1
|
Cai J, Zhou H, Liu M, Zhang D, Lv J, Xue H, Zhou H, Zhang W. Host immunity and intracellular bacteria evasion mechanisms: Enhancing host-directed therapies with drug delivery systems. Int J Antimicrob Agents 2025; 65:107492. [PMID: 40107461 DOI: 10.1016/j.ijantimicag.2025.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Host-directed therapies (HDTs) have been investigated as a potential solution to combat intracellular and drug-resistant bacteria. HDTs stem from extensive research on the intricate interactions between the host and intracellular bacteria, leading to a treatment approach that relies on immunoregulation. To improve the bioavailability and safety of HDTs, researchers have utilized diverse drug delivery systems (DDS) to encapsulate and transport therapeutic agents to target cells. In this review, we first introduce the three mechanisms of bactericidal action and intracellular bacterial evasion: autophagy, reactive oxygen species (ROS), and inflammatory cytokines, with a particular focus on autophagy. Special attention is given to the detailed mechanism of xenophagy in clearing intracellular bacteria, a crucial selective autophagy process that specifically targets and degrades intracellular pathogens. Following this, we present the application of DDS to modulate these regulatory methods for intracellular bacteria elimination. By integrating insights from immunology and nanomedicine, this review highlights the emerging role of DDS in advancing HDTs for intracellular bacterial infections and paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Han Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Mingwei Liu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Dingjian Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Jingxuan Lv
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Haokun Xue
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Houcheng Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China.
| |
Collapse
|
2
|
Allam RM, El-Nasr NMEA, Elbaset MA, Saleh DO, El-Seidy AMA. Unveiling the potency of ZnO and CuO nanocomposites in combating hepatocellular carcinoma by inducing cell death and suppressing migration. Sci Rep 2025; 15:15477. [PMID: 40319186 PMCID: PMC12049527 DOI: 10.1038/s41598-025-97395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
Human hepatocellular carcinoma (HCC) is recognized as one of the leading causes of death globally and is resistant to several anticancer drugs. As a result, it is critical to identify more effective druggable therapies. Metal oxide nanoparticles (MO-NPs), especially nanocomposites, have recently received much attention owing to their potential applications in cancer therapy. In this study, we synthesized zinc oxide (ZnO) and copper oxide (CuO) nanocomposites in different ratios (N1, N2, and N3). We evaluated their cytotoxicity against two HCC cell lines (HepG2 and HuH-7) and one normal liver cell (BNL), compared with Sorafenib as a standard therapy. Then, we investigated the potential underlying mechanisms of anticancer action employing flow cytometry, migration assay, and western blot. The results showed that the nanocomposite with an equal ratio of both ZnO and CuO-NPs (N1) exhibited the highest cytotoxic activity on the HuH7 cell line while exerting no detrimental impact on normal rat liver epithelial cells. Further investigation into the toxicity mechanisms of N1 revealed three modalities of induced cell death (apoptotic, necrotic, and autophagic) along with S- and G2/M cell cycle arrest, suggesting mitotic catastrophe. Furthermore, N1 displayed potent anti-migratory activity, surpassing sorafenib, upregulated the protein level of autophagy marker beclin-1, while downregulated the protein level of EMT-marker vimentin. Overall, our findings showed that combining ZnO-NPs and CuO-NPs is more intriguing in combating HCC, providing prospective guidance for evolving liver cancer therapy employing bimetallic NPs.
Collapse
Affiliation(s)
- Rasha M Allam
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, P.O. 12622, Cairo, Egypt
| | - Nesma M E Abo El-Nasr
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, P.O. 12622, Cairo, Egypt
| | - Marawan A Elbaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, P.O. 12622, Cairo, Egypt
| | - Dalia O Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, P.O. 12622, Cairo, Egypt.
| | - Ahmed M A El-Seidy
- Inorganic Chemistry Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, P.O. 12622, Dokki, Cairo, Egypt
| |
Collapse
|
3
|
Guo Y, Morshedi M. Cutting-edge nanotechnology: unveiling the role of zinc oxide nanoparticles in combating deadly gastrointestinal tumors. Front Bioeng Biotechnol 2025; 13:1547757. [PMID: 40182988 PMCID: PMC11966175 DOI: 10.3389/fbioe.2025.1547757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have gained significant attention in cancer therapy due to their unique physical and chemical properties, particularly in treating gastrointestinal (GI) cancers such as gastric, colorectal, and hepatocellular carcinoma. These nanoparticles generate reactive oxygen species (ROS) upon entering cancer cells, causing oxidative stress that leads to cellular damage, DNA fragmentation, and apoptosis. ZnO-NPs affect the expression of key proteins involved in apoptosis, including p53, Bax, and Bcl-2, which regulate cell cycle arrest and programmed cell death. Additionally, ZnO-NPs can reduce mitochondrial membrane potential, further enhancing apoptosis in cancer cells. Furthermore, ZnO-NPs inhibit cancer cell proliferation by interfering with cell cycle progression. They reduce levels of cyclins and cyclin-dependent kinases (CDKs), leading to cell cycle arrest. ZnO-NPs also exhibit anti-metastatic properties by inhibiting the migration and invasion of cancer cells through modulation of signaling pathways that affect cell adhesion and cytoskeletal dynamics. The efficacy of ZnO-NPs in overcoming chemotherapy resistance has been demonstrated by their ability to reduce the IC50 values of chemotherapeutic agents, making cancer cells more susceptible to drug-induced cell death. In this review, we summarize the mechanisms by which ZnO-NPs exert anticancer effects in GI cancers, focusing on apoptosis, cell cycle regulation, and metastasis inhibition, while also highlighting the current limitations in translating these findings into effective clinical treatments.
Collapse
Affiliation(s)
- Yonggang Guo
- Pingdingshan College, Pingdingshan, Henan, China
| | | |
Collapse
|
4
|
Zhou X, Zang N, Yang T, Jia J, Zhou H, Jia J. Autophagy-targeted therapy for pulmonary inflammation by 2D MX 2 (M = W, Nb; X = S, Se) nanosheets. Acta Biomater 2025; 194:455-466. [PMID: 39864642 DOI: 10.1016/j.actbio.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
For biomedical applications, two-dimensional transition metal dichalcogenides (2D TMDCs) are often combined with other elements or functionalized with specific surface ligands, while their intrinsic biological activities are not yet fully understood. This study investigates the anti-inflammatory potential of four unmodified 2D TMDCs, including WS2, WSe2, NbS2, and NbSe2 nanosheets, in LPS-activated MH-S cells in vitro and in a mouse model of pulmonary inflammation in vivo. Despite their varying compositions, these 2D TMDCs exhibited comparable anti-inflammatory effects in LPS-activated MH-S cells. Notably, the 2D TMDC nanosheets disrupted autophagic signaling pathways by adhering to the cell membrane and/or being internalized by the cells, thereby enhancing cellular autophagy and reducing the LPS-induced pro-inflammatory response by inhibiting NFκB phosphorylation. Their natural affinity for lung tissue makes these 2D TMDCs promising therapeutic agents for pulmonary inflammation, a finding further supported by results from the LPS-induced mouse model. Importantly, these results highlight the critical role of composition in the effects of 2D TMDCs on autophagic signaling, which could significantly advance the development of personalized therapies for pulmonary inflammation. STATEMENT OF SIGNIFICANCE: Autophagy represents a promising target for therapeutic intervention in inflammatory lung diseases. This study explores various pristine two-dimensional transition metal dichalcogenides (2D TMDCs) as regulators of autophagy for targeted therapy in pulmonary inflammation. It emphasizes the crucial role of composition in shaping the effects of 2D TMDCs on autophagic signaling, thereby advancing the development of personalized therapies for pulmonary inflammation.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding 071000, China
| | - Ning Zang
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Ting Yang
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Jimei Jia
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Hongyu Zhou
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Zhou X, Medina-Ramirez IE, Su G, Liu Y, Yan B. All Roads Lead to Rome: Comparing Nanoparticle- and Small Molecule-Driven Cell Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310966. [PMID: 38616767 DOI: 10.1002/smll.202310966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Autophagy, vital for removing cellular waste, is triggered differently by small molecules and nanoparticles. Small molecules, like rapamycin, non-selectively activate autophagy by inhibiting the mTOR pathway, which is essential for cell regulation. This can clear damaged components but may cause cytotoxicity with prolonged use. Nanoparticles, however, induce autophagy, often causing oxidative stress, through broader cellular interactions and can lead to a targeted form known as "xenophagy." Their impact varies with their properties but can be harnessed therapeutically. In this review, the autophagy induced by nanoparticles is explored and small molecules across four dimensions: the mechanisms behind autophagy induction, the outcomes of such induction, the toxicological effects on cellular autophagy, and the therapeutic potential of employing autophagy triggered by nanoparticles or small molecules. Although small molecules and nanoparticles each induce autophagy through different pathways and lead to diverse effects, both represent invaluable tools in cell biology, nanomedicine, and drug discovery, offering unique insights and therapeutic opportunities.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, 071100, China
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av Universidad 940, Aguascalientes, Aguascalientes, México
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 10024, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Yan Y, Huang W, Lu X, Chen X, Shan Y, Luo X, Li Y, Yang X, Li C. Zinc oxide nanoparticles induces cell death and consequently leading to incomplete neural tube closure through oxidative stress during embryogenesis. Cell Biol Toxicol 2024; 40:51. [PMID: 38958792 PMCID: PMC11222284 DOI: 10.1007/s10565-024-09894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn2+ they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn2+ played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.
Collapse
Affiliation(s)
- Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Lu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianxian Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyi Shan
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Xin Luo
- Department of Urology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yu Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xuesong Yang
- Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China.
