1
|
Kim J, Ji S, Lee JY, Lorquin J, Orlikova-Boyer B, Cerella C, Mazumder A, Muller F, Dicato M, Detournay O, Diederich M. Marine Polyether Phycotoxin Palytoxin Induces Apoptotic Cell Death via Mcl-1 and Bcl-2 Downregulation. Mar Drugs 2023; 21:md21040233. [PMID: 37103372 PMCID: PMC10143546 DOI: 10.3390/md21040233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Palytoxin is considered one of the most potent biotoxins. As palytoxin-induced cancer cell death mechanisms remain to be elucidated, we investigated this effect on various leukemia and solid tumor cell lines at low picomolar concentrations. As palytoxin did not affect the viability of peripheral blood mononuclear cells (PBMC) from healthy donors and did not create systemic toxicity in zebrafish, we confirmed excellent differential toxicity. Cell death was characterized by a multi-parametric approach involving the detection of nuclear condensation and caspase activation assays. zVAD-sensitive apoptotic cell death was concomitant with a dose-dependent downregulation of antiapoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL. Proteasome inhibitor MG-132 prevented the proteolysis of Mcl-1, whereas the three major proteasomal enzymatic activities were upregulated by palytoxin. Palytoxin-induced dephosphorylation of Bcl-2 further exacerbated the proapoptotic effect of Mcl-1 and Bcl-xL degradation in a range of leukemia cell lines. As okadaic acid rescued cell death triggered by palytoxin, protein phosphatase (PP)2A was involved in Bcl-2 dephosphorylation and induction of apoptosis by palytoxin. At a translational level, palytoxin abrogated the colony formation capacity of leukemia cell types. Moreover, palytoxin abrogated tumor formation in a zebrafish xenograft assay at concentrations between 10 and 30 pM. Altogether, we provide evidence of the role of palytoxin as a very potent and promising anti-leukemic agent, acting at low picomolar concentrations in cellulo and in vivo.
Collapse
Affiliation(s)
- Jaemyun Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Jean Lorquin
- Institut Méditerranéen d'Océanologie, 163 Avenue de Luminy, CEDEX 09, 13288 Marseille, France
| | - Barbora Orlikova-Boyer
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Claudia Cerella
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Aloran Mazumder
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Olivier Detournay
- Planktovie SAS, 45 Rue Frédéric Joliot Curie, CEDEX 13, 13013 Marseille, France
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| |
Collapse
|
2
|
Functional and Structural Biological Methods for Palytoxin Detection. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Palytoxin (PLTX) and its analogues are marine polyethers identified in Palythoa and Zoanthus corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Humans can be exposed to these toxins by different routes with a series of adverse effects but the most severe risk is associated with poisonings by the consumption of edible marine organisms accumulating these toxins, as occurs in (sub)-tropical areas. In temperate areas, adverse effects ascribed to PLTXs have been recorded after inhalation of marine aerosols and/or cutaneous contact with seawater during Ostreopsis blooms, as well as during cleaning procedures of Palythoa-containing home aquaria. Besides instrumental analytical methods, in the last years a series of alternative or complementary methods based on biological/biochemical tools have been developed for the rapid and specific PLTX detection required for risk assessment. These methods are usually sensitive, cost- and time-effective, and do not require highly specialized operators. Among them, structural immunoassays and functional cell-based assays are reviewed. The availability of specific anti-PLTX antibodies allowed the development of different sensitive structural assays, suitable for its detection also in complex matrices, such as mussels. In addition, knowing the mechanism of PLTX action, a series of functional identification methods has been developed. Despite some of them being limited by matrix effects and specificity issues, biological methods for PLTX detection represent a feasible tool, suitable for rapid screening.
Collapse
|
3
|
Ecotoxicological Impact of the Marine Toxin Palytoxin on the Micro-Crustacean Artemia franciscana. Mar Drugs 2022; 20:md20020081. [PMID: 35200611 PMCID: PMC8879372 DOI: 10.3390/md20020081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Palytoxin (PLTX) is a highly toxic polyether identified in various marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. In addition to adverse effects in humans, negative impacts on different marine organisms have been often described during Ostreopsis blooms and the concomitant presence of PLTX and its analogues. Considering the increasing frequency of Ostreopsis blooms due to global warming, PLTX was investigated for its effects on Artemia franciscana, a crustacean commonly used as a model organism for ecotoxicological studies. At concentrations comparable to those detected in culture media of O. cf. ovata (1.0–10.0 nM), PLTX significantly reduced cysts hatching and induced significant mortality of the organisms, both at larval and adult stages. Adults appeared to be the most sensitive developmental stage to PLTX: significant mortality was recorded after only 12 h of exposure to PLTX concentrations > 1.0 nM, with a 50% lethal concentration (LC50) of 2.3 nM (95% confidence interval = 1.2–4.7 nM). The toxic effects of PLTX toward A. franciscana adults seem to involve oxidative stress induction. Indeed, the toxin significantly increased ROS levels and altered the activity of the major antioxidant enzymes, in particular catalase and peroxidase, and marginally glutathione-S-transferase and superoxide dismutase. On the whole, these results indicate that environmentally relevant concentrations of PLTX could have a negative effect on Artemia franciscana population, suggesting its potential ecotoxicological impact at the marine level.
