulation and their contents may be used as potential biomarkers of HS. The present study aimed to examine whether histone H3 levels in plasma exosomes could be used to determine HS prognosis. Blood samples were collected from patients with HS (36 survivors and 8 non-survivors) at admission to the intensive care unit and 4 days after admission. Blood samples were additionally collected from 15 healthy volunteers. Plasma exosomes were isolated using high-speed differential centrifugation. Correlation between histone H3 level and organ function and disease severity was examined. The results suggested differential expression and enrichment of histone H3 in the plasma exosomes of patients with HS (survivors, 249.3±04.6; non-survivors, 500.4±216.8; healthy controls, 161.1±52.49 pg/100 µg; P<0.05). The increased expression of histone H3 was associated with increased disease severity and duration. Plasma exosomal levels of histone H3 were significantly correlated with both organ dysfunction and disease severity (P<0.0001) and were significantly different between non-survivors and survivors (area under the receiver operating characteristic curve, 0.9668). A cutoff value of 307 pg/100 µg demonstrated optimized sensitivity (95%) and specificity (91.67%) for predicting mortality risk, suggesting that histone H3 levels in plasma exosomes may be a reliable biomarker for HS prognosis.
Collapse
Affiliation(s)
- Yue Li
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Zhifeng Liu
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Xuezhi Shi
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Huasheng Tong
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Intensive Care Unit, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of The People's Liberation Army, General Hospital of The Southern Theatre Command of The People's Liberation Army, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
7
|
Chorley BN, Atabakhsh E, Doran G, Gautier JC, Ellinger-Ziegelbauer H, Jackson D, Sharapova T, Yuen PST, Church RJ, Couttet P, Froetschl R, McDuffie J, Martinez V, Pande P, Peel L, Rafferty C, Simutis FJ, Harrill AH. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit Rev Toxicol 2021; 51:264-282. [PMID: 34038674 DOI: 10.1080/10408444.2021.1907530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | - David Jackson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Church
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
8
|
Zhao L, Wang Y, Zhang Y. The potential diagnostic and therapeutic applications of exosomes in drug-induced liver injury. Toxicol Lett 2020; 337:68-77. [PMID: 33259895 DOI: 10.1016/j.toxlet.2020.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) has gradually become a global public medical problem, which can be caused by more than 1000 currently available drugs. Unfortunately, the diagnosis and treatment of DILI are limited and imperfect. Exosomes can be secreted by a variety of cells and tissues in the body, rich in cell-type specific proteins, nucleic acids and lipids, which has been widely studied as an important intercellular communication vehicle in liver diseases. Emerging data suggest that circulating exosomes and their cargos can be used as minimally-invasive sources of potential molecular biomarkers for the early detection, monitoring and evaluation of DILI. Exosomes in the urine were also found to contain proteins or RNAs that were indicative of DILI. In addition, exosomes derived from mesenchymal stem cell or hepatocyte are considered potential therapeutic agents to promote liver regenerative responses, modulate inflammatory response and deduce hepatocytes apoptosis. Based on the current findings, we suggest the potential applications of exosomes as biomarkers and therapeutics for DILI.
Collapse
Affiliation(s)
- Lanlan Zhao
- Department of Gerontology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuezhi Wang
- Department of Gerontology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of Gerontology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Circulating Extracellular Vesicles Containing Xenobiotic Metabolizing CYP Enzymes and Their Potential Roles in Extrahepatic Cells Via Cell-Cell Interactions. Int J Mol Sci 2019; 20:ijms20246178. [PMID: 31817878 PMCID: PMC6940889 DOI: 10.3390/ijms20246178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
The cytochrome P450 (CYP) family of enzymes is known to metabolize the majority of xenobiotics. Hepatocytes, powerhouses of CYP enzymes, are where most drugs are metabolized into non-toxic metabolites. Additional tissues/cells such as gut, kidneys, lungs, blood, and brain cells express selective CYP enzymes. Extrahepatic CYP enzymes, especially in kidneys, also metabolize drugs into excretable forms. However, extrahepatic cells express a much lower level of CYPs than hepatocytes. It is possible that the liver secretes CYP enzymes, which circulate via plasma and are eventually delivered to extrahepatic cells (e.g., brain cells). CYP circulation likely occurs via extracellular vesicles (EVs), which carry important biomolecules for delivery to distant cells. Recent studies have revealed an abundance of several CYPs in plasma EVs and other cell-derived EVs, and have demonstrated the role of CYP-containing EVs in xenobiotic-induced toxicity via cell–cell interactions. Thus, it is important to study the mechanism for packaging CYP into EVs, their circulation via plasma, and their role in extrahepatic cells. Future studies could help to find novel EV biomarkers and help to utilize EVs in novel interventions via CYP-containing EV drug delivery. This review mainly covers the abundance of CYPs in plasma EVs and EVs derived from CYP-expressing cells, as well as the potential role of EV CYPs in cell–cell communication and their application with respect to novel biomarkers and therapeutic interventions.