- Clinical Research Center, Clifford Hospital, Guangzhou, 511495, China.
| | - Chun Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
8
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Mohammadi M, Hashemzadeh MS. Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects? Biol Trace Elem Res 2024; 202:1878-1900. [PMID: 37639166 DOI: 10.1007/s12011-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
Cancer chemotherapy is still a serious challenge. Chemo-resistance and destructive side effects of chemotherapy drugs are the most critical limitations of chemotherapy. Chemo-resistance is the leading cause of chemotherapy failure. Chemo-resistance, which refers to the resistance of cancer cells to the anticancer effects of chemotherapy drugs, is caused by various reasons. Among the most important of these reasons is the increase in the efflux of chemotherapy drugs due to the rise in the expression and activity of ABC transporters, the weakening of apoptosis, and the strengthening of stemness. In the last decade, a significant number of studies focused on the application of nanotechnology in cancer treatment. Considering the anti-cancer properties of zinc, zinc oxide nanoparticles have received much attention in recent years. Some studies have indicated that zinc oxide nanoparticles can target the critical mechanisms of cancer chemo-resistance and enhance the effectiveness of chemotherapy drugs. These studies have shown that zinc oxide nanoparticles can reduce the activity of ABC transporters, increase DNA damage and apoptosis, and attenuate stemness in cancer cells, leading to enhanced chemo-sensitivity. Some other studies have also shown that zinc oxide nanoparticles in low doses can be helpful in minimizing the harmful side effects of chemotherapy drugs. In this article, after a brief overview of the mechanisms of chemo-resistance and anticancer effects of zinc, we will review all these studies in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Florance I, Cordani M, Pashootan P, Moosavi MA, Zarrabi A, Chandrasekaran N. The impact of nanomaterials on autophagy across health and disease conditions. Cell Mol Life Sci 2024; 81:184. [PMID: 38630152 PMCID: PMC11024050 DOI: 10.1007/s00018-024-05199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box 14965/161, Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Gu L, Lin J, Wang Q, Meng F, Niu G, Lin H, Chi M, Feng Z, Zheng H, Li D, Zhao G, Li C. Mesoporous zinc oxide-based drug delivery system offers an antifungal and immunoregulatory strategy for treating keratitis. J Control Release 2024; 368:483-497. [PMID: 38458571 DOI: 10.1016/j.jconrel.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Fungal keratitis is a refractory eye disease that is prone to causing blindness. Fungal virulence and inflammatory responses are two major factors that accelerate the course of fungal keratitis. However, the current antifungal drugs used for treatment usually possess transient residence time on the ocular surface and low bioavailability deficiencies, which limit their therapeutic efficacy. In this work, natamycin (NATA)-loaded mesoporous zinc oxide (Meso-ZnO) was synthesized for treating Aspergillus fumigatus keratitis with excellent drug-loading and sustained drug release capacities. In addition to being a carrier for drug delivery, Meso-ZnO could restrict fungal growth in a concentration-dependent manner, and the transcriptome analysis of fungal hyphae indicated that it inhibited the mycotoxin biosynthesis, oxidoreductase activity and fungal cell wall formation. Meso-ZnO also promoted cell migration and exhibited anti-inflammatory role during fungal infection by promoting the activation of autophagy. In mouse models of fungal keratitis, Meso-ZnO/NATA greatly reduced corneal fungal survival, alleviated tissue inflammatory damage, and reduced neutrophils accumulation and cytokines expression. This study suggests that Meso-ZnO/NATA can be a novel and effective treatment strategy for fungal keratitis.
Collapse
Affiliation(s)
- Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Fanyue Meng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Geng Niu
- School of Science, Qingdao University of Technology, Qingdao 266520, PR China
| | - Hao Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| |
Collapse
|
11
|
Li X, Zhang J, Wang M, Du C, Zhang W, Jiang Y, Zhang W, Jiang X, Ren D, Wang H, Zhang X, Zheng Y, Tang J. Pulmonary Surfactant Homeostasis Dysfunction Mediates Multiwalled Carbon Nanotubes Induced Lung Fibrosis via Elevating Surface Tension. ACS NANO 2024; 18:2828-2840. [PMID: 38101421 DOI: 10.1021/acsnano.3c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have been widely used in many disciplines and raised great concerns about their negative health impacts, especially environmental and occupational exposure. MWCNTs have been reported to induce fibrotic responses; however, the underlying mechanisms remain largely veiled. Here, we reported that MWCNTs inhalation induced lung fibrosis together with decreased lung compliance, increased elastance in the mice model, and elevated surface tension in vitro. Specifically, MWCNTs increased surface tension by impairing the function of the pulmonary surfactant. Mechanistically, MWCNTs induced lamellar body (LB) dysfunction through autophagy dysfunction, which then leads to surface tension elevated by pulmonary surfactant dysfunction in the context of lung fibrosis. This is a study to investigate the molecular mechanism of MWCNTs-induced lung fibrosis and focus on surface tension. A direct mechanistic link among impaired LBs, surface tension, and fibrosis has been established. This finding elucidates the detailed molecular mechanisms of lung fibrosis induced by MWCNTs. It also highlights that pulmonary surfactants are expected to be potential therapeutic targets for the prevention and treatment of lung fibrosis induced by MWCNTs.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chao Du
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yingying Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinmin Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Hongmei Wang
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
12
|
Barangi S, Mehri S, Moosavi Z, Yarmohammadi F, Hayes AW, Karimi G. Melatonin attenuates liver injury in arsenic-treated rats: The potential role of the Nrf2/HO-1, apoptosis, and miR-34a/Sirt1/autophagy pathways. J Biochem Mol Toxicol 2024; 38:e23635. [PMID: 38229313 DOI: 10.1002/jbt.23635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Arsenic is a toxic metalloid found in the environment in different organic and inorganic forms. Molecular mechanisms implicated in arsenic hepatotoxicity are complex but include oxidative stress, apoptosis, and autophagy. The current study focused on the potential protective capacity of melatonin against arsenic-induced hepatotoxicity. Thirty-six male Wistar rats were allocated into control, arsenic (15 mg/kg; orally), arsenic (15 mg/kg) plus melatonin (10, 20, and 30 mg/kg; intraperitoneally), and melatonin alone (30 mg/kg) groups for 28 days. After the treatment period, the serum sample was separated to measure liver enzymes (AST and ALT). The liver tissue was removed and then histological alterations, oxidative stress markers, antioxidant capacity, the levels of Nrf2 and HO-1, apoptosis (Bcl-2, survivin, Mcl1, Bax, and caspase-3), and autophagy (Sirt1, Beclin-1, and LC3 II/I ratio) proteins, as well as the expression level of miR-34a, were evaluated on this tissue. Arsenic exposure resulted in the enhancement of serum AST, ALT, and substantial histological damage in the liver. Increased levels of malondialdehyde, a lipid peroxidation marker, and decreased levels of physiological antioxidants including glutathione, superoxide dismutase, and catalase were indicators of arsenic-induced oxidative damage. The levels of Nrf2, HO-1, and antiapoptotic proteins diminished, while proapoptotic and autophagy proteins were elevated in the arsenic group concomitant with a low level of hepatic miR-34a. The co-treatment of melatonin and arsenic reversed the changes caused by arsenic. These findings showed that melatonin reduced the hepatic damage induced by arsenic due to its antioxidant and antiapoptotic properties as well as its regulatory effect on the miR-34a/Sirt1/autophagy pathway.
Collapse
Affiliation(s)
- Samira Barangi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Kanika, Khan R. Functionalized nanomaterials targeting NLRP3 inflammasome driven immunomodulation: Friend or Foe. NANOSCALE 2023; 15:15906-15928. [PMID: 37750698 DOI: 10.1039/d3nr03857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The advancement in drug delivery systems in recent times has significantly enhanced therapeutic effects by enabling site-specific targeting through nanocarriers. These nanocarriers serve as invaluable tools for pharmacotherapeutic advancements against various disorders that enhance the effectiveness of encapsulated drugs by reducing their toxicity and increasing the efficacy of less potent drugs, thereby improving the therapeutic index. Inflammasomes, protein complexes located in the activated immune cell cytoplasm, regulate the activation of caspases involved in inflammation. However, aberrant activation of inflammasomes can result in uncontrolled tissue responses, contributing to the development of various diseases. Therefore, achieving a precise balance between inflammasome inhibition and activation is crucial for effectively treating inflammatory disorders through targeted functionalized nanocarriers. Despite the wealth of available data on the relevance of functionalized nanocarriers in inflammatory disorders, the nanotechnological potential to modulate inflammasomes has not been adequately explored. In this comprehensive review, we highlight the latest research on the modulation of the inflammasome cascade, both upregulating and downregulating its function, using nanocarriers in the context of inflammatory disorders. The utilization of nanocarriers as a therapeutic strategy holds immense potential for researchers aiming to effectively target and modulate inflammasomes in the treatment of inflammatory disorders, thus improving disease severity outcomes.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
14
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Lekki-Porębski SA, Rakowski M, Grzelak A. Free zinc ions, as a major factor of ZnONP toxicity, disrupts free radical homeostasis in CCRF-CEM cells. Biochim Biophys Acta Gen Subj 2023; 1867:130447. [PMID: 37619691 DOI: 10.1016/j.bbagen.2023.130447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Nanotechnology has become a ubiquitous part of our everyday life. Besides the already-known nanoparticles (NPs), plenty of new nanomaterials are being synthesized every day. Here, we explain the mechanism of the zinc oxide nanoparticles (ZnONPs) cytotoxicity in a cellular model of acute lymphoblastic leukaemia (CCRF-CEM). To do so, we investigated both possible hypotheses about the ZnONPs mechanism of toxicity: a free zinc ions release and/or reactive oxygen species (ROS) generation. Presented here results show that: Our results support the hypothesis that the mechanism of ZnONPs cytotoxicity is based on the release of free zinc ions. Nevertheless, both previously quoted hypotheses incompletely described the mechanism of action of ZnONPs. In this paper, we show that the mechanism of cytotoxicity of ZnONPs is based on the induction of reductive stress in CCRF-CEM cells, which is caused by free zinc ions released from ZnONPs. Therefore, the increase of oxidative stress markers is most likely a secondary response of the cells towards the Zn2+. These results provide a crucial expansion of the zinc ion hypothesis and thus explain the biphasic cellular response of CCRF-CEM cells treated with ZnONPs.
