1
|
Narra F, Piragine E, Benedetti G, Ceccanti C, Florio M, Spezzini J, Troisi F, Giovannoni R, Martelli A, Guidi L. Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Compr Rev Food Sci Food Saf 2024; 23:e13426. [PMID: 39169551 PMCID: PMC11605278 DOI: 10.1111/1541-4337.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Bioactive compounds in fruit and vegetables have a positive impact on human health by reducing oxidative stress, inflammation, and the risk of chronic diseases such as cancer, cardiovascular (CV) diseases, and metabolic disorders. However, some fruit and vegetables must be heated before consumption and thermal processes can modify the amount of nutraceuticals, that is, polyphenols, carotenoids, glucosinolates, and ascorbic acid, that can increase or decrease in relation to different factors such as type of processing, temperature, and time but also the plant part (e.g., flower, leaf, tuber, and root) utilized as food. Another important aspect is related to the bioaccessibility and bioavailability of nutraceuticals. Indeed, the key stage of nutraceutical bioefficiency is oral bioavailability, which involves the release of nutraceuticals from fruit and vegetables in gastrointestinal fluids, the solubilization of nutraceuticals and their interaction with other components of gastrointestinal fluids, the absorption of nutraceuticals by the epithelial layer, and the chemical and biochemical transformations into epithelial cells. Several studies have shown that thermal processing can enhance the absorption of nutraceuticals from fruit and vegetable. Once absorbed, they reach the blood vessels and promote multiple biological effects (e.g., antioxidant, anti-inflammatory, antihypertensive, vasoprotective, and cardioprotective). In this review, we described the impact of different thermal processes (such as boiling, steaming and superheated steaming, blanching, and microwaving) on the retention/degradation of bioactive compounds and their health-promoting effects after the intake. We then summarized the impact of heating on the absorption of nutraceuticals and the biological effects promoted by natural compounds in the CV system to provide a comprehensive overview of the potential impact of thermal processing on the CV benefits of fruit and vegetables.
Collapse
Affiliation(s)
- Federica Narra
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Eugenia Piragine
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | | | - Costanza Ceccanti
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| | - Marta Florio
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | | | | | - Roberto Giovannoni
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
| | - Alma Martelli
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | - Lucia Guidi
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| |
Collapse
|
2
|
Luo H, Li Y, Xie J, Xu C, Zhang Z, Li M, Xia B, Shi Z, Lin L. Effect and mechanism of Prunella vulgaris L. extract on alleviating lipopolysaccharide-induced acute mastitis in protecting the blood-milk barrier and reducing inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117998. [PMID: 38484956 DOI: 10.1016/j.jep.2024.117998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1β, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Hongshan Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Chunfang Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhe Shi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
3
|
Festa J, Hussain A, Hackney A, Desai U, Sahota TS, Singh H, Da Boit M. Elderberry extract improves molecular markers of endothelial dysfunction linked to atherosclerosis. Food Sci Nutr 2023; 11:4047-4059. [PMID: 37457144 PMCID: PMC10345675 DOI: 10.1002/fsn3.3393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
Endothelial dysfunction (ED), secondary to diminished nitric oxide (NO) production and oxidative stress, is an early subclinical marker of atherosclerosis. Reduced NO bioavailability enhances the adhesion of monocytes to endothelial cells and promotes atherosclerosis. Elderberry extract (EB) is known to contain high levels of anthocyanins which could exert vascular protective effects. Specifically, we investigated the functional capacity of EB on various markers of ED. Human umbilical vein endothelial cells (HUVEC) were pretreated with EB 50 μg/mL and stimulated with TNF-α 10 ng/mL. Cell viability, apoptosis, oxidative stress; eNOS, Akt, Nrf2, NOX-4, and NF-κB at the protein level were measured. A co-culture model was used to determine whether EB could prevent the adhesion of monocytes (THP-1) to HUVECs. Moreover, the expression of adhesion molecules and pro-inflammatory cytokines were also measured. It was demonstrated that EB prevented TNF-α induced apoptosis and reactive oxygen species production in HUVECs. Additionally, EB upregulated Akt and eNOS activity, and Nrf2 expression in response to TNF-α, whereas it decreased NOX-4 expression and NF-κB activity. EB prevented the adhesion of monocytes to HUVECs, as well as reduced IL-6 and MCP-1 levels, which was associated with inhibition of VCAM-1 expression. Our results demonstrate that EB upregulates key cellular markers of endothelial function and ameliorates markers of ED. EB could be used as a potential nutritional aid for preventing atherosclerosis progression.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health SciencesDe Montfort UniversityLeicesterUK
| | - Aamir Hussain
- Leicester School of Allied Health SciencesDe Montfort UniversityLeicesterUK
| | - Amon Hackney
- Leicester School of Allied Health SciencesDe Montfort UniversityLeicesterUK
| | - Unmesh Desai
- Leicester School of PharmacyFaculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| | - Tarsem S. Sahota
- Leicester School of PharmacyFaculty of Health and Life SciencesDe Montfort UniversityLeicesterUK
| | - Harprit Singh
- Leicester School of Allied Health SciencesDe Montfort UniversityLeicesterUK
| | - Mariasole Da Boit
- Leicester School of Allied Health SciencesDe Montfort UniversityLeicesterUK
| |
Collapse
|
4
|