Collapse
|
10
|
miR302a and 122 are deregulated in small extracellular vesicles from ARPE-19 cells cultured with H 2O 2. Sci Rep 2019; 9:17954. [PMID: 31784665 PMCID: PMC6884596 DOI: 10.1038/s41598-019-54373-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Age related macular degeneration (AMD) is a common retina-related disease leading to blindness. Little is known on the origin of the disease, but it is well documented that oxidative stress generated in the retinal pigment epithelium and choroid neovascularization are closely involved. The study of circulating miRNAs is opening new possibilities in terms of diagnosis and therapeutics. miRNAs can travel associated to lipoproteins or inside small Extracellular Vesicles (sEVs). A number of reports indicate a significant deregulation of circulating miRNAs in AMD and experimental approaches, but it is unclear whether sEVs present a significant miRNA cargo. The present work studies miRNA expression changes in sEVs released from ARPE-19 cells under oxidative conditions (i.e. hydrogen peroxide, H2O2). H2O2 increased sEVs release from ARPE-19 cells. Moreover, 218 miRNAs could be detected in control and H2O2 induced-sEVs. Interestingly, only two of them (hsa-miR-302a and hsa-miR-122) were significantly under-expressed in H2O2-induced sEVs. Results herein suggest that the down regulation of miRNAs 302a and 122 might be related with previous studies showing sEVs-induced neovascularization after oxidative challenge in ARPE-19 cells.
Collapse
|
11
|
Gao K, Jin J, Huang C, Li J, Luo H, Li L, Huang Y, Jiang Y. Exosomes Derived From Septic Mouse Serum Modulate Immune Responses via Exosome-Associated Cytokines. Front Immunol 2019; 10:1560. [PMID: 31354717 PMCID: PMC6640201 DOI: 10.3389/fimmu.2019.01560] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a life-threatening condition caused by an immune response triggered by infection, and highly elevated cytokine/chemokine levels in the blood play crucial roles in the progression of sepsis. Serum exosomes are nanovesicles that have multiple biological functions, playing roles in antigen presentation, intercellular signal communication, inflammatory response and immune surveillance. However, the biological functions and related molecular bases remain to be elucidated. In this study, we investigated the profiles of cytokines/chemokines harbored in the exosomes of septic mice and explored the mechanisms of immunomodulation on T cells treated with exosomes harvested from septic mice. Blood cytokines/chemokines existed in both the soluble form and in the insoluble exosomal form; the profiles of the cytokines/chemokines in these two forms displayed different dynamics in the blood of mice challenged with LPS. Exosomes from septic mice induced the differentiation of Th1/Th2 cells, which was blocked by specific antibodies targeting IL-12 and IL-4. In addition, these exosomes significantly augmented the proliferation and migration of T lymphocytes. Furthermore, preadministration of exosomes by intravenous injection restrained the inflammatory response, attenuated lung and liver tissue damage, and prolonged the survival of cecal ligation and puncture (CLP) mice. Our results indicate that exosomes enriched with cytokines/chemokines play critical roles in T cell differentiation, proliferation and chemotaxis during the sepsis process and have a protective effect on cecal ligation and puncture (CLP) mice. Thus, these findings not only strengthen our understanding of the role of sepsis via exosomes but also provide potential targets for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Qi R, Zhu G, Wang Y, Wu S, Li S, Zhang D, Bu Y, Bhave G, Han R, Liu X. Microfluidic device for the analysis of MDR cancerous cell-derived exosomes' response to nanotherapy. Biomed Microdevices 2019; 21:35. [PMID: 30906967 PMCID: PMC6532782 DOI: 10.1007/s10544-019-0381-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exosomes are membrane-enclosed extracellular vesicles which have been indicated as important biomarkers of cancerous cell functionality, such as multiple drug resistance (MDR). Nanoparticles based chemotherapy is a promising strategy to overcome MDR by interfering the production and composition of exosomes. Therefore, tumor-derived exosomes post-treatment by nanotherapy are implied to play critical roles of biomarkers on cancer MDR analysis. However, the efficient isolation of such exosomes from extracellular environment for their therapeutic response analysis remains challenging. In this study, we presented a microfluidic device featured exosome specific anti-CD63 immobilized ciliated micropillars, which