Collapse
Affiliation(s)
- S A Lekki-Porębski
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland.
| | - M Rakowski
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
| | - A Grzelak
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
16
|
Elashiry MM, Raafat SN, Tay FR, Saber SM. Effect of rapamycin on human periodontal ligament stem cells that have been exposed to sodium hypochlorite. Life Sci 2023; 329:121989. [PMID: 37524163 DOI: 10.1016/j.lfs.2023.121989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
AIMS The present study investigated the effect of rapamycin on the viability and osteogenic differentiation potential of human periodontal ligament stem cells (hPDLSCs) in the presence of sodium hypochlorite (NaOCl). MAIN METHODS After determining the minimum inhibitory concentration of NaOCl and optimum concentration of rapamycin, the viability of hPDLSCs was evaluated using the MTT assay subsequent to their exposure to NaOCl, rapamycin, or a combination of both. Osteogenic differentiation was evaluated by the cell mineralization assay performed by alizarin red S staining, alkaline phosphatase activity, and monitoring the expression of osteogenic genes markers Runt-related transcription factor 2, osteocalcin, and osteoprotegerin, using real-time quantitative polymerase chain reaction (RT-qPCR). The expression of autophagy-related genes PI3K, Akt, and mTOR, was also analyzed with RT-qPCR. KEY FINDINGS Stem cells treated with rapamycin showed the highest percentage of viable cells in the presence of NaOCl. The same trend was observed for all osteogenic differentiation assays. The hPDLSCs treated with rapamycin demonstrated the highest calcium nodule deposition, alkaline phosphatase activity, and the expression of osteogenic gene markers. These effects were not adversely affected by the presence of NaOCl. Rapamycin significantly inhibited mTOR gene expression, while there were no differences in the gene expression of PI3K and Akt. SIGNIFICANCE Rapamycin counteracts the cytotoxic effect of NaOCl by enhancing the viability and osteogenic differentiation potential of hPDLSCs. Rapamycin appears to accomplish these processes via autophagy activation, by inhibiting mTOR gene expression. The incorporation of rapamycin in regenerative endodontic therapy may encourage a higher success rate.
Collapse
Affiliation(s)
- Mohamed M Elashiry
- Department of Endodontics, Dental College of Georgia, Augusta University, GA, USA; Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
| | - Shereen N Raafat
- Department of Pharmacology, Faculty of Dentistry, The British University in Egypt, Egypt; Center of Innovative Dental Sciences (CIDS), Faculty of Dentistry, The British University in Egypt, Egypt
| | - Franklin R Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, GA, USA
| | - Shehabeldin M Saber
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt; Center of Innovative Dental Sciences (CIDS), Faculty of Dentistry, The British University in Egypt, Egypt; Department of Endodontics, Faculty of Dentistry, The British University in Egypt, Egypt
| |
Collapse
|
17
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|
18
|
Lu Q, Xu S, Hao Z, Li Y, Huang Y, Ying S, Jing W, Zou S, Xu Y, Wang H. Dinotefuran exposure induces autophagy and apoptosis through oxidative stress in Bombyx mori. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131997. [PMID: 37423129 DOI: 10.1016/j.jhazmat.2023.131997] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
As a third-generation neonicotinoid insecticide, dinotefuran is extensively used in agriculture, and its residue in the environment has potential effects on nontarget organisms. However, the toxic effects of dinotefuran exposure on nontarget organism remain largely unknown. This study explored the toxic effects of sublethal dose of dinotefuran on Bombyx mori. Dinotefuran upregulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the midgut and fat body of B. mori. Transcriptional analysis revealed that the expression levels of many autophagy and apoptosis-associated genes were significantly altered after dinotefuran exposure, consistent with ultrastructural changes. Moreover, the expression levels of autophagy-related proteins (ATG8-PE and ATG6) and apoptosis-related proteins (BmDredd and BmICE) were increased, whereas the expression level of an autophagic key protein (sequestosome 1) was decreased in the dinotefuran-exposed group. These results indicate that dinotefuran exposure leads to oxidative stress, autophagy, and apoptosis in B. mori. In addition, its effect on the fat body was apparently greater than that on the midgut. In contrast, pretreatment with an autophagy inhibitor effectively downregulated the expression levels of ATG6 and BmDredd, but induced the expression of sequestosome 1, suggesting that dinotefuran-induced autophagy may promote apoptosis. This study reveals that ROS generation regulates the impact of dinotefuran on the crosstalk between autophagy and apoptosis, laying the foundation for studying cell death processes such as autophagy and apoptosis induced by pesticides. Furthermore, this study provides a comprehensive insight into the toxicity of dinotefuran on silkworm and contributes to the ecological risk assessment of dinotefuran in nontarget organisms.
Collapse
Affiliation(s)
- Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuye Ying
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Jing
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Zou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
20
|
Chen Y, Wu Y, Qi Y, Liu S. Cell Death Pathways: The Variable Mechanisms Underlying Fine Particulate Matter-Induced Cytotoxicity. ACS NANOSCIENCE AU 2023; 3:130-139. [PMID: 37101591 PMCID: PMC10125306 DOI: 10.1021/acsnanoscienceau.2c00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 04/28/2023]
Abstract
Recently, the advent of health risks due to the cytotoxicity of fine particulate matter (FPM) is concerning. Numerous studies have reported abundant data elucidating the FPM-induced cell death pathways. However, several challenges and knowledge gaps are still confronted nowadays. On one hand, the undefined components of FPM (such as heavy metals, polycyclic aromatic hydrocarbons, and pathogens) are all responsible for detrimental effects, thus rendering it difficult to delineate the specific roles of these copollutants. On the other hand, owing to the crosstalk and interplay among different cell death signaling pathways, precisely determining the threats and risks posed by FPM is difficult. Herein, we recapitulate the current knowledge gaps present in the recent studies regarding FPM-induced cell death, and propose future research directions for policy-making to prevent FPM-induced diseases and improve knowledge concerning the adverse outcome pathways and public health risks of FPM.
Collapse
Affiliation(s)
- Yucai Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yu Qi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Science
and Technology Innovation Center, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
21
|
Yang F, Wang X, Sun J, Tan S, Zhou S, Tu W, Dong X, Xiao Q, Yang F, Gao L. Mesopore-encaged active MnOx in nano-silica selectively suppresses lung cancer cells by inducing autophagy. Biomater Sci 2023; 11:2056-2064. [PMID: 36723069 DOI: 10.1039/d2bm01826h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autophagy induced by nanomaterials is one of the intracellular catabolic pathways that degrade and recycle the biomacromolecules and damaged organelles in cells and has emerged as a very promising pharmacological target critical to future drug development and anti-cancer therapy. Herein, we developed mesopore-encaged highly-dispersed active cluster-like MnOx in nanosilica entitled MnO-MS, with a size of around 130 nm. Our studies show that MnO-MS could not only obviously induce autophagy in both stable GFP-LC3 HeLa cells and GFP-LC3-mCherry HeLa cells but also could selectively inhibit lung cancer A549 cell growth at 11.19 μg mL-1 (IC50) while exhibiting little cytotoxicity in normal cells. Encouraged by these interesting results, a further mechanistic study reveals that reactive oxygen species (ROS) were excited by the active MnOx in nanosilica, leading to the disruption of mitochondrial membrane potential (MMP), enhancement of ATG5A/ATG16L/ATG4B/Beclin1, and finally, inhibition of the mTOR signaling pathways. Collectively, these findings indicate that MnO-MS-induced cell death via autophagy pathways in cancer cells. Furthermore, MnO-MS significantly inhibited tumor growth with minimal side effects in vivo, and it is envisioned that MnO-MS can be further developed as a potential autophagy inducer for the treatment of lung cancers.