Dzah CS. Optimized pressurized hot water extraction, HPLC/LC-MS characterization, and bioactivity of Tetrapleura tetraptera L. dry fruit polyphenols. J Food Sci 2023; 88:175-192. [PMID: 36524784 DOI: 10.1111/1750-3841.16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Despite the global preference for green extraction methods in the recovery of plant bioactives, Tetrapleura tetraptera fruit polyphenols (TTP) are yet to receive considerable attention. For the first time, pressurized hot water extraction (PHWE) of TTP was optimized for total phenol content (TPC) and antioxidant activity (AA) using the Box Behnken design of response surface methodology. Predictor variables were time, temperature, and liquid-to-solid ratio. An optimum solution with a desirability of 0.805 was selected and parameters were 43 min, 220°C, and 60 ml g-1 liquid-to-solid ratio, yielding TPC of 8.92 mg gallic acid equivalent per gram of sample on dry weight basis (GAE g-1 dw-1 ) and AA of 70.35%. Purified, optimized TTP were characterized and quantified using HPLC/LC-MS. PHWE mainly extracted rutin (379.04 µg g-1 ), cyanidin-3-O-glucoside (chloride) (299.55 µg g-1 ), naringenin 7-O-glucoside (240.11 µg g-1 ), p-coumaric acid (177.28 µg g-1 ), isorientin (150.43 µg g-1 ), and gallic acid (118.06 µg g-1 ) whereas cyanidin-3-O-glucoside (chloride) (83.27 µg g-1 ), protocatechuic acid (61.37 µg g-1 ), rutin (28.03 µg g-1 ), and gallic acid (22.62 µg g-1 ) were mainly extracted by hot water extraction, which was a control. PHWE-obtained TTP showed higher cellular antioxidant activity, cytotoxicity in human liver cancer cell lines (HepG2), and antimicrobial property against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis than control. The potential mechanisms underlying the biological activities of some of the major polyphenols extracted were briefly discussed. Considering the wide use of the T. tetraptera (TT) fruit in Africa in foods and medicine, the use of more efficient green extraction methods such as PHWE is recommended. PRACTICAL APPLICATION: This study serves as a baseline for optimizing pressurized hot water extraction, purification, identification, and quantification of Tetrapleura tetraptera polyphenols (TTP) and their biological activities, being the first of its kind. The varied biological effects shown can be exploited further for applications of TTP as nutraceutical agents and preservatives in foods in different forms. Also, the high amounts of gallic acid and other phenolic acids and flavonoids confirmed in this study make TTP good candidates for the development of metal-phenol network nanoparticles to enhance adequate solubility and distribution in food systems in light of the above proposed applications.
Collapse
Affiliation(s)
- Courage Sedem Dzah
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, Ho, Ghana
| |
Collapse
|
5
|
Festa J, Singh H, Hussain A, Da Boit M. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. J Food Biochem 2022; 46:e14091. [PMID: 35118699 DOI: 10.1111/jfbc.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Although recent studies demonstrate that SARS-CoV-2 possibly does not directly infect endothelial cells (EC), the endothelium may be affected as a secondary response due to the damage of neighboring cells, circulating pro-inflammatory cytokines, and/or other mechanisms. Long-term COVID-19 symptoms specifically nonrespiratory symptoms are due to the persistence of endothelial dysfunction (ED). Based on the literature, anthocyanins a major subgroup of flavonoid polyphenols found in berries, have been well researched for their vascular protective properties as well as the prevention of cardiovascular disease (CVD)-related deaths. Elderberries have been previously used as a natural remedy for treating influenza, cold, and consequently cardiovascular health due to a high content of cyanidin-3-glucoside (C3G) a major anthocyanin found in the human diet. The literature reported many studies demonstrating that EE has both antiviral and vascular protective properties that should be further investigated as a nutritional component used against the (in)direct effect of SARS-CoV-2 in vascular function. PRACTICAL APPLICATIONS: While previous work among the literature looks promising and builds a suggestion for investigating elderberry extract (EE) against COVID-19, further in vitro and in vivo research is required to fully evaluate EE mechanisms of action and its use as a supplement to aid current therapies.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
6
|
Yin L, Zhang Y, Azi F, Tekliye M, Zhou J, Liu X, Dong M, Xia X. Neuroprotective Potency of Tofu Bio-Processed Using Actinomucor elegans against Hypoxic Injury Induced by Cobalt Chloride in PC12 Cells. Molecules 2021; 26:molecules26102983. [PMID: 34069784 PMCID: PMC8157283 DOI: 10.3390/molecules26102983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/14/2023] Open
Abstract
Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.
Collapse
Affiliation(s)
- Liqing Yin
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
| | - Yongzhu Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China;
| | - Fidelis Azi
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
| | - Mekonen Tekliye
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
| | - Jianzhong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaoli Liu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Correspondence: (M.D.); (X.X.); Tel.: +86-25-8439-6989 (M.D.); +86-25-8439-1577 (X.X.)
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (M.D.); (X.X.); Tel.: +86-25-8439-6989 (M.D.); +86-25-8439-1577 (X.X.)
| |
Collapse
|
7
|
Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C. Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6381380. [PMID: 33133348 PMCID: PMC7593735 DOI: 10.1155/2020/6381380] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, the dramatically increased prevalence of metabolic diseases, such as obesity and diabetes mellitus and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death worldwide. Dietary nutrients together with healthy lifestyles have a crucial role in the endothelium health-promoting effects. From a growing body of evidence, active natural compounds from food, including polyphenols and carotenoids, have attracted particular attention as a complementary therapy on atherosclerosis and cardiovascular disease, as well as preventive approaches through the attenuation of inflammation and oxidative stress. They mainly act as radical scavengers by promoting a variety of biological mechanisms, such as improvements in endothelial function, blood pressure, platelet activity, and insulin sensitivity, and by modulating various known biomarkers. The present review highlights the role of polyphenols and carotenoids in early endothelial dysfunction with attention to their beneficial effect in modulating both classical and recent technologically generated emerging biomarkers. These, alone or in combination, can play an important role in the prediction, diagnosis, and evolution of cardiovascular disease. However, a main challenge is to speed up early and prompt new interventions in order to prevent or slow down disease progression, even with an adequate intake of bioactive compounds. Hence, there is an urgent need of new more validated, appropriate, and reliable diagnostic and therapeutic biomarkers useful to diagnose endothelial dysfunction at an earlier stage.