Collapse
|
4
|
Boente-Juncal A, Raposo-García S, Vale C, Louzao MC, Otero P, Botana LM. In Vivo Evaluation of the Chronic Oral Toxicity of the Marine Toxin Palytoxin. Toxins (Basel) 2020; 12:toxins12080489. [PMID: 32751719 PMCID: PMC7472043 DOI: 10.3390/toxins12080489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023] Open
Abstract
Palytoxin (PLTX) is one of the most poisonous substances known to date and considered as an emergent toxin in Europe. Palytoxin binds to the Na+-K+ ATPase, converting the enzyme in a permeant cation channel. This toxin is known for causing human fatal intoxications associated with the consumption of contaminated fish and crustaceans such as crabs, groupers, mackerel, and parrotfish. Human intoxications by PLTX after consumption of contaminated fishery products are a serious health issue and can be fatal. Different reports have previously explored the acute oral toxicity of PLTX in mice. Although the presence of palytoxin in marine products is currently not regulated in Europe, the European Food Safety Authority expressed its opinion on PLTX and demanded assessment for chronic toxicity studies of this potent marine toxin. In this study, the chronic toxicity of palytoxin was evaluated after oral administration to mice by gavage during a 28-day period. After chronic exposure of mice to the toxin, a lethal dose 50 (LD50) of 0.44 µg/kg of PLTX and a No-Observed-Adverse-Effect Level (NOAEL) of 0.03 µg/kg for repeated daily oral administration of PLTX were determined. These results indicate a much higher chronic toxicity of PLTX and a lower NOAEL than that previously described in shorter treatment periods, pointing out the need to further reevaluate the levels of this compound in marine products.
Collapse
Affiliation(s)
| | | | - Carmen Vale
- Correspondence: (C.V.); (L.M.B.); Tel./Fax: +34-982822233 (L.M.B.)
| | | | | | - Luis M. Botana
- Correspondence: (C.V.); (L.M.B.); Tel./Fax: +34-982822233 (L.M.B.)
| |
Collapse
|
5
|
Reevaluation of the acute toxicity of palytoxin in mice: Determination of lethal dose 50 (LD 50) and No-observed-adverse-effect level (NOAEL). Toxicon 2020; 177:16-24. [PMID: 32056831 DOI: 10.1016/j.toxicon.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Palytoxin is an emergent toxin in Europe and one of the most toxic substances know to date. The toxin disrupts the physiological functioning of the Na+/K+-ATPase converting the enzyme in a permeant cation channel. Human intoxications by PLTX after consumption of contaminated fishery products are a serious health issue and can be fatal. Several reports have previously investigated the oral and intraperitoneal toxicity of PLTX in mice. However, in all cases short observation periods (24 and 48 h) after toxin administration were evaluated. In this work, single oral or intraperitoneal doses of PLTX were administered to healthy mice and surviving animals were followed up for 96 h. The data obtained here allowed us to calculate the oral and intraperitoneal lethal doses 50 (LD50) which were in the range of the values previously described. Surprisingly, the oral NOAEL for PLTX was more than 10 times lower than that previously described, a fact that indicates the need for the reevaluation of the levels of the toxin in edible fishery products.