Collapse
Affiliation(s)
- Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China. .,Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| | - Sijia Tan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| | - Shizhe Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| | - Wenlong Tu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Xuexue Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P.R. China.
| |
Collapse
|
22
|
Abd El-Baset SA, Mazen NF, Abdul-Maksoud RS, Kattaia AAA. The therapeutic prospect of zinc oxide nanoparticles in experimentally induced diabetic nephropathy. Tissue Barriers 2023; 11:2069966. [PMID: 35504734 PMCID: PMC9870014 DOI: 10.1080/21688370.2022.2069966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the most frequent cause of end-stage renal failure. Zinc oxide nanoparticles (ZnO-NPs) are promising antidiabetic agents. Our aim was to evaluate the prospective efficacy of ZnO-NPs in treating DN in streptozotocin-induced diabetic rats. Rats were randomly dispersed into three sets: control group, DN group and DN + ZnO-NPs group. ZnO-NPs were given at a dose of 10 mg/kg/day by oral gavage for 4 weeks. Urine and blood samples were processed for biochemical analyses. Kidney samples were managed for light and electron microscopy studies. Immune histochemical staining of P53, aquaporin11 (AQP11) and mechanistic target of rapamycin (mTOR) were performed. Gene analyses of nephrin, podocin, beclin-1, LC3 and p62 were done. Administration of ZnO-NPs ameliorated the functional and histopathological alterations of the kidney in a rat model of diabetic nephropathy. ZnO-NPs retained the constancy of the glomerular filtration barrier and restored almost normal renal structure. This was confirmed by upregulation of mRNA expression of podocyte markers (nephrin and podocin) and AQP11 immune histochemical expression in the renal tubules. The beneficial outcomes of ZnO-NPs might be attributed to activation of autophagy through inhibiting mTOR signaling pathway. ZnO-NPs enhanced beclin-1 and LC3 mRNA expressions and reduced p62 mRNA expression. ZnO-NPs also exerted anti-apoptotic potential (evidenced by the decrease in p53 immune expression), anti-inflammatory and anti-oxidant effect [endorsed by suppression of serum cyclooxygenase-2 (COX-2) enzyme activity, tissue nuclear factor kappa beta (NF-κB) level and blood hypoxia-inducible factors (HIF-1α) level]. These results may point the way to an effective therapy of DN.Abbreviations: AQP11 Aquaporin11; BUN: Blood urea nitrogen; COX-2: Cyclooxygenase-2; DAB: 3, 3'-diaminobenzidine; DM: Diabetes mellitus; DN: Diabetic nephropathy; ELISA: Enzyme-linked immunosorbent assay; H&E: Hematoxylin & eosin; HIF-1α: Hypoxia-inducible factors; iNOS: inducible nitric oxide synthase; LC3: Microtubule-associated protein 1 light chain 3; mTOR: Mechanistic target of rapamycin; NF-κB: Nuclear factor kappa beta; NPs: Nanoparticles; PAS: Periodic acid Schiff; PCR: Polymerase chain reaction; PGE2: Prostaglandin E2; ROS: Reactive oxygen species; STZ: Streptozotocin; X ± SEM: Mean ± standard error of means; Zn: Zinc; ZnO-NPs: Zinc oxide nanoparticles.
Collapse
Affiliation(s)
- Samia A. Abd El-Baset
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, ZagazigEgypt
| | - Nehad F. Mazen
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, ZagazigEgypt
| | - Rehab S. Abdul-Maksoud
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, ZagazigEgypt
| | - Asmaa A. A. Kattaia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, ZagazigEgypt,CONTACT Asmaa A. A. Kattaia ; ; Faculty of Medicine, Zagazig University, Zagazig, Asharquia, Egypt, Postal code: 44519
| |
Collapse
|
23
|
Xu X, Feng Y, Han C, Yao Z, Liu Y, Luo C, Sheng J. Autophagic response of intestinal epithelial cells exposed to polystyrene nanoplastics. ENVIRONMENTAL TOXICOLOGY 2023; 38:205-215. [PMID: 36178722 DOI: 10.1002/tox.23678] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Growing evidence demonstrates that the bioaccumulation of polystyrene nanoplastics (PS-NPs) in the gastrointestinal tract has negative effects on health. Until now, little information has been available regarding the potential hazards of PS-NPs to intestinal epithelial barriers. In this study, we employed cellular and animal models to investigate the adverse effects of PS-NPs on intestinal epithelium and the underlying mechanism. We found that PS-NPs affected the growth and survival of intestinal epithelial cells in a time- and concentration-dependent manner. PS-NPs accumulated in the cytoplasm, resulting in an impaired autophagic flux and inducing an autophagic response. This response was also confirmed in vivo. Our results provide new insights into the internalization of PS-NPs and the resultant autophagy response in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xin Xu
- Affiliated Hangzhou First People's Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yudong Feng
- Undergraduate Degree Program in Preventive Medicine, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Chenjie Han
- Undergraduate Degree Program in Preventive Medicine, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Zhengrong Yao
- Affiliated Hangzhou First People's Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaxin Liu
- Affiliated Hangzhou First People's Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chi Luo
- Affiliated Hangzhou First People's Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghao Sheng
- Affiliated Hangzhou First People's Hospital and Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Mundekkad D, Cho WC. Mitophagy Induced by Metal Nanoparticles for Cancer Treatment. Pharmaceutics 2022; 14:2275. [PMID: 36365094 PMCID: PMC9699542 DOI: 10.3390/pharmaceutics14112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Research on nanoparticles, especially metal nanoparticles, in cancer therapy is gaining momentum. The versatility and biocompatibility of metal nanoparticles make them ideal for various applications in cancer therapy. They can bring about apoptotic cell death in cancer cells. In addition to apoptosis, nanoparticles mediate a special type of autophagy facilitated through mitochondria called mitophagy. Interestingly, nanoparticles with antioxidant properties are capable of inducing mitophagy by altering the levels of reactive oxygen species and by influencing signaling pathways like PINK/Parkin pathway and P13K/Akt/mTOR pathway. The current review presents various roles of metal nanoparticles in inducing mitophagy in cancer cells. We envision this review sheds some light on the blind spots in the research related to mitophagy induced by nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Centre for NanoBioTechnology (CNBT), Vellore Institute of Technology, Vellore 632014, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
25
|
Mawed SA, Marini C, Alagawany M, Farag MR, Reda RM, El-Saadony MT, Elhady WM, Magi GE, Di Cerbo A, El-Nagar WG. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish. Antioxidants (Basel) 2022; 11:1567. [PMID: 36009286 PMCID: PMC9404823 DOI: 10.3390/antiox11081567] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, the core mechanisms that control gametogenesis are largely multiple, complex, successive, and orchestrated by intrinsic and extrinsic factors. However, age, health status, and hormonal activity are important factors for good fertility; other intangible intracellular molecular mechanisms that manage oocyte development are still unclear. The present study was designed to elucidate the ultrastructure changes in the ovary in response to its exposure to zinc oxide nanoparticles (ZnO-NPs) and to explore the role of autophagy and apoptosis during egg maturation and ovulation on the fertility of female zebrafish. In our study, ZnO-NPs could induce cytotoxicity in the maturing oocyte by activating autophagy and apoptosis in a caspase-dependent manner and could induce oxidative stress by generating reactive oxygen species (ROS) that elevated the mutated ovarian tP53 protein. Simultaneously, necroptosis developed, mimicking the features of apoptosis and necrosis. Collectively, ZnO-NPs created a suitable necrotic environment that led to follicular developmental retardation that altered oocyte ovulation and reduced fecundity of female zebrafish.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha M. Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gian E. Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Wafaa G. El-Nagar
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
26
|
Abulikemu A, Zhao X, Qi Y, Liu Y, Wang J, Zhou W, Duan H, Li Y, Sun Z, Guo C. Lysosomal impairment-mediated autophagy dysfunction responsible for the vascular endothelial apoptosis caused by silica nanoparticle via ROS/PARP1/AIF signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119202. [PMID: 35358632 DOI: 10.1016/j.envpol.2022.119202] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Understanding the underlying interactions of nanoparticles (NPs) with cells is crucial to the nanotoxicological research. Evidences suggested lysosomes as a vital target upon the accumulation of internalized NPs, and lysosomal damage and autophagy dysfunction are emerging molecular mechanisms for NPs-elicited toxicity. Nevertheless, the interaction with lysosomes, ensuing adverse effects and the underlying mechanisms are still largely obscure, especially in NPs-induced vascular toxicity. In this study, silica nanoparticles (SiNPs) were utilized to explore the adverse effects on lysosome in vascular endothelial cells by using in vitro cultured human endothelial cells (HUVECs), and in-depth investigated the mechanisms involved. Consequently, the internalized SiNPs accumulated explicitly in the lysosomes, and caused lysosomal dysfunction, which were prominent on the increased lysosomal membrane permeability, decline in lysosomal quantity, destruction of acidic environment of lysosome, and also disruption of lysosomal enzymes activities, resulting in autophagy flux blockage and autophagy dysfunction. More importantly, mechanistic results revealed the SiNPs-caused lysosomal impairments and resultant autophagy dysfunction could promote oxidative stress, DNA damage and the eventual cell apoptosis activated by ROS/PARP1/AIF signaling pathway. These findings improved the understanding of SiNPs-induced vascular injury, and may provide novel information and warnings for SiNPs applications in the fields of nanomedicine.
Collapse
Affiliation(s)
- Alimire Abulikemu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
27
|
Rahimi G, Mohammad KS, Zarei M, Shokoohi M, Oskoueian E, Poorbagher MRM, Karimi E. Zinc oxide nanoparticles synthesized using Hyssopus Officinalis L. Extract Induced oxidative stress and changes the expression of key genes involved in inflammatory and antioxidant Systems. Biol Res 2022; 55:24. [PMID: 35765116 PMCID: PMC9238176 DOI: 10.1186/s40659-022-00392-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in the synthesis of bioactive nanoparticles resulted in the discovery and introduction of new bioactive nanoparticles to the pharmaceutical industry. In this regard, this research is aimed to synthesize the zinc oxide nanoparticles (ZnO-NPs) using Hyssopus officinalis L. extract and to evaluate the safety of nanoparticles using Balb/C mice. METHODS Forty male mice were divided into four groups and received 0, 50, 100, and 200 mg/kg of ZnO-NPs for thirty days. At the end of the experiment, blood sugar, creatinine, aspartate aminotransferase (A.S.T.), and alanine aminotransferase (A.L.T.) were determined. Furthermore, histopathological and oxidative stress biomarker analyses in liver and kidney tissues were performed. The changes in the major inflammatory- and antioxidant-related genes were determined. RESULTS The results showed that blood sugar and creatinine reduced significantly (P < 0.05) when 50, 100, and 200 mg/kg ZnO-NPs were supplemented to the diet. The serum ALT and AST and lipid peroxidation in the liver and kidney tissues were increased significantly (p < 0.05) when 50, 100, and 200 mg/kg ZnO-NPs were supplemented to the diet. Supplementation of ZnO-NPs suppressed the expression of antioxidant-related genes (SOD and CAT) and up-regulated the inflammatory biomarkers (iNOS and TNF- α). The concentration of 200 mg/Kg nanoparticles indicated cellular degeneration and necrosis in the liver and kidney tissues. CONCLUSIONS Overall, it can be concluded that supplementation of ZnO-NPs synthesized using Hyssopus Officinalis L. extract in this study at 50 mg/kg or higher concentrations might be toxic to the mice.