were capable to isolate cancer-derived exosomes from cell culture medium. The captured exosomes can be recovered intact by dissolving the cilia on the micropillars using PBS soaking. Owing to the immobilized antibody in the microfluidic device, nearly 70% of exosome from the biofluid could be isolated. So the secreted exosomes of the MDR and ordinary human breast cancer cells pre-treated by free drug or nanotherapy could be isolated with high purity. The drug contents of the isolated exosomes were measured to analysis of the exosomal pathway response of MDR cells to different chemotherapeutic formulations. Such analyses and further definition of the biomarkers of these exosomes could benefit the future investigations of accurately and reliably determine design principle, functional activity, and mechanisms of nanotherapy for MDR overcoming.
Collapse
Affiliation(s)
- Ruogu Qi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Guixian Zhu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Yu Wang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Shengliang Li
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Dechen Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Yang Bu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Gauri Bhave
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Ruixuan Han
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Tao YC, Wang ML, Wang M, Ma YJ, Bai L, Feng P, Chen EQ, Tang H. Quantification of circulating miR-125b-5p predicts survival in chronic hepatitis B patients with acute-on-chronic liver failure. Dig Liver Dis 2019; 51:412-418. [PMID: 30274791 DOI: 10.1016/j.dld.2018.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
AIMS To analyze the role of serum miR-125b-5p in reflecting liver damage and predicting outcomes in chronic hepatitis B (CHB) patients with acute-on-chronic liver failure (ACLF). METHODS CHB patients with normal hepatic function (n = 100), moderate-to-severe liver damage (n = 90), and ACLF (n = 136) were included. Among hepatitis B virus (HBV)-ACLF patients, 86 and 50 were in the training and validation cohorts, respectively. Serum miR-125b-5p level was measured by quantitative real-time PCR. RESULTS Serum miR-125b-5p level increased with disease progression, and serum miR-125b-5p level was lower in surviving than in dead HBV-ACLF patients. Among HBV-ACLF patients, miR-125b-5p positively correlated with total bilirubin (TBil; r = 0.214, p < 0.05) and model for end-stage liver disease (MELD) score (r = 0.382, p < 0.001) and negatively correlated with prothrombin activity(PTA; r = -0.215, p < 0.05). MiR-122 showed a contrasting performance compared with miR-125b-5p. Cox regression analysis showed that miR-125b-5p, miR-122, and PTA were independent survival predictors for HBV-ACLF, and low miR-125b-5p and high miR-122 levels may predict a longer survival in HBV-ACLF. MiR-125b-5p (AUC = 0.814) had a higher performance for survival prediction in HBV-ACLF compared with miR-122 (AUC = 0.804), PTA (AUC = 0.762), MELD score (AUC = 0.799), and TBil (AUC = 0.670) alone; predictive effectiveness of miR-125b-5p was increased by combination with miR-122 (AUC = 0.898). MiR-125b-5p was an effective predictor of HBV-ACLF outcomes in the validation cohort. CONCLUSIONS MiR-125b-5p increase is associated with severity of liver damage; high serum miR-125b-5p may serve as a predictor for poor outcomes in HBV-ACLF cases.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, PR China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, PR China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuan-Ji Ma
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, PR China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, PR China
| | - Ping Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, PR China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, PR China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
14
|
Cho YE, Song BJ, Akbar M, Baek MC. Extracellular vesicles as potential biomarkers for alcohol- and drug-induced liver injury and their therapeutic applications. Pharmacol Ther 2018; 187:180-194. [PMID: 29621595 DOI: 10.1016/j.pharmthera.2018.