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Zhang Y, Yin L, Huang L, Tekliye M, Xia X, Li J, Dong M. Composition, antioxidant activity, and neuroprotective effects of anthocyanin-rich extract from purple highland barley bran and its promotion on autophagy. Food Chem 2020; 339:127849. [PMID: 32858383 DOI: 10.1016/j.foodchem.2020.127849] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022]
Abstract
Anthocyanin-rich purple highland barley has attracted great attention recently due to its health benefits in humans. The composition of the purified anthocyanin extract (PAE) from purple highland barley bran (PHBB) was characterized by liquid chromatography-mass spectrometry (LC-MS) with a high acylated anthocyanin profile. PAE exhibited high antioxidant activity and potential neuroprotective effects on cobalt chloride (CoCl2)-induced hypoxic damage in PC12 cells by maintaining cell viability, restoring cell morphology, inhibiting lactic dehydrogenase (LDH) leakage, reducing reactive oxygen species (ROS) levels, enhancing antioxidant enzyme activities, inhibiting cell apoptosis, and attenuating cell cycle arrest. Treatment cells (PC12 and U2OS) with PAE activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. This study demonstrated that PAE from the PHBB was a high-quality natural functional food colorant and potentially could be used as a preventive agent for brain dysfunction caused by hypoxic damage.
Collapse
Affiliation(s)
- Yongzhu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, PR China
| | - Liqing Yin
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, PR China
| | - Lu Huang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nan Jing, Jiangsu Province, PR China
| | - Mekonen Tekliye
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, PR China
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Jianzhong Li
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, PR China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
9
|
OxiCyan®, a phytocomplex of bilberry (Vaccinium myrtillus) and spirulina (Spirulina platensis), exerts both direct antioxidant activity and modulation of ARE/Nrf2 pathway in HepG2 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
10
|
Ercan ZE, Haberal N, Helvacıoglu F, Dağdeviren A, Yılmaz G. Effect of intravitreal and intraperitoneal cyanidin-3-glucoside injection in oxygen-induced retinopathy mouse model. Indian J Ophthalmol 2019; 67:801-805. [PMID: 31124490 PMCID: PMC6552572 DOI: 10.4103/ijo.ijo_166_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose: To evaluate the effect of cyanidin-3-glucoside (C3G) in oxygen-induced retinopathy (OIR) mouse model. Methods: In this experimental study, 10 C57BL / 6J type mice exposed to room air comprised two control groups (n = 5 each; a negative control and a group receiving intravitreal sterile dimethyl sulfoxide [IVS DMSO]). Thirty C57BL / 6J type mice exposed to 75% ± 2% oxygen from postnatal day 7 to postnatal day 12 comprised the OIR groups. On postnatal day 12, these mice were randomized into six groups (n = 5 each): two OIR control groups (negative control and IVS DMSO), two intravitreal C3G groups (300 and 600 ng/μL), and two intraperitoneal C3G groups (0.05 and 0.1 mg/kg). We quantified neovascularization by counting endothelial cell proliferation on the vitreal side of the inner limiting membrane of the retina and examined histological and ultrastructural changes via light and electron microscopy and apoptosis by terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling. Results: The intravitreal C3G groups yielded lower endothelial cell counts compared with the intravitreal DMSO group. The intraperitoneal high-dose group had lower cell counts compared with the OIR control groups. Electron microscopy revealed significantly less mitochondrial dysmorphology in intravitreal groups and the high-dose intraperitoneal mice. We noted no difference in apoptotic cell count between the controls, low-dose intravitreal, and both intraperitoneal groups. However, apoptotic cell count was significantly higher in the high-dose intravitreal group. Conclusion: C3G suppresses endothelial cell proliferation in an OIR mouse model, leads to a reduced hyperoxia-induced mitochondrial dysmorphology, but increases apoptotic cell death in high concentrations.
Collapse
Affiliation(s)
- Zeynep E Ercan
- Department of Ophthalmology, Baskent University, Ankara, Turkey
| | - Nihan Haberal
- Department of Pathology, Baskent University, Ankara, Turkey
| | - Fatma Helvacıoglu
- Department of Histology and Embryology, Baskent University, Ankara, Turkey
| | - Atilla Dağdeviren
- Department of Histology and Embryology, Baskent University, Ankara, Turkey
| | - Gürsel Yılmaz
- Department of Ophthalmology, Baskent University, Ankara, Turkey
| |
Collapse
|
11
|
Cyboran-Mikołajczyk S, Solarska-Ściuk K, Mieszała K, Glatzel-Plucińska N, Matczak K, Kleszczyńska H. The Impact of O-Glycosylation on Cyanidin Interaction with RBCs and HMEC-1 Cells-Structure⁻Activity Relationships. Int J Mol Sci 2019; 20:ijms20081928. [PMID: 31010130 PMCID: PMC6514962 DOI: 10.3390/ijms20081928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 11/17/2022] Open
Abstract
With the aim of contributing to the knowledge about their potential therapeutic activity, we determined the biological activities of cyanidin and its selected O-glycosides in relation to erythrocytes (RBCs) and human dermal vascular endothelial cells (HMEC-1). Furthermore, on the basis of changes in the physical/functional properties of the cells, the structure–activity relationships of the compounds were determined. Concerning erythrocytes, we analyzed the antioxidant activity of the compounds and their impact on the RBCs’ shape and transmembrane potential. The compounds’ cytotoxic activity, ability to modulate apoptosis, cell cycle, and intracellular ROS generation, as well as inhibitory activity against AAPH-inducted oxidative stress, were determined in relation to HMEC-1 cells. We demonstrated that biological activity of cyanidin and its O-glycosides strongly depends on the number and type of sugar substituents, and varies depending on the extracellular environment and type of cells. The compounds are practically non-cytotoxic, and do not induce apoptosis or disturb the progression of the cell cycle. Additionally, the compounds alter the shape of RBCs, but they do not affect their transmembrane potential. They effectively protect erythrocytes against free radicals and affect intracellular reactive oxygen spices (ROS) generation under physiological and AAPH-induced oxidative stress conditions. Our results suggest a potential beneficial effect of cyanidin on the cardiovascular system.