Collapse
Affiliation(s)
- Ghasem Rahimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Mahsa Zarei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Shokoohi
- Department of Biology, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Ehsan Oskoueian
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran.
| | | | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
28
|
Recent development in chemosensor probes for the detection and imaging of zinc ions: a systematic review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Zhou X, Jin W, Sun H, Li C, Jia J. Perturbation of autophagy: An intrinsic toxicity mechanism of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153629. [PMID: 35131247 DOI: 10.1016/j.scitotenv.2022.153629] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have been widely used for various purposes due to their unique physicochemical properties. Such widespread applications greatly increase the possibility of human exposure to NPs in various ways. Once entering the human body, NPs may interfere with cellular homeostasis and thus affect the physiological system. As a result, it is necessary to evaluate the potential disturbance of NPs to multiple cell functions, including autophagy. Autophagy is an important cell function to maintain cellular homeostasis, and minimizing the disturbance caused by NP exposures to autophagy is critical to nanosafety. Herein, we summarized the recent research progress in nanotoxicity with particular focuses on the perturbation of NPs to cell autophagy. The basic processes of autophagy and complex relationships between autophagy and major human diseases were further discussed to emphasize the importance of keeping autophagy under control. Moreover, the most recent advances on perturbation of different types of NPs to autophagy were also reviewed. Last but not least, we also discussed major research challenges and potential coping strategies and proposed a safe-by-design strategy towards safer applications of NPs.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Hainan Sun
- Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Liu X, Zhang Y, Sun X, Zhang W, Shi X, Xu S. Di-(2-ethyl hexyl) phthalate induced oxidative stress promotes microplastics mediated apoptosis and necroptosis in mice skeletal muscle by inhibiting PI3K/AKT/mTOR pathway. Toxicology 2022; 474:153226. [PMID: 35659966 DOI: 10.1016/j.tox.2022.153226] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 01/18/2023]
Abstract
The plastic decomposition product microplastics (MPs) and the plastic additive Di (2-ethylhexyl) phthalate (DEHP) in the environment can damage various organs of the organism by inducing oxidative stress. The PI3K/AKT/mTOR signaling pathway participate in toxin-induced apoptosis and necroptosis. However, the effects of DEHP/MPs alone and combined exposure on skeletal muscle cell injury in mice and the role of PI3K/AKT/mTOR axis remain unclear. To investigate the effect of DEHP or/and MPs on skeletal muscle in mice and its possible toxicological mechanism, 60 mice were randomly divided into control group, DEHP group (DEHP 200 mg/kg dissolved in 50 mL corn oil mixed with 2.5 kg diet), MPs group (10 mg/L MPs in drinking water) and combined exposure group. In vitro, C2C12 cells were exposed to DEHP 600 μM/MPs 800 μM alone or in combination for 24 h. The results showed that DEHP/MPs exposure alone or in combination increased MDA content, decreased activities of CAT, T-AOC, SOD and GSH-Px, increased mRNA and protein expressions of Caspase-3, BAX, RIPK1, RIPK3 and MLKL, and decreased BCL-2 expression. The expression of PI3K/AKT/mTOR signaling pathway was significantly down-regulated. All the above results showed that the combined exposure group was more toxic, and similar experimental results were obtained by DEHP/MPs exposure test of C2C12 cells in vitro. It is suggested that DEHP/MPs can induce apoptosis and necroptosis by activating oxidative stress and down-regulating PI3K/AKT/mTOR pathway. This study provides new evidence for clarifying the possible mechanism of toxicity of DEHP and MPs to skeletal muscle of mice.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
31
|
Abd El-Khalik SR, Nasif E, Arakeep HM, Rabah H. The Prospective Ameliorative Role of Zinc Oxide Nanoparticles in STZ-Induced Diabetic Nephropathy in Rats: Mechanistic Targeting of Autophagy and Regulating Nrf2/TXNIP/NLRP3 Inflammasome Signaling. Biol Trace Elem Res 2022; 200:1677-1687. [PMID: 34241775 DOI: 10.1007/s12011-021-02773-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) as one of the common microvascular complications of diabetes mellitus, is the main cause of end-stage renal disease. Zinc oxide nanoparticles (ZnO NPs) have been employed in several biomedical aspects. This study purposed to explore the mechanistic renoprotective effects of ZnO NPs in STZ-induced DN. Sixty male Wistar rats were allocated into four equal groups: control, ZnO NPs control, STZ, and STZ + ZnO NPs groups. At the end of the experiment, blood and urine biochemical parameters were assayed. Renal tissue level of advanced glycation end products (AGEs) was assayed spectrofluorometrically, moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) DNA-binding activity and IL-1β levels were detected by ELISA. The gene expression levels of thioredoxin-interacting protein (TXNIP) and NOD-like receptor family pyrin domain containing 3 (NLRP3) were detected by quantitative real-time PCR. Oxidative stress markers were determined spectrophotometrically. Also, renal tissue histopathological and immunohistochemical analyses were determined. After 6 weeks of treatment, ZnO NPs markedly improved the biochemical, renal functions, and histopathological findings. Furthermore, ZnO NPs significantly increased Nrf2-DNA-binding activity and downregulated TXNIP gene expression leading to restoration of the redox status. Additionally, ZnO NPs ameliorated AGEs levels, enhanced autophagy activity, and attenuated inflammasome activation via downregulation of NLRP3 expression and reducing IL-1β levels. Based on our results, we concluded that ZnO NPs can be considered as a promising agent for slowing the progression of DN via interplay between autophagy and Nrf2/TXNIP/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
| | - Elham Nasif
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M Arakeep
- Anatomy Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanem Rabah
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
33
|
Zhou Y, Zhang H, Cheng Z, Wang H. Regulation of the PI3K/AKT/mTOR signaling pathway with synthesized bismuth oxide nanoparticles from Ginger (Zingiber officinale) extract: Mitigating the proliferation of colorectal cancer cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Kulthong K, Hooiveld GJEJ, Duivenvoorde LPM, Miro Estruch I, Bouwmeester H, van der Zande M. Comparative study of the transcriptomes of Caco-2 cells cultured under dynamic vs. static conditions following exposure to titanium dioxide and zinc oxide nanomaterials. Nanotoxicology 2022; 15:1233-1252. [PMID: 35077654 DOI: 10.1080/17435390.2021.2012609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Due to the widespread application of food-relevant inorganic nanomaterials, the gastrointestinal tract is potentially exposed to these materials. Gut-on-chip in vitro systems are proposed for the investigation of compound toxicity as they better recapitulate the in vivo human intestinal environment than static models, due to the added shear stresses associated with the flow of the medium. We aimed to compare cellular responses of intestinal epithelial Caco-2 cells at the gene expression level upon TiO2 (E171) and ZnO (NM110) nanomaterial exposure when cultured under dynamic and conventionally applied static conditions. Whole-genome transcriptome analyses upon exposure of the cells to TiO2 and ZnO nanomaterials revealed differentially expressed genes and related biological processes that were culture condition specific. The total number of differentially expressed genes (p < 0.01) and affected pathways (p < 0.05 and FDR < 0.25) after nanomaterial exposure was higher under dynamic culture conditions than under static conditions for both nanomaterials. The observed increase in nanomaterial-induced responses in the gut-on-chip model indicates that shear stress might be a major factor in cell susceptibility. This is the first report on the application of a gut-on-chip system in which gene expression responses upon TiO2 and ZnO nanomaterial exposure are evaluated and compared to a static system. It extends current knowledge on nanomaterial toxicity assessment and the influence of a dynamic environment on cellular responses. Application of the gut-on-chip system resulted in higher sensitivity of the cells and might thus be an attractive system for use in the toxicological hazard characterization of nanomaterials.