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are small membranous vesicles originating from various cells and tissues, including the liver parenchymal hepatocytes and nonparenchymal cells such as Kupffer and stellate cells. Recently, the pathophysiological role of EVs, such as exosomes and microvesicles, has been increasingly recognized based on their properties of intercellular communications. These EVs travel through the circulating blood and interact with specific cells and then deliver their cargos such as nucleic acids and proteins into recipient cells. In addition, based on their stabilities, circulating EVs from body fluids such as blood, cerebrospinal fluid, urine, saliva, semen, breast milk and amniotic fluids are being studied as a valuable source of potential biomarkers for providing information about the physiological status of original cells or tissues. In addition, EVs are considered potential therapeutic agents due to their ability for intercellular communications between different cell types within the liver and between various organs through transfer of their cargos. In this review, we have briefly described recent advances in the characteristics and pathophysiological roles of EVs in alcoholic liver disease (ALD) or drug-induced liver injury (DILI) and discuss their advantages in the discovery of potential biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
15
|
Krauskopf J, Kleinjans JC, de Kok TM. Circulating MicroRNAs as Novel Biomarkers of Drug-Induced Liver Injury in Humans. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7677-5_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Song X, Gong W, Shen H, Li X, Ding L, Han L, Zhang H, Zhu B, Liu X. Correlation between CAT polymorphism and susceptibility to DMAc-induced abnormal liver function: a case-control study of Chinese population. Biomarkers 2017; 23:147-153. [DOI: 10.1080/1354750x.2017.1360942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xianping Song
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Wei Gong
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Huanxi Shen
- Kunshan Municipal Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Xiuting Li
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Prevention and Treatment Center for Occupational Diseases, Nanjing, Jiangsu, China
| | - Lu Ding
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Lei Han
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Hengdong Zhang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Baoli Zhu
- Department of Occupational and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Xin Liu
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Guo P, Yu H, Wang Y, Xie X, Chen G. Exosome: An Emerging Participant in the Development of Liver Disease. HEPATITIS MONTHLY 2017; 17. [DOI: 10.5812/hepatmon.58021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
18
|
Cho YE, Im EJ, Moon PG, Mezey E, Song BJ, Baek MC. Increased liver-specific proteins in circulating extracellular vesicles as potential biomarkers for drug- and alcohol-induced liver injury. PLoS One 2017; 12:e0172463. [PMID: 28225807 PMCID: PMC5321292 DOI: 10.1371/journal.pone.0172463] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
Drug- and alcohol-induced liver injury are a leading cause of liver failure and transplantation. Emerging evidence suggests that extracellular vesicles (EVs) are a source of biomarkers because they contain unique proteins reflecting the identity and tissue-specific origin of the EV proteins. This study aimed to determine whether potentially hepatotoxic agents, such as acetaminophen (APAP) and binge alcohol, can increase the amounts of circulating EVs and evaluate liver-specific EV proteins as potential biomarkers for liver injury. The circulating EVs, isolated from plasma of APAP-exposed, ethanol-fed mice, or alcoholic hepatitis patients versus normal control counterparts, were characterized by proteomics and biochemical methods. Liver specific EV proteins were analyzed by immunoblots and ELISA. The amounts of total and liver-specific proteins in circulating EVs from APAP-treated mice significantly increased in a dose- and time-dependent manner. Proteomic analysis of EVs from APAP-exposed mice revealed that the amounts of liver-specific and/or hepatotoxic proteins were increased compared to those of controls. Additionally, the increased protein amounts in EVs following APAP exposure returned to basal levels when mice were treated with N-acetylcysteine or glutathione. Similar results of increased amounts and liver-specific proteins in circulating EVs were also observed in mice exposed to hepatotoxic doses of thioacetamide or d-galactosamine but not by non-hepatotoxic penicillin or myotoxic bupivacaine. Additionally, binge ethanol exposure significantly elevated liver-specific proteins in circulating EVs from mice and alcoholics with alcoholic hepatitis, compared to control counterparts. These results indicate that circulating EVs in drug- and alcohol-mediated hepatic injury contain liver-specific proteins that could serve as specific biomarkers for hepatotoxicity.