Collapse
Affiliation(s)
- Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Katarzyna Solarska-Ściuk
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Katarzyna Mieszała
- Department of Histology and Embryology, Medical University of Wroclaw, Chałubińskiego 6a, 50-368 Wrocław, Poland.
| | - Natalia Glatzel-Plucińska
- Department of Histology and Embryology, Medical University of Wroclaw, Chałubińskiego 6a, 50-368 Wrocław, Poland.
| | - Karolina Matczak
- Department of Medical Biophysics, University of Lodz, Pomorska 141/143, 90-236 Łódź, Poland.
| | - Halina Kleszczyńska
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
12
|
Jiang X, Li X, Zhu C, Sun J, Tian L, Chen W, Bai W. The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr 2018; 59:921-946. [DOI: 10.1080/10408398.2018.1491022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Cuijuan Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
13
|
Baldea I, Teacoe I, Olteanu DE, Vaida-Voievod C, Clichici A, Sirbu A, Filip GA, Clichici S. Effects of different hypoxia degrees on endothelial cell cultures-Time course study. Mech Ageing Dev 2017; 172:45-50. [PMID: 29155057 DOI: 10.1016/j.mad.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/01/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Exposure of the endothelial cells to hypoxia, the decrease in oxygen supply can trigger an endothelial response. This response is involved in inflammatory diseases, tumorigenesis, and also with the micro vascular damage associated with aging. The aim of our study was to determine the hypoxia/re-oxygenation induced response in vitro, using human umbilical vein endothelial cells (HUVEC) cultures, at different time points with focus on cell viability, apoptosis oxidative stress and angiogenesis stimulation. MATERIALS AND METHODS Cells were exposed to 10%, 5% or 0% O2 for 6h, 12h, and 24h. Viability was measured through colorimetry, apoptosis - annexin V-FITC staining, DNA lesions (γH2AX), endothelial activation (sICAM1), angiogenesis (HIF1α), oxidative stress (malondialdehyde, superoxidismutase and NFκB activation) were determined by ELISA, Western Blot and spectrophotometry. RESULTS AND DISCUSSION Hypoxia decreased viability, increased apoptosis, oxidative stress, endothelial activation and angiogenesis, depending on O2 concentration and time exposure. Short exposures to 5% and 10% O2, efficiently activated anti-apoptotic mechanisms through NFκB activation, HIF1α and γH2AX related DNA damage repair pathways. However, severe hypoxia and longer exposures to mild hypoxia induced high oxidative stress related damage and eventually led to apoptosis, through strong increases of HIF1α and accumulating DNA lesions.
Collapse
Affiliation(s)
- Ioana Baldea
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Ioana Teacoe
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Diana Elena Olteanu
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Cristina Vaida-Voievod
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Andra Clichici
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania
| | - Alexandru Sirbu
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Simona Clichici
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| |
Collapse
|
14
|
|
15
|
Cyanidin-3-O-Glucoside Modulates the In Vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells. Mediators Inflamm 2017; 2017:3454023. [PMID: 28373746 PMCID: PMC5360945 DOI: 10.1155/2017/3454023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF-κB signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF-κB activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF-κB activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF-α-stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G). In this model, TNF-α induced nuclear translocation of NF-κB and TNF-α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF-α-stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF-κB levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF-κB pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.
Collapse
|
16
|
Fratantonio D, Speciale A, Canali R, Natarelli L, Ferrari D, Saija A, Virgili F, Cimino F. Low nanomolar caffeic acid attenuates high glucose-induced endothelial dysfunction in primary human umbilical-vein endothelial cells by affecting NF-κB and Nrf2 pathways. Biofactors 2017; 43:54-62. [PMID: 27412371 DOI: 10.1002/biof.1312] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/08/2016] [Indexed: 12/15/2022]
Abstract
Hyperglycemia contributes to dysregulate endothelial function associated with diabetes, leading to initiation and propagation of vascular complications and dysfunction. Caffeic acid (CA), a dietary hydroxycinnamic acid abundant in coffee, has been reported to exert antidiabetic effects in rat models. Herein, we investigated the molecular effects of physiological concentrations of CA (10 nM) against endothelial dysfunction induced by high glucose (HG) in human endothelial cells (HUVECs). HUVECs were exposed to HG 25 mM, to mimic diabetic condition, in presence of CA. Intracellular redox status (reduced glutathione, superoxide dismutase (SOD) and total antioxidant activity levels), and NF-κB pathway were examined. We also evaluated the involvement of NF-E2-related factor 2 (Nrf2)/electrophile responsive element (EpRE) pathway. Our data show that CA inhibits HG-induced nuclear translocation of NF-κB and the downstream expression of endothelial adhesion molecule 1 and restores antioxidant levels by upregulating Nrf2/EpRE pathway. Our data suggest that CA can suppress several aspects of HG-induced endothelial dysfunction through the modulation of intracellular redox status controlled by the transcription factor Nrf2. These findings highlight that low physiological concentration of CA achievable specifically upon food consumption are able to prevent endothelial dysfunction associated with inflammation and oxidative stress induced by high concentration of glucose. © 2016 BioFactors, 43(1):54-62, 2017.