Collapse
Affiliation(s)
- Kornphimol Kulthong
- Division of Toxicology, Wageningen University, Wageningen, Netherlands.,Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, Netherlands.,National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Loes P M Duivenvoorde
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, Netherlands
| | | | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Wageningen, Netherlands
| | - Meike van der Zande
- Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
35
|
Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117940. [PMID: 34426183 DOI: 10.1016/j.envpol.2021.117940] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Arsenic is a well-recognized environmental contaminant that occurs naturally through geogenic processes in the aquifer. More than 200 million people around the world are potentially exposed to the elevated level of arsenic mostly from Asia and Latin America. Many adverse health effects including skin diseases (i.e., arsenicosis, hyperkeratosis, pigmentation changes), carcinogenesis, and neurological diseases have been reported due to arsenic exposure. In addition, arsenic has recently been shown to contribute to the onset of non-communicable diseases, such as diabetes mellitus and cardiovascular diseases. The mechanisms involved in arsenic-induced diabetes are pancreatic β-cell dysfunction and death, impaired insulin secretion, insulin resistance and reduced cellular glucose transport. Whereas, the most proposed mechanisms of arsenic-induced hypertension are oxidative stress, disruption of nitric oxide signaling, altered vascular response to neurotransmitters and impaired vascular muscle calcium (Ca2+) signaling, damage of renal, and interference with the renin-angiotensin system (RAS). However, the contributions of arsenic exposure to non-communicable diseases are complex and multifaceted, and little information is available about the molecular mechanisms involved in arsenic-induced non-communicable diseases and also no suitable therapeutic target identified yet. Therefore, in the future, more basic research is necessary to identify the appropriate therapeutic target for the treatment and management of arsenic-induced non-communicable diseases. Several reports demonstrated that a daily balanced diet with proper nutrient supplements (vitamins, micronutrients, natural antioxidants) has shown effective to reduce the damages caused by arsenic exposure. Arsenic detoxication through natural compounds or nutraceuticals is considered a cost-effective treatment/management and researchers should focus on these alternative options. This review paper explores the scenarios of arsenic contamination in groundwater with an emphasis on public health concerns. It also demonstrated arsenic sources, biogeochemistry, toxicity mechanisms with therapeutic targets, arsenic exposure-related human diseases, and onsets of cardiovascular diseases as well as feasible management options for arsenic toxicity.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Md Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
36
|
Wei S, Guo W, Qian Y, Xiang J, Liu K, Gao XJ, Gao X, Chen Y. Ribosome profiling reveals translatome remodeling in cancer cells in response to zinc oxide nanoparticles. Aging (Albany NY) 2021; 13:23119-23132. [PMID: 34620733 PMCID: PMC8544296 DOI: 10.18632/aging.203606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The anticancer effect of zinc oxide nanoparticles (ZnO NPs) largely relies on cellular responses such as alteration of gene expression. Although ZnO NPs have been reported to induce transcriptional changes, the potential of ZnO NPs to affect cellular translatome remains largely unknown. Using ribosome profiling, we demonstrated that the transcription of 78 genes and the translation of 1,448 genes are affected during one hour of ZnO NPs exposure in A549 human lung cancer cells. The mitogen-activated protein kinase (MAPK) pathway is up-regulated upon ZnO NP treatment. The upstream open reading frame (uORF) plays a pervasive role in the induction of up-regulated genes, including TLNRD1 and CCNB1IP1. Knockdown of TLNRD1 or CCNB1IP1 reduces ZnO NP-induced cytotoxicity. Together, our study characterizes the landscape of translational alteration under ZnO NPs treatment and provides potential targets to augment the anticancer effect of ZnO NPs.
Collapse
Affiliation(s)
- Saisai Wei
- Sir Run-Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Wenhao Guo
- Sir Run-Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Urology, Shaoxing Branch of Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Shaoxing 312000, China
| | - Yu Qian
- Sir Run-Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jie Xiang
- Sir Run-Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kangli Liu
- Sir Run-Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiang-Jing Gao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang, China
| | - Xiangwei Gao
- Sir Run-Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yicheng Chen
- Sir Run-Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
37
|
Yin Y, Peng H, Shao J, Zhang J, Li Y, Pi J, Guo J. NRF2 deficiency sensitizes human keratinocytes to zinc oxide nanoparticles-induced autophagy and cytotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103721. [PMID: 34339875 DOI: 10.1016/j.etap.2021.103721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most commonly used metal oxide particles in many industrial fields. Many studies have shown that ZnO NPs induce harmful effects to human skin, but the mechanisms remain poorly understood. Our results showed that ZnO NPs concentration-dependently induced cytotoxicity, ROS accumulation, and mitochondrial dysfunction in HaCaT cells. The expressions of adaptive antioxidant response transcriptional factor NRF2 and autophagy-related proteins P62 and LC3 II/I were increased by ZnO NPs. Knock-down of NRF2 (NRF2-KD) sensitized the cells to ZnO NPs-induced autophagy and cytotoxicity while an autophagy inhibitor, 3-methyladenine, protected the cells from ZnO NPs-induced cell death. These results demonstrated that NRF2 deficiency sensitizes human keratinocytes to ZnO NPs induced autophagy and cytotoxicity, and proposed a key role of NRF2 in protecting skin cells against ZnO NPs through regulation of antioxidants and autophagy.
Collapse
Affiliation(s)
- Yuanyuan Yin
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Hui Peng
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China
| | - Junbo Shao
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jing Zhang
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back District, Dongcheng Area, Beijing, 100010, China
| | - Yujie Li
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China
| | - Jingbo Pi
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Jiabin Guo
- Center for Disease Control and Prevention, Chinese PLA, No. 20 Dongdajie Street, Fengtai Area, Beijing, 100071, China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
38
|
Ajdary M, Keyhanfar F, Moosavi MA, Shabani R, Mehdizadeh M, Varma RS. Potential toxicity of nanoparticles on the reproductive system animal models: A review. J Reprod Immunol 2021; 148:103384. [PMID: 34583090 DOI: 10.1016/j.jri.2021.103384] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, nanotechnology has been involved in an array of applications in various fields, including diagnostic kits, disease treatment, drug manufacturing, drug delivery, and gene therapy. But concerns about the toxicity of nanoparticles have greatly hindered their use; also, due to their increasing use in various industries, all members of society are exposed to the toxicity of these nanoparticles. Nanoparticles have a negative impact on various organs, including the reproductive system. They also can induce abortion in women, reduce fetal growth and development, and can damage the reproductive system and sperm morphology in men. In some cases, it has been observed that despite the modification of nanoparticles in composition, concentration, and method of administration, there is still damage to the reproductive organs. Therefore, understanding how nanoparticles affect the reproductive system is of very importance. In several studies, the nanoparticle toxicity effect on the genital organs has been investigated at the clinical and molecular levels using the in vivo and in vitro models. This study reviews these investigations and provides important data on the toxicity, hazards, and safety of nanoparticles in the reproductive system to facilitate the optimal use of nanoparticles in the industry.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| | - Ronak Shabani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
39
|
Guo D, Wang Z, Guo L, Yin X, Li Z, Zhou M, Li T, Chen C, Bi H. Zinc oxide nanoparticle-triggered oxidative stress and autophagy activation in human tenon fibroblasts. Eur J Pharmacol 2021; 907:174294. [PMID: 34217712 DOI: 10.1016/j.ejphar.2021.174294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide due to elevated intraocular pressure, and filtering surgery can efficiently control intraocular pressure of glaucoma patients. However, failure of filtering surgery commonly results from scarring formation at the surgical site, in which fibroblast proliferation plays an essential role in the scarring process. Our previous study has demonstrated that zinc oxide (ZnO) nanoparticles could efficiently inhibit human tenon fibroblasts (HTFs) proliferation. The present study aimed to explore the underlying mechanism involved in oxidative stress and autophagy signaling in zinc oxide (ZnO) nanoparticles-induced inhibition of HTFs proliferation. In this study, we investigated the effect of ZnO nanoparticles on HTFs proliferation, mitochondrial function, ATP production and nuclear morphology. Moreover, we also explored the interactions between ZnO nanoparticles and HTFs, investigated the influence of ZnO nanoparticles on the autophagosome formation, the expression of autophagy-related 5 (Atg5), Atg12 and Becn1 (Beclin 1), and the level of light chain 3 (LC3). The results suggested that ZnO nanoparticles can efficiently inhibit HTFs proliferation, disrupt the mitochondrial function, attenuate the adenosine triphosphate (ATP) generation, and damage the nuclear morphology of HTFs. Exposure of HTFs to ZnO nanoparticles can also induce the shifted peak, elevate the expression of Atg5, Atg12 and Becn1, enhance the autophagosome formation, and promote the LC3 expression, and thus activate autophagy signaling. Overall, ZnO nanoparticles can apparently trigger oxidative stress and activate autophagy signaling in HTFs, and thus inhibit HTFs proliferation and mediate HTFs apoptosis.
Collapse
Affiliation(s)
- Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Zhe Wang
- Department of Ophthalmology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, 277000, China
| | - Lijie Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xuewei Yin
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zonghong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Mengxian Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tuling Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chen Chen
- Department of Ophthalmology, Linyi People's Hospital, Linyi, 276000, China.
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
40
|
Akter M, Atique Ullah AKM, Banik S, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Green Synthesized Silver Nanoparticles-Mediated Cytotoxic Effect in Colorectal Cancer Cells: NF-κB Signal Induced Apoptosis Through Autophagy. Biol Trace Elem Res 2021; 199:3272-3286. [PMID: 33236292 DOI: 10.1007/s12011-020-02463-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Green synthesized silver nanoparticles (Ag-NPs) have demonstrated promising effects, including cytotoxicity and anticancer potential, in different cell lines. Therefore, in our previous study, Ag-NPs were synthesized from the reduction of AgNO3 using Brassica rapa var. japonica (Bj) leaf extract as a reducing and stabilizing agent. The synthesized Ag-NPs were spherical in shape, with a size range of 15-30 nm. They had phase-centered cubic structure with strong growth inhibition potential against some bacteria. In continuation with our previous study, in the present study, we aimed to investigate the autophagy-regulated cytotoxic effect of Ag-NPs against human epithelial colorectal adenocarcinoma cells (Caco-2 cells). We found that the Bj leaf aqueous extract facilitated Brassica silver nanoparticles (Brassica Ag-NPs)-induced NF-κB mediated autophagy in Caco-2 cells. Results showed that Ag-NPs reduced cell viability of Caco-2 cells by inducing oxidative stress and DNA damage. Therefore, to understand the mechanism underlying the death-promoting activity of Ag-NPs in Caco-2 cells, western blotting was performed. Western blot analysis showed decreased expression of NFκB and increased expression of IκB, which is a sign of autophagy initiation. In addition, autophagosome formation was accelerated by the activity of p53 and light chain 3 (LC3) II. In addition, inhibition of Akt and mTOR also played a pivotal role in autophagy formation. Finally, excessive expansion of autophagy promoted apoptosis, which subsequently resulted in necrosis. These findings support a novel cell death-promoting function of autophagy by Ag-NPs in Caco-2 cells.
Collapse
Affiliation(s)
- Mahmuda Akter
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Sciences, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, 060-0810, Japan
| | - A K M Atique Ullah
- Nanoscience and Technology Research Laboratory, Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Subrata Banik
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Toshiyuki Hosokawa
- Research Division of Higher Education, Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masaaki Kurasaki
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Sciences, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, 060-0810, Japan.