Collapse
|
6
|
Novel Insights on the Toxicity of Phycotoxins on the Gut through the Targeting of Enteric Glial Cells. Mar Drugs 2019; 17:md17070429. [PMID: 31340532 PMCID: PMC6669610 DOI: 10.3390/md17070429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
In vitro and in vivo studies have shown that phycotoxins can impact intestinal epithelial cells and can cross the intestinal barrier to some extent. Therefore, phycotoxins can reach cells underlying the epithelium, such as enteric glial cells (EGCs), which are involved in gut homeostasis, motility, and barrier integrity. This study compared the toxicological effects of pectenotoxin-2 (PTX2), yessotoxin (YTX), okadaic acid (OA), azaspiracid-1 (AZA1), 13-desmethyl-spirolide C (SPX), and palytoxin (PlTX) on the rat EGC cell line CRL2690. Cell viability, morphology, oxidative stress, inflammation, cell cycle, and specific glial markers were evaluated using RT-qPCR and high content analysis (HCA) approaches. PTX2, YTX, OA, AZA1, and PlTX induced neurite alterations, oxidative stress, cell cycle disturbance, and increase of specific EGC markers. An inflammatory response for YTX, OA, and AZA1 was suggested by the nuclear translocation of NF-κB. Caspase-3-dependent apoptosis and induction of DNA double strand breaks (γH2AX) were also observed with PTX2, YTX, OA, and AZA1. These findings suggest that PTX2, YTX, OA, AZA1, and PlTX may affect intestinal barrier integrity through alterations of the human enteric glial system. Our results provide novel insight into the toxicological effects of phycotoxins on the gut.
Collapse
|
7
|
Abal P, Louzao MC, Vilariño N, Vieytes MR, Botana LM. Acute Toxicity Assessment: Macroscopic and Ultrastructural Effects in Mice Treated with Oral Tetrodotoxin. Toxins (Basel) 2019; 11:E305. [PMID: 31146400 PMCID: PMC6628385 DOI: 10.3390/toxins11060305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 01/30/2023] Open
Abstract
Tetrodotoxin (TTX) is an extremely toxic marine compound produced by different genera of bacteria that can reach humans through ingestion mainly of pufferfish but also of other contaminated fish species, marine gastropods or bivalves. TTX blocks voltage-gated sodium channels inhibiting neurotransmission, which in severe cases triggers cardiorespiratory failure. Although TTX has been responsible for many human intoxications limited toxicological data are available. The recent expansion of TTX from Asian to European waters and diversification of TTX-bearing organisms entail an emerging risk of food poisoning. This study is focused on the acute toxicity assessment of TTX administered to mice by oral gavage following macroscopic and microscopic studies. Necropsy revealed that TTX induced stomach swelling 2 h after administration, even though no ultrastructural alterations were further detected. However, transmission electron microscopy images showed an increase of lipid droplets in hepatocytes, swollen mitochondria in spleens, and alterations of rough endoplasmic reticulum in intestines as hallmarks of the cellular damage. These findings suggested that gastrointestinal effects should be considered when evaluating human TTX poisoning.
Collapse
Affiliation(s)
- Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
8
|
|
9
|
Murphy LT, Charlton NP. Prevalence and characteristics of inhalational and dermal palytoxin exposures reported to the National Poison Data System in the U.S. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:107-109. [PMID: 28843098 DOI: 10.1016/j.etap.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Palytoxin, produced by unicellular microalgae, is one of the most potent toxins known. Human exposure results most prominently through oral, dermal, and inhalational contact. There is no current data on the prevalence of cases in the United States. METHODS This study reviewed human inhalational and dermal exposures to palytoxin via records from the National Poison Data System from 2000 to 2014. RESULTS There were 171 cases reported, the majority occurred at a residence and experienced minor respiratory or dermal symptoms and recovered without any major sequelae or fatalities. Ten patients required admission to an intensive care unit. CONCLUSION The incidence of palytoxin exposure is low but significant symptoms can occur.