Collapse
Affiliation(s)
- Young-Eun Cho
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, United States of America
| | - Eun-Ju Im
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Pyong-Gon Moon
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Esteban Mezey
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, United States of America
| | - Moon-Chang Baek
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Sanjay S, Girish C. Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury. Eur J Clin Pharmacol 2016; 73:399-407. [PMID: 28028586 DOI: 10.1007/s00228-016-2183-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE MicroRNAs (miRNA or miR) are the most abundant and stable class of small RNA. Unlike the typical RNA molecules present in the cell, they do not encode proteins but can control translation. and Hhence, they are found to play a major role in the regulation of cellular processes. miRNAs have been shown to differentially regulate various genes, and the expression levels of some miRNAs changes several fold in liver and serum, during drug- induced toxicity. This review summarises some of the latest findings about the biological functions of miRNA and its potential use as diagnostic biomarkers in drug- induced liver injury. METHODS The information presented in this article is taken from published literature, both original work and reviews on mechanisms of drug- induced liver injury, miRNA in liver pathophysiology, and studies exploring the use of miRNA as biomarker in drug- induced liver injury. Literature search was done using search engines:- PUBMED, Google scholar, and relevant journal sites. RESULTS AND CONCLUSIONS Recent research provides insight into the ability of miRNA to regulate various pathways in diseased and nondiseased states of liver. They also lay a foundation for development of diagnostic tests utilizing the potential of miRNAs that can not only be used for early detection of DILI but also to differentiate between different types of DILI. More studies on biological functions of miRNA and standardisation of protocol between research laboratories can lead to further advancement in this field. Considering the therapeutic and diagnostic potential of miRNA, the major challenge would be to integrate these findings to clinical settings where it can be used for the treatment of cases with DILI.
Collapse
Affiliation(s)
- Sukumaran Sanjay
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chandrashekaran Girish
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| |
Collapse
|
20
|
Robles-Díaz M, Medina-Caliz I, Stephens C, Andrade RJ, Lucena MI. Biomarkers in DILI: One More Step Forward. Front Pharmacol 2016; 7:267. [PMID: 27597831 PMCID: PMC4992729 DOI: 10.3389/fphar.2016.00267] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Despite being relatively rare, drug-induced liver injury (DILI) is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings, and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis, and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in “omics” technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (e.g., metabolites, proteins, or DNA) simultaneously enables the identification of ‘toxicity signatures,’ which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review, we summarize recent advances in the area of DILI biomarker studies.
Collapse
Affiliation(s)
- Mercedes Robles-Díaz
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| | - Inmaculada Medina-Caliz
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| | - Camilla Stephens
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Spain
| |
Collapse
|
21
|
Keerthikumar S. A catalogue of human secreted proteins and its implications. AIMS BIOPHYSICS 2016; 3:563-570. [DOI: 10.3934/biophy.2016.4.563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
22
|
Injured hepatocyte-released microvesicles induce bone marrow-derived mononuclear cells differentiation. Differentiation 2015; 90:40-7. [PMID: 26411497 DOI: 10.1016/j.diff.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/04/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
The ability of bone marrow-derived mononuclear cells (BMMCs) to differentiate into hepatocyte-like cells under different conditions has been demonstrated previously. In the present study, we investigated the effect of CCl4-injured hepatocytes on the differentiation of the non-adherent (NAD) fraction of BMMCs. Differentiation (cell fate) was analyzed after 2, 6 and 24h of co-culture by gene and protein expression and by urea production. We also evaluated the presence of microvesicles (MVs) in the supernatant of differentiated cells, their content and the ability of these cells to absorb them. Hepatocyte-like characteristics were observed in the NAD cells after 24h of co-culture with injured hepatocytes. Cells that were co-cultured with healthy hepatocytes did not present signs of differentiation at any analyzed time point. Analysis of the supernatant from differentiated cells revealed the presence of MVs carrying hepatocyte-specific mRNAs, including Albumin, Coagulation factor V, Alpha-fetoprotein, and Cytokeratin 18. The incorporation of injured hepatocyte-derived MVs by NAD cells was shown at 24h, suggesting a possible role for MVs in the induction of cell plasticity.