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
41
|
Du Z, Chai X, Li X, Ren G, Yang X, Yang Z. Nano-CuO causes cell damage through activation of dose-dependent autophagy and mitochondrial lncCyt b-AS/ND5-AS/ND6-AS in SH-SY5Y cells. Toxicol Mech Methods 2021; 32:37-48. [PMID: 34353230 DOI: 10.1080/15376516.2021.1964665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal copper oxide nanoparticles (nano-CuO) are under mass production and have been widely utilized in many fields including catalysis, gas sensors, semiconductor materials, etc. The broad applications of nano-CuO have increased the possibility of risk to incidental exposure to the environment, and therefore, an in-depth investigation of their effects on live cells is required. This study investigated the impact of the nano-CuO on SH-SY5Y cells, and findings showed that the ratio of LC3-II/LC3-I was significantly increased in SH-SY5Y cells when the cells were treated with nano-CuO. However, if the autophagy inhibitor Bafilomycin A1 (Baf A1) was co-treated, the ratio of LC3-II/LC3-I was further improved. These outcomes might indicate that autophagy flux was permanently elevated by adding nano-CuO. Further results found highly activated levels of long noncoding RNAs (lncRNAs) under nano-CuO treatment. The data illustrate a mechanism that nano-CuO can promote autophagy and activate lncCyt b-AS/ND5-AS/ND6-AS in SH-SY5Y cells and have critical implications for nanoparticle biomedical applications.
Collapse
Affiliation(s)
- Zhanqiang Du
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Xueqing Chai
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China
| | - Xiaolin Li
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China
| | - Guogang Ren
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, UK
| | - Xiuyi Yang
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, UK
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
42
|
Cao J, Lu M, Yan W, Li L, Ma H. Dehydroepiandrosterone alleviates intestinal inflammatory damage via GPR30-mediated Nrf2 activation and NLRP3 inflammasome inhibition in colitis mice. Free Radic Biol Med 2021; 172:386-402. [PMID: 34182071 DOI: 10.1016/j.freeradbiomed.2021.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023]
Abstract
Dehydroepiandrosterone (DHEA) is a popular dietary supplement that has anti-inflammatory, anti-oxidant and immune-regulating role; meanwhile, it also can effective in the protection of inflammation diseases such as inflammatory bowel disease (IBD), but the underlying mechanisms remain elusive. Here, we demonstrated that DHEA inhibits excessive inflammation response and enhances gut barrier function via activating the G protein-coupled receptor 30 (GPR30). GPR30-induced the ERK phosphorylation and p62 accumulation led to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which subsequently inhibited the reactive oxygen species (ROS) overproduction and finally alleviated the intestinal barrier dysfunction. Furthermore, DHEA blocked the p38-induced NLRP3 inflammasome activation in both LPS-stimulated colon epithelial cells and macrophages. In addition, in vivo results showed that DHEA and GPR30 agonist G1 attenuated inflammatory responses and gut barrier dysfunction in colitis mice, while the GPR30 specific inhibitor G15 abrogated these beneficial effects of DHEA. Cumulatively, our study unveiled that DHEA is an effective anti-inflammatory agent and suggested that GPR30 could as a potential target for the treatment of IBD.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Miaomiao Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weiyuan Yan
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
43
|
Jia Y, Chen X, Chen Y, Li H, Ma X, Xing W, Zhao K. Zhenbao pill attenuates hydrogen peroxide-induced apoptosis by inhibiting autophagy in human umbilical vein endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114020. [PMID: 33716080 DOI: 10.1016/j.jep.2021.114020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Zhenbao pill (ZBP) is composed of 29 traditional Chinese medicines and has been proven to exhibit a valid therapeutic effect in nervous system diseases, such as stroke and hemiplegia sequelae. AIM OF THE STUDY Whether ZBP has a protective effect on vascular endothelial cells remains unknown. In this study, we established hydrogen peroxide (H2O2)-induced oxidative injury in human umbilical vein endothelial cells (HUVECs) as an in vitro model to investigate the pharmacological effects of ZBP. MATERIALS AND METHODS Following the intragastric administration of ZBP (0.25, 0.5, and 1 g/kg for seven days) in rats, drug-containing serum was obtained and cultivated with HUVECs before H2O2 treatment. The viability of HUVECs in the presence of H2O2 was measured by Cell Counting Kit-8 assay, lactate dehydrogenase assay, and flow cytometry. Furthermore, we estimated the effects of ZBP on the production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). Autophagic puncta were detected using a fluorescence microscope. Western blotting and real-time polymerase chain reaction were used to detect the expression levels of several genes associated with apoptosis and autophagy. RESULTS Drug-containing serum separated from rats at 1 h after intragastric administration of ZBP (0.5 g/kg) significantly offered a protective effect to HUVECs and reduced cell apoptosis rates. Meanwhile, ZBP-containing serum also repressed ROS production induced by H2O2 exposure and maintained MMP. Further investigation revealed that ZBP-containing serum effectively reduced the accumulation of autophagic puncta. ZBP-mediated inhibition on cell autophagy was found to contribute to ameliorating cell apoptosis. Western blotting also confirmed that ZBP maintained AKT and mTOR phosphorylation and antagonized the imbalance of BCL2/BAX, thereby protecting cells from apoptosis. CONCLUSION Taken together, our data indicate that ZBP inhibits ROS production, mitochondrial damage, cell autophagy, and cell apoptosis. ZBP can offer protection to vascular endothelial cells against oxidative injury through the antagonism of apoptosis and autophagy. Thus, this study enhances the understanding of the therapeutic effects and mechanisms of ZBP in the process of recovery from myocardial and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yuchen Jia
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010070, PR China; Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, PR China
| | - Xiaoxue Chen
- Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, PR China
| | - Yajing Chen
- Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, PR China
| | - Hongxia Li
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010070, PR China
| | - Xiumei Ma
- Inner Mongolia Key Laboratory of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010059, PR China
| | - Wanjin Xing
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010070, PR China.
| | - Kai Zhao
- Hohhot First Hospital, Hohhot, Inner Mongolia, 010030, PR China.
| |
Collapse
|
44
|
Ma L, Li C, Lian S, Xu B, Lv H, Liu Y, Lu J, Ji H, Li S, Guo J, Yang H. Procyanidin B2 alleviates liver injury caused by cold stimulation through Sonic hedgehog signalling and autophagy. J Cell Mol Med 2021; 25:8015-8027. [PMID: 34155807 PMCID: PMC8358862 DOI: 10.1111/jcmm.16733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Procyanidin B2 (PB2), a naturally occurring flavonoid abundant in a wide range of fruits, has been shown to exert antioxidant, anti‐inflammatory and anticancer properties. However, the role of PB2 in the prevention of cold stimulation (CS)‐induced liver injury. The present study was undertaken to determine the effects of PB2 on liver injury induced by cold stimulation and its potential molecular mechanisms. The present study results showed that treatment with PB2 significantly reduced CS‐induced liver injury by alleviating histopathological changes and serum levels of alanine transaminase and aspartate transaminase. Moreover, treatment with PB2 inhibited secretion of inflammatory cytokines and oxidative stress in cold‐stimulated mice. PB2 reduced cold stimulation‐induced inflammation by inhibiting TLR4/NF‐κB and Txnip/NLRP3 signalling. Treatment with PB2 reduced oxidative stress by activating Nrf‐2/Keap1, AMPK/GSK3β signalling pathways and autophagy. Furthermore, simultaneous application of Shh pathway inhibitor cyclopamine proved that PB2 targets the Hh pathway. More importantly, co‐treatment with PB2 and cyclopamine showed better efficacy than monotherapy. In conclusion, our findings provide new evidence that PB2 has protective potential against CS‐induced liver injury, which might be closely linked to the inhibition of Shh signalling pathway.
Collapse
Affiliation(s)
- Li Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chengxu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanzhi Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
45
|
Fu SC, Lin JW, Liu JM, Liu SH, Fang KM, Su CC, Hsu RJ, Wu CC, Huang CF, Lee KI, Chen YW. Arsenic induces autophagy-dependent apoptosis via Akt inactivation and AMPK activation signaling pathways leading to neuronal cell death. Neurotoxicology 2021; 85:133-144. [PMID: 34038756 DOI: 10.1016/j.neuro.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Inorganic arsenic (As3+), a well-known worldwide industrial and environmental pollutant, has been linked to neurodegenerative disorders (NDs). Autophagy plays an important role in controlling neuronal cell survival/death. However, limited information is available regarding the toxicological mechanism at the interplay between autophagy and As3+-induced neurotoxicity. The present study found that As3+ exposure induced a concomitant activation of apoptosis and autophagy in Neuro-2a cells, which was accompanied with the increase of phosphatidylserine exposure on outer membrane leaflets and apoptotic cell population, and the activation of caspase-3, -7, and PARP as well as the elevation of protein expressions of LC3-II, Atg-5, and Beclin-1, and the accumulation of autophagosome. Pretreatment of cells with autophagy inhibitor 3-MA, but not that of Z-VAD-FMK (a pan-caspase inhibitor), effectively prevented the As3+-induced autophagic and apoptotic responses, indicating that As3+-triggered autophagy was contributing to neuronal cell apoptosis. Furthermore, As3+ exposure evoked the dephosphorylation of Akt. Pretreatment with SC79, an Akt activator, could significantly attenuated As3+-induced Akt inactivation as well as autophagic and apoptotic events. Expectedly, inhibition of Akt signaling with LY294002 obviously enhanced As3+-triggered autophagy and apoptosis. Exposure to As3+ also dramatically increased the phosphorylation level of AMPKα. Pretreatment of AMPK inhibitor (Compound C) could markedly abrogate the As3+-induced phosphorylated AMPKα expression, and autophagy and apoptosis activation. Taken together, these results indicated that As3+ exerted its cytotoxicity in neuronal cells via the Akt inactivation/AMPK activation downstream-regulated autophagy-dependent apoptosis pathways, which ultimately lead to cell death. Our findings suggest that the regulation of Akt/AMPK signals may be a promising intervention to against As3+-induced neurotoxicity and NDs.