Collapse
Affiliation(s)
- Lauren T Murphy
- Department of Emergency Medicine, Cooper University Health Care, Camden, NJ, United States
| | - Nathan P Charlton
- Department of Emergency Medicine, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
10
|
Pelin M, Fusco L, León V, Martín C, Criado A, Sosa S, Vázquez E, Tubaro A, Prato M. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci Rep 2017; 7:40572. [PMID: 28079192 PMCID: PMC5227695 DOI: 10.1038/srep40572] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Impressive properties make graphene-based materials (GBMs) promising tools for nanoelectronics and biomedicine. However, safety concerns need to be cleared before mass production of GBMs starts. As skin, together with lungs, displays the highest exposure to GBMs, it is of fundamental importance to understand what happens when GBMs get in contact with skin cells. The present study was carried out on HaCaT keratinocytes, an in vitro model of skin toxicity, on which the effects of four GBMs were evaluated: a few layer graphene, prepared by ball-milling treatment (FLG), and three samples of graphene oxide (GOs, a research-grade GO1, and two commercial GOs, GO2 and GO3). Even though no significant effects were observed after 24 h, after 72 h the less oxidized compound (FLG) was the less cytotoxic, inducing mitochondrial and plasma-membrane damages with EC50s of 62.8 μg/mL (WST-8 assay) and 45.5 μg/mL (propidium iodide uptake), respectively. By contrast, the largest and most oxidized compound, GO3, was the most cytotoxic, inducing mitochondrial and plasma-membrane damages with EC50s of 5.4 and 2.9 μg/mL, respectively. These results suggest that only high concentrations and long exposure times to FLG and GOs could impair mitochondrial activity associated with plasma membrane damage, suggesting low cytotoxic effects at the skin level.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Verónica León
- Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas-IRICA, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Cristina Martín
- Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas-IRICA, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Alejandro Criado
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.,CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón, 182, 20009 San Sebastián (Guipúzcoa), Spain
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Ester Vázquez
- Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas-IRICA, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.,CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón, 182, 20009 San Sebastián (Guipúzcoa), Spain.,Basque Foundation for Science, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
11
|
Tartaglione L, Pelin M, Morpurgo M, Dell'Aversano C, Montenegro J, Sacco G, Sosa S, Reimer JD, Ciminiello P, Tubaro A. An aquarium hobbyist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon. Toxicon 2016; 121:41-50. [DOI: 10.1016/j.toxicon.2016.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022]
|
12
|
Pelin M, Florio C, Ponti C, Lucafò M, Gibellini D, Tubaro A, Sosa S. Pro-inflammatory effects of palytoxin: an in vitro study on human keratinocytes and inflammatory cells. Toxicol Res (Camb) 2016; 5:1172-1181. [PMID: 30090423 PMCID: PMC6060726 DOI: 10.1039/c6tx00084c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022] Open
Abstract
Palytoxin (PLTX) is one of the most harmful marine toxins known so far. Although the ingestion of contaminated seafood is the most dangerous exposure route for humans, cutaneous and inhalational exposures are far more frequent, and can cause strong inflammatory reactions. However, little is known about the inflammatory events that follow the cutaneous exposure to the toxin. In this study, we investigated (1) the effects of both short (2 h) and long (24 h) term exposures of HaCaT keratinocytes to a sub-cytotoxic PLTX concentration on pro-inflammatory mediator gene expression and release and (2) the effect of PLTX-conditioned HaCaT cell media on undifferentiated (monocytes) and differentiated (macrophages; immature dendritic cells, iDCs; mature dendritic cells, mDCs) THP-1 cells. At 10-11 M, PLTX induced interleukin (IL)-6 and IL-8 release from HaCaT keratinocytes after 24 h of continuous exposure to the toxin, as well as after 23 h in toxin-free medium preceded by 1 h exposure to PLTX. Under the same experimental conditions, release of the inflammatory mediators prostaglandin-E2 and histamine was also found after both short and long exposures to the toxin. The conditioned media collected from HaCaT cells treated with PLTX increased the migration of the differentiated and undifferentiated THP-1 cells (potency rank order: monocytes ≥ iDCs > mDCs > macrophages) but did not induce cell differentiation. These results indicate that keratinocytes can be actively involved in the recruitment of inflammatory cells in response to cutaneous contact with PLTX. The lack of a significant effect on monocyte differentiation towards mature immune cells suggests that PLTX is endowed with irritant rather than sensitizing properties.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| | - Chiara Florio
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| | - Cristina Ponti
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| | - Marianna Lucafò
- Department of Medical , Surgical and Health Sciences , University of Trieste , 34127 Trieste , Italy
| | - Davide Gibellini
- Department of Pathology and Diagnostic , University of Verona , 35124 Verona , Italy
| | - Aurelia Tubaro
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| | - Silvio Sosa
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy . ; Tel: +39-040-5588835
| |
Collapse
|
13
|
Pezzolesi L, Vanucci S, Dell'Aversano C, Dello Iacovo E, Tartaglione L, Pistocchi R. Effects of N and P availability on carbon allocation in the toxic dinoflagellate Ostreopsis cf. ovata. HARMFUL ALGAE 2016; 55:202-212. [PMID: 28073533 DOI: 10.1016/j.hal.2016.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 06/06/2023]
Abstract
Blooms of the toxic dinoflagellate Ostreopsis cf. ovata are usually associated with shallow and calm coastal waters, characterized by low nutrient concentrations. The algal cells typically cover the benthic substrates, such as the macroalgal and invertebrate communities and rocks, forming a mucilaginous film. Data reported on O. cf. ovata toxin production observed under both field and culture conditions show high variability in terms of toxic profile and cellular content; little is known about the environmental and physiological aspects which regulate the toxin dynamics. In this study, O. cf. ovata physiology was investigated using batch cultures supplied with nutrient concentrations similar to those found in the Adriatic Sea during the recurrent blooms and the observed cellular dynamics were compared with those found in a culture grown under optimal conditions, used as a reference. Data on the cellular C, N and P content during the growth highlighted a possible important role of the cellular nutritional status in regulating the toxin production that resulted to be promoted under specific intervals of the C:N and C:P ratios. The variable toxicity found for O. cf. ovata in various geographic areas could be related to the different in situ prevalent environmental conditions (e.g., nutrient concentrations) which affect the cellular elemental composition and carbon allocation. The obtained results strongly suggest that in the environment toxin production is steadily sustained by a low and constant nutrient supply, able to maintain appropriate cellular C:N (>12) or C:P (>170) ratios for a long period. These results explain to some extent the variability in toxicity and growth dynamics observed in blooms occurring in the different coastal areas.