Collapse
Affiliation(s)
- Deborah Fratantonio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Raffaella Canali
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Lucia Natarelli
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Daniela Ferrari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Fabio Virgili
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
17
|
Zhao D, Sun J, Sun B, Zhao M, Zheng F, Huang M, Sun X, Li H. Intracellular antioxidant effect of vanillin, 4-methylguaiacol and 4-ethylguaiacol: three components in Chinese Baijiu. RSC Adv 2017. [DOI: 10.1039/c7ra09302k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vanillin, 4-methylguaiacol, and 4-ethylguaiacol can improve AAPH-induced alterations in oxidative stress biomarkers and antioxidant enzymes in HepG2 cells.
Collapse
Affiliation(s)
- Dongrui Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Beijing Laboratory for Food Quality and Safety
| | - Jinyuan Sun
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Baoguo Sun
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Mouming Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Fuping Zheng
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Mingquan Huang
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Xiaotao Sun
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| | - Hehe Li
- Beijing Laboratory for Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- P. R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
| |
Collapse
|
18
|
Sivasinprasasn S, Pantan R, Thummayot S, Tocharus J, Suksamrarn A, Tocharus C. Cyanidin-3-glucoside attenuates angiotensin II-induced oxidative stress and inflammation in vascular endothelial cells. Chem Biol Interact 2016; 260:S0009-2797(16)30510-5. [PMID: 27983965 DOI: 10.1016/j.cbi.2016.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
Angiotensin II (Ang II) causes oxidative stress and vascular inflammation, leading to vascular endothelial cell dysfunction, and is associated with the development of inflammatory cardiovascular diseases such as atherosclerosis. Therefore, interventions of oxidative stress and inflammation may contribute to the reduction of cardiovascular diseases. Cyanidin-3-glucoside (C3G) plays a role in the prevention of oxidative damage in several diseases. Here, we investigated the effect of C3G on Ang II-induced oxidative stress and vascular inflammation in human endothelial cells (EA.hy926). C3G dose-dependently suppressed the free radicals and inhibited the nuclear factor-kappa B (NF-κB) signaling pathway by protecting the degradation of inhibitor of kappa B-alpha (IκB-α), inhibiting the expression and translocation of NF-κB into the nucleus through the down-regulation of NF-κB p65 and reducing the expression of inducible nitric oxide synthase (iNOS). Pretreatment with C3G not only prohibited the NF-κB signaling pathway but also promoted the activity of the nuclear erythroid-related factor 2 (Nrf2) signaling pathway through the upregulation of endogenous antioxidant enzymes. Particularly, we observed that C3G significantly enhanced the production of superoxide dismutase (SOD) and induced the expression of heme oxygenase (HO-1). Our findings confirm that C3G can protect against vascular endothelial cell inflammation induced by AngII. C3G may represent a promising dietary supplement for the prevention of inflammation, thereby decreasing the risk for the development of atherosclerosis.
Collapse
Affiliation(s)
- Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Suthep Road, Chiang Mai 50200, Thailand
| | - Rungusa Pantan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Suthep Road, Chiang Mai 50200, Thailand
| | - Sarinthorn Thummayot
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Suthep Road, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Suthep Road, Chiang Mai 50200, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Suthep Road, Chiang Mai 50200, Thailand.
| |
Collapse
|
19
|
Ferrari D, Speciale A, Cristani M, Fratantonio D, Molonia MS, Ranaldi G, Saija A, Cimino F. Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via Nrf2 pathway activation. Toxicol Lett 2016; 264:51-58. [PMID: 27793764 DOI: 10.1016/j.toxlet.2016.10.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
Abstract
Chronic intestinal inflammatory disorders, such as Inflammatory Bowel Diseases (IBDs), are characterized by excessive release of proinflammatory mediators, intestinal barrier dysfunction and excessive activation of NF-kB cascade. Previous studies shown that TNF-α plays a central role in intestinal inflammation of IBDs and supported beneficial effects of flavonoids against chronic inflammatory diseases. In this study, we employed an in vitro model of acute intestinal inflammation using intestinal Caco-2 cells exposed to TNF-α. The protective effects of cyanidin-3-glucoside (C3G), an anthocyanin widely distributed in mediterranean diet, were then evaluated. Caco-2 cells exposure to TNF-α activated NF-kB proinflammatory pathway and induced IL6 and COX-2 expression. Cells pretreatment for 24h with C3G (20-40μM) prevented TNF-α-induced changes, and improved intracellular redox status. Our results demonstrated that C3G, also without any kind of stimulus, increased the translocation of the transcription factor Nrf2 into the nucleus so activating antioxidant and detoxifying genes. In conclusion, C3G exhibited protective effects through the inhibition of NF-kB signalling in Caco-2 cells and these beneficial effects appear to be due to its ability to activate cellular protective responses modulated by Nrf2. These data suggest that anthocyanins could contribute, as complementary or preventive approaches, to the management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Ferrari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| | - Deborah Fratantonio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| | - Giulia Ranaldi
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, (CREA - NUT), Rome, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
20
|
Cristani M, Speciale A, Mancari F, Arcoraci T, Ferrari D, Fratantonio D, Saija A, Cimino F, Trombetta D. Protective activity of an anthocyanin-rich extract from bilberries and blackcurrants on acute acetaminophen-induced hepatotoxicity in rats. Nat Prod Res 2016; 30:2845-2849. [PMID: 26998559 DOI: 10.1080/14786419.2016.1160235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) overdosage can produce fatal centrilobular hepatic necrosis in humans. The present study attempted to investigate the protective effect of an anthocyanin-rich extract from bilberries and blackcurrants (AE) against APAP-induced acute hepatic damage in rats. Treatment with AE normalised blood activities of glutamate oxaloacetate and glutamate pyruvate transaminase and prevented APAP-induced plasmatic and tissutal alterations in biomarkers of oxidative stress, probably due to various bioproperties of the components of the extract.