Collapse
Affiliation(s)
- Shih-Chang Fu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Jhe-Wei Lin
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, 500, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ren-Jun Hsu
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, Taiwan; Biobank Management Center of Tri-Service General Hospital and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
46
|
Engin AB. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:165-193. [PMID: 33539016 DOI: 10.1007/978-3-030-49844-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Toxicity of metal nanoparticles (NPs) are closely associated with increasing intracellular reactive oxygen species (ROS) and the levels of pro-inflammatory mediators. However, NP interactions and surface complexation reactions alter the original toxicity of individual NPs. To date, toxicity studies on NPs have mostly been focused on individual NPs instead of the combination of several species. It is expected that the amount of industrial and highway-acquired NPs released into the environment will further increase in the near future. This raises the possibility that various types of NPs could be found in the same medium, thereby, the adverse effects of each NP either could be potentiated, inhibited or remain unaffected by the presence of the other NPs. After uptake of NPs into the human body from various routes, protein kinases pathways mediate their toxicities. In this context, family of mitogen-activated protein kinases (MAPKs) is mostly efficient. Despite each NP activates almost the same metabolic pathways, the toxicity induced by a single type of NP is different than the case of co-exposure to the combined NPs. The scantiness of toxicological data on NPs combinations displays difficulties to determine, if there is any risk associated with exposure to combined nanomaterials. Currently, in addition to mathematical analysis (Response surface methodology; RSM), the quantitative-structure-activity relationship (QSAR) is used to estimate the toxicity of various metal oxide NPs based on their physicochemical properties and levels applied. In this chapter, it is discussed whether the coexistence of multiple metal NPs alter the original toxicity of individual NP. Additionally, in the part of "Toxicity of diesel emission/exhaust particles (DEP)", the known individual toxicity of metal NPs within the DEP is compared with the data regarding toxicity of total DEP mixture.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
47
|
Zhang H, Chen F, Li Y, Shan X, Yin L, Hao X, Zhong Y. More serious autophagy can be induced by ZnO nanoparticles than single-walled carbon nanotubes in rat tracheal epithelial cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:238-248. [PMID: 32951350 DOI: 10.1002/tox.23029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Metal oxide nanoparticles and carbon nanoparticles, as common nanoparticles (NPs), can cause autophagy in certain cells, which will lead to biohealth risk issues. This study determined the difference in autophagy induced by zinc oxide nanoparticles (ZnO NPs) and single-walled carbon nanotubes (SWCNTs) in respiratory epithelial cells. ICP-OES results showed that NPs uptake as well as the intercellular contents of particles affected cytotoxicity in a dose-dependent manner. ZnO NPs-30 nm had a distinct green dot structure representing autophagy, the SWCNTs exposure group had a few green light spots at a concentration of 10 μg/L. The ROS content of the ZnO NP-30 nm exposure group had the greatest increase at a concentration of 1000 μg/L, which was 2.5 times higher than that of the control, the SWCNTs exposure group showed a 2.2-fold increase. A slight downregulation of p-mTOR was detected, and the ZnO NPs-30 nm treatment group had the significant downregulation rate. The gene and protein expression levels of Beclin-1 and LC3B were upregulated as the exposure concentration increased. The protein expression of Beclin-1 and LC3B in the 1000 μg/L ZnO NPs-30 nm exposure group were 5.21 times and 4.12 times that of the control, respectively. The mRNA expression of Beclin-1 and LC3B in the 1000 μg/L ZnO NPs-30 nm exposure group were 5.04 times and 3.61 times that of the control, respectively. At any concentration, the effect of ZnO NPs-30 nm was greater than that of the SWCNTs. Interaction and crosstalk analysis showed that exposure to ZnO NPs-30 nm caused autophagy through the aggregation of undegraded autophagosomes, whereas SWCNTs exposure induced diminished intercellular oxidative stress to inhibit autophagy. Therefore, this study demonstrated that the effects of autophagy induced by ZnO NPs-30 nm and SWCNTs were different. The health risks of ZnO-30 nm NPs are higher than those of SWCNTs.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Feifei Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiaodong Shan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Lu Yin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiaojing Hao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
48
|
Liuzzi JP, Pazos R. Interplay Between Autophagy and Zinc. J Trace Elem Med Biol 2020; 62:126636. [PMID: 32957075 DOI: 10.1016/j.jtemb.2020.126636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Autophagy is a conserved catabolic process that plays an important role in cellular homeostasis. The study of the interplay between autophagy and zinc has gained interest over the last years. Multiple studies have indicated that zinc stimulates autophagy and is critical for basal and induced autophagy in mammalian cells. Conversely, autophagy is induced by zinc starvation in yeast. There are no studies analyzing the role of zinc in either Microautophagy or Chaperone-Mediated-Autophagy. The mechanisms by which zinc modulates autophagy are still poorly understood. Studies examining loss of function of genes involved in cellular zinc homeostasis have provided novel insights into the role of zinc in autophagy. Autophagy may help cells adapt to changes in zinc availability in medium by controlling zinc mobilization, recycling, and secretion. Zinc is a key player in toxic and protective autophagy.
Collapse
Affiliation(s)
- Juan P Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, 11200 SW 8th Street, AHC5, Miami, FL 33199, USA.
| | - Rebecca Pazos
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, 11200 SW 8th Street, AHC5, Miami, FL 33199, USA.
| |
Collapse
|
49
|
Li Y, Liao C, Tjong SC. Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities. Int J Mol Sci 2020; 21:E8836. [PMID: 33266476 PMCID: PMC7700383 DOI: 10.3390/ijms21228836] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
This article reviews the recent developments in the synthesis, antibacterial activity, and visible-light photocatalytic bacterial inactivation of nano-zinc oxide. Polycrystalline wurtzite ZnO nanostructures with a hexagonal lattice having different shapes can be synthesized by means of vapor-, liquid-, and solid-phase processing techniques. Among these, ZnO hierarchical nanostructures prepared from the liquid phase route are commonly used for antimicrobial activity. In particular, plant extract-mediated biosynthesis is a single step process for preparing nano-ZnO without using surfactants and toxic chemicals. The phytochemical molecules of natural plant extracts are attractive agents for reducing and stabilizing zinc ions of zinc salt precursors to form green ZnO nanostructures. The peel extracts of certain citrus fruits like grapefruits, lemons and oranges, acting as excellent chelating agents for zinc ions. Furthermore, phytochemicals of the plant extracts capped on ZnO nanomaterials are very effective for killing various bacterial strains, leading to low minimum inhibitory concentration (MIC) values. Bioactive phytocompounds from green ZnO also inhibit hemolysis of Staphylococcus aureus infected red blood cells and inflammatory activity of mammalian immune system. In general, three mechanisms have been adopted to explain bactericidal activity of ZnO nanomaterials, including direct contact killing, reactive oxygen species (ROS) production, and released zinc ion inactivation. These toxic effects lead to the destruction of bacterial membrane, denaturation of enzyme, inhibition of cellular respiration and deoxyribonucleic acid replication, causing leakage of the cytoplasmic content and eventual cell death. Meanwhile, antimicrobial activity of doped and modified ZnO nanomaterials under visible light can be attributed to photogeneration of ROS on their surfaces. Thus particular attention is paid to the design and synthesis of visible light-activated ZnO photocatalysts with antibacterial properties.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
50
|
Wang J, Ma Y, Guo M, Yang H, Guan X. Salvianolic acid B suppresses EMT and apoptosis to lessen drug resistance through AKT/mTOR in gastric cancer cells. Cytotechnology 2020; 73:49-61. [PMID: 33505113 DOI: 10.1007/s10616-020-00441-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023] Open
Abstract
The drug resistance of tumor cells greatly reduces the efficacy of chemotherapy drugs in gastric cancer. Salvianolic acid B (Sal-B) is considered as a chemopreventive agent which suppresses oxidative stress and apoptosis. Therefore, the study aims to clarify the mechanism of Sal-B in drug-resistant gastric cancer cells. CCK8 assay analyzed cell viabilities after GES1, AGS and AGS/DDP cells were respectively treated by Sal-B of different concentration or after AGS/DDP cells were disposed by cisplatin (DDP) in different concentration. The colony formation, ROS generation, apoptosis, migration, invasion and EMT marker proteins were respectively analyzed through formation assay, ROS kits, TUNNEL staining, Wound healing, Transwell assays and Western blot. The results demonstrated that Sal-B acted alone or in synergy with DDP to reduce cell viabilities, initiate ROS generation, promote cell apoptosis, as well as decrease migration, invasion and EMT in AGS and AGS/DDP cells. AKT activator and mTOR activator significantly reversed the above effects of Sal-B. Collectively, Sal-B regulated proliferation, EMT and apoptosis to reduce the resistance to DDP via AKT/mTOR pathway in DDP-resistant gastric cancer cells. Sal-B could be a potential anti-drug resistance agent to chemotherapy in gastric cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Beihua University, Jilin, 132000 China
| | - Yingze Ma
- Gastroenterology Department, Affiliated Hospital of Beihua University, Jilin, 132000 China
| | - Min Guo
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061 Shaanxi China
| | - Haixia Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Haixia Yang No. 157 West Five Road, Xi'an, 710004 Shaanxi China
| | - Xiaohui Guan
- Gastroenterology Department, Affiliated Hospital of Beihua University, Jilin, 132000 China
| |
Collapse
|