Collapse
|
23
|
Beger RD, Bhattacharyya S, Yang X, Gill PS, Schnackenberg LK, Sun J, James LP. Translational biomarkers of acetaminophen-induced acute liver injury. Arch Toxicol 2015; 89:1497-522. [PMID: 25983262 PMCID: PMC4551536 DOI: 10.1007/s00204-015-1519-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) is a commonly used analgesic drug that can cause liver injury, liver necrosis and liver failure. APAP-induced liver injury is associated with glutathione depletion, the formation of APAP protein adducts, the generation of reactive oxygen and nitrogen species and mitochondrial injury. The systems biology omics technologies (transcriptomics, proteomics and metabolomics) have been used to discover potential translational biomarkers of liver injury. The following review provides a summary of the systems biology discovery process, analytical validation of biomarkers and translation of omics biomarkers from the nonclinical to clinical setting in APAP-induced liver injury.
Collapse
Affiliation(s)
- Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, USA,
| | | | | | | | | | | | | |
Collapse
|
24
|
Liga A, Vliegenthart ADB, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M. Exosome isolation: a microfluidic road-map. LAB ON A CHIP 2015; 15:2388-94. [PMID: 25940789 DOI: 10.1039/c5lc00240k] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Exosomes, first isolated 30 years ago, are nanoscale vesicles shed by most types of cells. The nucleic acid rich content of these nanoparticles, floating in virtually all bodily fluids, has great potential for non-invasive molecular diagnostics and may represent a novel therapeutic delivery system. However, current isolation techniques such as ultracentrifugation are not convenient and do not result in high purity isolation. This represents an interesting challenge for microfluidic technologies, from a cost-effective perspective as well as for enhanced purity capabilities, and point-of-care acquisition and diagnosis. In this frontier review, we present the current challenges, comment the first microfluidic advances in this new field and propose a roadmap for future developments. This review enables biologists and clinicians familiar with exosome enrichment to assess the performance of novel microfluidic devices and, equally, enables microfluidic engineers to educate themselves about this new class of promising biomarker-rich particles and the challenges arising from their clinical use.
Collapse
Affiliation(s)
- A Liga
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Long noncoding RNA SPRY4-IT1 predicts poor patient prognosis and promotes tumorigenesis in gastric cancer. Tumour Biol 2015; 53:2016-2028. [PMID: 25835973 DOI: 10.1007/s12035-015-9142-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is the second common cause of cancer-related death worldwide. Long noncoding RNAs (lncRNAs) are emerging as novel regulators in the cancer paradigm. However, investigation of lncRNAs on GC is still in its infancy. In this study, we focused on lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) and investigated its expression pattern, clinical significance, biological function, and molecular mechanism in GC. SPRY4-IT1 expression was examined, and its correlation with clinicopathological characteristics and patient prognosis was analyzed. A series of assays were performed to understand the role of SPRY4-IT1 in GC. SPRY4-IT1 expression was elevated in GC tissues and cell lines, and SPRY4-IT1 levels were highly positively correlated with tumor size, invasion depth, distant metastasis, TNM stage, and reduced overall survival (OS) and disease-free survival (DFS). A multivariate analysis showed that SPRY4-IT1 expression is an independent prognostic factor of OS and DFS in patients with GC. Additionally, the results of in vitro assays showed that the suppression of SPRY4-IT1 expression in GC cell line MKN-45 significantly reduced cell proliferation, colony formation, and cell migration/invasion. Moreover, the tumorigenic effects of SPRY4-IT1 were partially mediated by the regulation of certain cyclins and matrix metalloproteinases (MMPs)-related genes. Our data suggest that SPRY4-IT1 plays a critical role in GC tumorigenesis and may represent a novel prognostic marker and potential therapeutic target in patients with GC.
Collapse
|
26
|
MicroRNA-derived fragment length polymorphism assay. Sci Rep 2015; 5:9356. [PMID: 25790971 PMCID: PMC4366852 DOI: 10.1038/srep09356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNA (miRNA) studies are experiencing a transition from basic research applications to clinical applications. However, the lack of reliable and sensitive miRNA detection methods has become a bottleneck in the process. Here, we report an absolute quantification method based on the competitive PCR amplification of specific miRNAs and synthetic RNA spike-ins in a single reaction. RNA spike-ins are quantified as dynamic RNA copy number standards and are used to measure selected miRNAs free from the effects of intra-assay variables, including those from individual sample sources. Combined with the size differentiation power of capillary electrophoresis, the content of miRNAs was reproducibly measured, with verifiable detection limits of 10–46 copies over 5-log detection ranges. The direct measurements of miRNAs from 168 human serum samples and their considerable value as a diagnostic for bronchopneumonia and bronchiolitis demonstrate the potential of the assay in clinical applications.