Collapse
Affiliation(s)
- M Cristani
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| | - A Speciale
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| | - F Mancari
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| | - T Arcoraci
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| | - D Ferrari
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| | - D Fratantonio
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| | - A Saija
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| | - F Cimino
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| | - D Trombetta
- a Department of Drug Sciences and Health Products , University of Messina , Messina , Italy
| |
Collapse
|
21
|
Vivarelli F, Canistro D, Sapone A, De Nicola GR, Babot Marquillas C, Iori R, Antonazzo IC, Gentilini F, Paolini M. Raphanus sativus cv. Sango Sprout Juice Decreases Diet-Induced Obesity in Sprague Dawley Rats and Ameliorates Related Disorders. PLoS One 2016; 11:e0150913. [PMID: 26987061 PMCID: PMC4795736 DOI: 10.1371/journal.pone.0150913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/21/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Obesity is recognized as a leading global health problem, correlated with an increased risk for several chronic diseases. One strategy for weight control management includes the use of vegetables rich in bioactive compounds to counteract weight gain, improve the antioxidant status and stimulate lipid catabolism. AIM OF THE STUDY The aim of this study was to investigate the role of Raphanus sativus Sango sprout juice (SSJ), a Brassica extraordinarily rich in anthocyanins (AC) and isothiocyanates (ITCs), in a non-genetic model of obesity (high fat diet-HFD induced). METHODS Control groups were fed with HFD or regular diet (RD). After a 10-week period, animals were assigned to experimental units and treated by gavage for 28 days as follows: HFD and RD control groups (rats fed HFD or RD and treated with vehicle only) and HFD-treated groups (rats fed HFD and treated with 15, 75 or 150 mg/kg b.w. of SSJ). Body weight and food consumption were recorded and serum lipid profile was measured (total cholesterol, triglycerides, and non-esterified fatty acids). Hepatic phase-I, phase-II as well as antioxidant enzymatic activities were assessed. RESULTS SSJ lowered total cholesterol level, food intake and liver weight compared with HFD rodents. SSJ at medium dose proved effective in reducing body-weight (~19 g reduction). SSJ was effective in up-regulating the antioxidant enzymes catalase, NAD(P)H quinone reductase, oxidised glutathione reductase and superoxide dismutase, which reached or exceeded RD levels, as well as the phase II metabolic enzyme UDP-glucuronosyl transferase (up to about 43%). HFD up-regulated almost every cytochrome P450 isoform tested, and a mild down-regulation to baseline was observed after SSJ intervention. CONCLUSION This work reveals, for the first time, the antioxidant, hypolipidemic and antiobesity potential of SSJ, suggesting its use as an efficient new functional food/nutraceutical product.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea Sapone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria-Centro di ricerca per le colture industriali (CRA-CIN), Bologna, Italy
| | - Clara Babot Marquillas
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria-Centro di ricerca per le colture industriali (CRA-CIN), Bologna, Italy
| | - Ippazio Cosimo Antonazzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fabio Gentilini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Pantan R, Tocharus J, Suksamrarn A, Tocharus C. Synergistic effect of atorvastatin and Cyanidin-3-glucoside on angiotensin II-induced inflammation in vascular smooth muscle cells. Exp Cell Res 2016; 342:104-12. [PMID: 26957227 DOI: 10.1016/j.yexcr.2016.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Statins have often been used in atherosclerosis treatment because of its pleiotropic effects on inflammation. However, some adverse effects of high doses of statin show reverse effects after withdrawal. Cyanidin-3-glucoside (C3G) is a powerful anti-inflammation and antioxidant that has been of interest for use in combination with low doses of statin, which may be alternative treatment for atherosclerosis. The objective is to investigate the synergistic effect of atorvastatin and C3G in angiotensin II (Ang II)-induced inflammation in vascular smooth muscle cells. Human aortic smooth muscle cells (HASMCs) were exposed to Ang II with or without atorvastatin and C3G alone, or in combination. The results revealed that the combination of atorvastatin and C3G produces synergism against inflammation and oxidative stress. The mechanism of the combination of atorvastatin and C3G suppressed the translocation of the p65 subunit of NF-κB from cytosol to nucleus, and attenuated the expression of proteins including inducible nitric oxide synthase, intracellular adhesion molecule 1(ICAM-1), and vascular cell adhesion molecule 1(VCAM-1), in addition to nitric oxide (NO) production. Moreover, C3G exerts the antioxidative properties of atorvastatin through down-regulating NOX1 and promoting the activity of the Nrf2(-)ARE signaling pathway and downstream proteins including heme oxygenase (HO-1), NAD(P)H:quinoneoxidoreductase 1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (γ-GCLC), besides increasing the activity of superoxide dismutase (SOD) enzymes. Taken together, these results suggest that a combination of low dose statins and C3G might serve as a potential regulator of the atherosclerosis process which is mediated by attenuating oxidative stress, thereby inhibiting NF-κB and activating Nrf2 signaling pathways induced by Ang II.
Collapse
Affiliation(s)
- Rungusa Pantan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
23
|
Babova O, Occhipinti A, Capuzzo A, Maffei ME. Extraction of bilberry ( Vaccinium myrtillus ) antioxidants using supercritical/subcritical CO 2 and ethanol as co-solvent. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Cesna V, Baniene R, Maziukiene A, Kmieliute K, Trumbeckaite S, Venclauskas L, Barauskas G, Gulbinas A. Effects of Cyanidin-3-O-glucoside on Synthetic and Metabolic Activity of Ethanol Stimulated Human Pancreatic Stellate Cells. Phytother Res 2015; 29:1894-1900. [PMID: 26423207 DOI: 10.1002/ptr.5476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/04/2015] [Accepted: 08/28/2015] [Indexed: 01/24/2023]
Abstract
Activated pancreatic stellate cells (PSC) play a major role in the development of chronic pancreatitis. Flavonoids (C-3-O-G) theoretically may have potential to suppress activated PSC. The aim of our study was to determine the ability of C-3-O-G to invert synthetic and metabolic activity of alcohol stimulated human pancreatic stellate cells (hPSC). In the present study we demonstrate that treatment with C-3-O-G decreased proliferation rate of ethanol activated hPSC by 51%. Synthesis of extracellular matrix proteins in activated hPSC was markedly inhibited, as shown by reduced levels of collagen I and fibronectin expression. The decrease of secretion of fibronectin by 33% and in collagen I-25% in ethanol activated and C-3-O-G treated hPSC was observed. Moreover, treatment of ethanol activated hPSC with C-3-O-G resulted in the decrease of oxygen consumption rate by 44% and reduced levels of ATP synthesis (i.e. energy production) by 41%. Hence, the effects of C-3-O-G on ethanol activated hPSC may provide new insights for the use of anthocyanins as anti-fibrogenic agents in treatment and/or prevention of pancreatic fibrosis.
Collapse
Affiliation(s)
- Vaidotas Cesna
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Baniene
- Institute of Neurosciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aurelija Maziukiene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Kmieliute
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Institute of Neurosciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Linas Venclauskas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giedrius Barauskas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Antanas Gulbinas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
25
|
Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol Lett 2015; 239:152-60. [PMID: 26422990 DOI: 10.1016/j.toxlet.2015.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/06/2023]
Abstract
Free fatty acids (FFA), commonly elevated in diabetes and obesity, have been shown to impair endothelial functions and cause oxidative stress, inflammation, and insulin resistance. Anthocyanins represent one of the most important and interesting classes of flavonoids and seem to play a role in preventing cardiovascular diseases. Herein, we investigated the in vitro protective effects of cyanidin-3-O-glucoside (C3G) on cell signaling pathways in human umbilical vein endothelial cells (HUVECs) exposed to palmitic acid (PA), the most prevalent saturated FFA in circulation. Our data reported a significant augmentation of free radicals and oxidative stress in HUVECs exposed to PA for 3h, while C3G pretreatment improved intracellular redox status altered by FFA. Moreover, C3G significantly inhibited NF-κB proinflammatory pathway and adhesion molecules induced by PA, and these effects were attributed to the activation of Nrf2/EpRE pathway. In fact, C3G induced Nrf2 nuclear localization and activation of cellular antioxidant and cytoprotective genes at baseline and after PA exposure in endothelial cells. Our data confirm the hypothesis that natural Nrf2 inducers, such as C3G, might be a potential therapeutic strategy to protect vascular system against various stressors preventing several pathological conditions.
Collapse
|
26
|
Zhang J, Liang X, Li X, Guan Z, Liao Z, Luo Y, Luo Y. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress. Drug Dev Ind Pharm 2015; 42:546-53. [PMID: 26393779 DOI: 10.3109/03639045.2015.1088867] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Cataracts have become the leading cause of blindness around the world, which is mainly mediated by oxidative stress. OBJECTIVE N-trimethyl chitosan (TMC)-coated liposomes of cyanidin-3-glycoside (C3G) (C3G-TCL) were prepared to attenuate oxidative stress induced by selenite sodium in rats. MATERIALS AND METHODS C3G-TCL were prepared by reverse-phase evaporation method and then coated with self-synthesized TMC. The physicochemical properties were determined. A gamma-scintigraphy study was employed to evaluate the precorneal elimination of the radioactive preparations. The transcorneal visualization for fluorescence-labeled samples was determined by confocal laser scanning microscopy (CLSM). The in vivo anti-oxidative study using C3G-TCL was carried out in rats with selenite-induced cataracts by topical administration. RESULTS The sphere-like morphological characterization of the vesicles was confirmed by TEM, with a size of 158.3 ± 2.8 nm and a zeta potential of 31.7 mV. The encapsulation efficiency was (53.7 ± 0.2) % as measured by ultrafiltration. C3G-TCL showed a 3.3-fold increment in precorneal residence time when compared with that of the (99m)Tc-solution. A TMC coating enhanced the transepithelial transport of liposomes to a depth of 40-μm in the cornea. Moreover, C3G-TCL could significantly elevate the activity of superoxide dismutase and catalase in lens and also show a considerable reversal of reduced glutathione activity. The lipid peroxidation in lens was strongly prevented when compared with that of groups treated with uncoated C3G-loaded liposomes. DISCUSSION AND CONCLUSION The coating material TMC for liposomes helps improve the anti-oxidative effect of C3G in vivo through prolonged residence time on the cornea and improved permeability in the corneal epithelium.