Collapse
|
27
|
Ji C, Zheng J, Tong W, Lu X, Fan X, Gao Y. Revealing the mechanism of Fructus meliae toosendan-induced liver injury in mice by integrating microRNA and mRNA-based toxicogenomics data. RSC Adv 2015. [DOI: 10.1039/c5ra10112c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fructus meliae toosendan-induced liver injury in mice was investigated by integrating the data from miroRNA and mRNA expression profiles combined with the general toxicological assessments method.
Collapse
Affiliation(s)
- Cai Ji
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Jie Zheng
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Wei Tong
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Yue Gao
- Department of Pharmacology and Toxicology
- Beijing Institute of Radiation Medicine
- Beijing 100850
- China
| |
Collapse
|
28
|
Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 2014; 8:377. [PMID: 25426026 PMCID: PMC4226157 DOI: 10.3389/fncel.2014.00377] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/22/2014] [Indexed: 12/19/2022] Open
Abstract
Cell-based therapy, e.g., multipotent mesenchymal stromal cell (MSC) treatment, shows promise for the treatment of various diseases. The strong paracrine capacity of these cells and not their differentiation capacity, is the principal mechanism of therapeutic action. MSCs robustly release exosomes, membrane vesicles (~30–100 nm) originally derived in endosomes as intraluminal vesicles, which contain various molecular constituents including proteins and RNAs from maternal cells. Contained among these constituents, are small non-coding RNA molecules, microRNAs (miRNAs), which play a key role in mediating biological function due to their prominent role in gene regulation. The release as well as the content of the MSC generated exosomes are modified by environmental conditions. Via exosomes, MSCs transfer their therapeutic factors, especially miRNAs, to recipient cells, and therein alter gene expression and thereby promote therapeutic response. The present review focuses on the paracrine mechanism of MSC exosomes, and the regulation and transfer of exosome content, especially the packaging and transfer of miRNAs which enhance tissue repair and functional recovery. Perspectives on the developing role of MSC mediated transfer of exosomes as a therapeutic approach will also be discussed.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Hospital Detroit, MI, USA
| | - Yi Li
- Department of Neurology, Henry Ford Hospital Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital Detroit, MI, USA ; Department of Physics, Oakland University Rochester, MI, USA
| |
Collapse
|
29
|
Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma TF, Zhang J, Chen L, Tang JH, Zhao JH. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol 2014; 35:10773-9. [DOI: 10.1007/s13277-014-2377-z] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022] Open
|
30
|
Hornby RJ, Starkey Lewis P, Dear J, Goldring C, Park BK. MicroRNAs as potential circulating biomarkers of drug-induced liver injury: key current and future issues for translation to humans. Expert Rev Clin Pharmacol 2014; 7:349-62. [PMID: 24694030 DOI: 10.1586/17512433.2014.904201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug-induced liver injury (DILI) is a common form of adverse drug reaction seen within the clinic. Sensitive, specific and non-invasive biomarkers of liver toxicity are required to help diagnose hepatotoxicity and also to identify safety liabilities during drug development. Limitations exist in the current gold standard DILI biomarkers: alanine aminotransferase is not liver-specific and therefore gives rise to false-positive signals. Interest has grown in the potential of microRNAs (miRNAs) as biomarkers of DILI. Some miRNAs display remarkable organ specificity, can be measured sensitively and are stable in a wide range of biofluids. However, little is currently known about the mechanisms through which miRNAs are released from cells. Furthermore, a clinically suitable method to measure miRNAs has not yet been developed. This review aims to highlight the current research surrounding these markers and areas in which further work is required to establish these markers within clinical and pre-clinical settings.
Collapse
Affiliation(s)
- Robert James Hornby
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Buildings, University of Liverpool, L69 3GE, UK
| | | | | | | | | |
Collapse
|