Collapse
Affiliation(s)
- Jing Zhang
- a Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi , P.R. China
| | - Xinli Liang
- a Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi , P.R. China
| | - Xiang Li
- b National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi , P.R. China , and
| | - Zhiyu Guan
- c School of Pharmacy, Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi , P.R. China
| | - Zhenggen Liao
- a Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi , P.R. China
| | - Yun Luo
- a Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi , P.R. China
| | - Yunxia Luo
- a Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi , P.R. China
| |
Collapse
|
27
|
Park K, Gu D, So H, Kim K, Lee S. Dual Role of Cyanidin-3-glucoside on the Differentiation of Bone Cells. J Dent Res 2015; 94:1676-83. [DOI: 10.1177/0022034515604620] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cyanidin-3-glucoside (C3G) is one of the major components of anthocyanin, a water-soluble phytochemical. Recent studies demonstrated the chemopreventive and chemotherapeutic activities of C3G in various conditions, including cancer, although the precise effects of C3G on osteoclast and osteoblast differentiation remain unclear. Here, we investigated the role of C3G in the differentiation of bone-associated cells and its underlying mechanism. C3G inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)–mediated osteoclast differentiation and formation in a dose-dependent manner and downregulated the expression of osteoclast differentiation marker genes. Pretreatment with C3G considerably reduced the induction of extracellular signal–regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated kinases activation by RANKL in osteoclast precursor cells. Furthermore, C3G dramatically inhibited the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1, which are important transcription factors for osteoclast differentiation and activation. The formation of osteoclasts in coculture of bone marrow cells and calvaria-derived osteoblasts was also inhibited by C3G treatment, although the expression of macrophage colony-stimulating factor and RANKL (master factors for osteoclast differentiation and formation) and osteoprotegerin (a decoy receptor for RANKL) on osteoblasts was unaffected. The inhibitory effect of C3G on osteoclastogenesis is therefore targeted specifically to osteoclasts but not osteoblasts. Moreover, analysis of the expression levels of osteoblast differentiation marker genes and alizarin red staining showed that osteoblast differentiation and matrix formation increased after C3G treatment. Taken together, these results strongly suggest that C3G has a dual role in bone metabolism, as an effective inhibitor of osteoclast differentiation but also as an activator of osteoblast differentiation. Therefore, C3G may be used as a potent preventive or therapeutic agent for bone-related diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis.
Collapse
Affiliation(s)
- K.H. Park
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Institute of Biomaterials-Implant, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - D.R. Gu
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, Republic of Korea
| | - H.S. So
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, Republic of Korea
| | - K.J. Kim
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Institute of Biomaterials-Implant, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - S.H. Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Institute of Biomaterials-Implant, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, Republic of Korea
- Integrated Omics Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| |
Collapse
|
28
|
Intravenous Injections of Human Mesenchymal Stromal Cells Modulated the Redox State in a Rat Model of Radiation Myelopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:432369. [PMID: 26366180 PMCID: PMC4561091 DOI: 10.1155/2015/432369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 12/02/2022]
Abstract
The main aim of the present study was to assess the antioxidative effects of human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) in a rat model of radiation myelopathy. UC-MSCs were isolated from Wharton's jelly (WJ) of umbilical cords. An irradiated cervical spinal cord rat model (C2-T2 segment) was generated using a 60Co irradiator to deliver 30 Gy of radiation. UC-MSCs were injected through the tail vein at 90 days, 97 days, 104 days, and 111 days after-irradiation. Histological damage was examined by cresyl violet/Nissl staining. The activities of two antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPX) in the spinal cord were measured by the biomedical assay. In addition, the levels of vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) in the spinal cord were determined by ELISA methods. Multiple injections of UC-MSCs through the tail vein ameliorated neuronal damage in the spinal cord, increased the activities of the antioxidant enzymes CAT and GPX, and increased the levels of VEGF and Ang-2 in the spinal cord. Our results suggest that multiple injections of UC-MSCs via the tail vein in the rat model of radiation myelopathy could significantly improve the antioxidative microenvironment in vivo.
Collapse
|
29
|
Chen J, Xu J, Li J, Du L, Chen T, Liu P, Peng S, Wang M, Song H. Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced mastitis in rats via suppressing MAPK mediated inflammatory responses and oxidative stress. Int Immunopharmacol 2015; 26:147-52. [PMID: 25840281 DOI: 10.1016/j.intimp.2015.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022]
Abstract
Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Jinglou Chen
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xu
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Li
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifen Du
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Liu
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Peng
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingwei Wang
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Song
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Speciale A, Cimino F, Saija A, Canali R, Virgili F. Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. GENES & NUTRITION 2014; 9:404. [PMID: 24838260 PMCID: PMC4169059 DOI: 10.1007/s12263-014-0404-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
Anthocyanins (AC) are water-soluble natural pigments found in various parts of higher plants. Despite their limited oral bioavailability and very low post-absorption plasma concentrations, the dietary consumption of these pigments has been proposed to be associated with a significant protection against several human pathological conditions, including cardiovascular diseases. Many studies highlighted that some health benefits of AC localize in particular at endothelium level, contributing to vascular homeostasis and also to the control of angiogenesis, inflammation, and platelet aggregation. This review reports and comments on the large existing literature addressing the molecular mechanisms that, beyond the antioxidant properties, may have a significant role in the effects of AC and AC-rich foods on vessel endothelium. Among these, AC have been reported to prevent peroxynitrite-mediated endothelial dysfunction in endothelial cells (ECs), thanks to their capability to modulate the expression and activity of several enzymes involved in NO metabolism. Furthermore, evidence indicates that AC can prevent the expression of adhesion molecules and the adhesion of monocytes to ECs challenged by pro-inflammatory agents. Overall, the activity of AC could be associated with the ability to elicit cell adaptive responses involving the transcription factor Nrf2 by affecting the "nucleophilic tone" of the organism. This review confirms the importance of specific nutritional molecules for human health and suggests new avenues for nutrition-based interventions to reduce the risk of cardiovascular disease in the population.
Collapse
Affiliation(s)
- Antonio Speciale
- />Department Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Francesco Cimino
- />Department Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Antonella Saija
- />Department Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Raffaella Canali
- />Agricultural Research Council - Food and Nutrition Research Centre (C.R.A.- NUT), Rome, Italy
| | - Fabio Virgili
- />Agricultural Research Council - Food and Nutrition Research Centre (C.R.A.- NUT), Rome, Italy
| |
Collapse
|