Collapse
Affiliation(s)
- Laura Pezzolesi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S'Alberto 163, 48123 Ravenna, Italy.
| | - Silvana Vanucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando d'Alcontres 31, 98166 S. Agata, Messina, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Emma Dello Iacovo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Tartaglione
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Rossella Pistocchi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S'Alberto 163, 48123 Ravenna, Italy
| |
Collapse
|
14
|
Pelin M, Brovedani V, Sosa S, Tubaro A. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem. Mar Drugs 2016; 14:E33. [PMID: 26861356 PMCID: PMC4771986 DOI: 10.3390/md14020033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/24/2023] Open
Abstract
Palytoxin (PLTX), one the most potent marine toxins, and/or its analogs, have been identified in different marine organisms, such as Palythoa soft corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Although the main concern for human health is PLTXs entrance in the human food chain, there is growing evidence of adverse effects associated with inhalational, cutaneous, and/or ocular exposure to aquarium soft corals contaminated by PLTXs or aquaria waters. Indeed, the number of case reports describing human poisonings after handling these cnidarians is continuously increasing. In general, the signs and symptoms involve mainly the respiratory (rhinorrhea and coughing), skeletomuscular (myalgia, weakness, spasms), cardiovascular (electrocardiogram alterations), gastrointestinal (nausea), and nervous (paresthesia, ataxia, tremors) systems or apparates. The widespread phenomenon, the entity of the signs and symptoms of poisoning and the lack of control in the trade of corals as aquaria decorative elements led to consider these poisonings an emerging sanitary problem. This review summarizes literature data on human poisonings due to, or ascribed to, PLTX-containing soft corals, focusing on the different PLTX congeners identified in these organisms and their toxic potential.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Valentina Brovedani
- Department of Life Sciences, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via Valerio 6, 34127 Trieste, Italy.
| |
Collapse
|
15
|
Pelin M, Forino M, Brovedani V, Tartaglione L, Dell'Aversano C, Pistocchi R, Poli M, Sosa S, Florio C, Ciminiello P, Tubaro A. Ovatoxin-a, A Palytoxin Analogue Isolated from Ostreopsis cf. ovata Fukuyo: Cytotoxic Activity and ELISA Detection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1544-1551. [PMID: 26714047 DOI: 10.1021/acs.est.5b04749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study provides the first evaluation of the cytotoxic effects of the recently identified palytoxin (PLTX) analog, ovatoxin-a (OVTX-a), the major toxin produced by Ostreopsis cf. ovata in the Mediterranean Sea. Its increasing detection during Ostreopsis blooms and in seafood highlights the need to characterize its toxic effects and to set up appropriate detection methods. OVTX-a is about 100 fold less potent than PLTX in reducing HaCaT cells viability (EC50 = 1.1 × 10(-9) M vs 1.8 × 10(-11) M, MTT test) in agreement with a reduced binding affinity (Kd = 1.2 × 10(-9) vs 2.7 × 10(-11) M, saturation experiments on intact cells). Similarly, OVTX-a hemolytic effect is lower than that of the reference PLTX compound. Ost-D shows the lowest cytotoxicity toward HaCaT keratinocytes, suggesting the lack of a hydroxyl group at C44 as a critical feature for PLTXs cytotoxic effects. A sandwich ELISA developed for PLTX detects also OVTX-a in a sensitive (LOD = 4.2 and LOQ = 5.6 ng/mL) and accurate manner (Bias = 0.3%), also in O. cf. ovata extracts and contaminated mussels. Although in vitro OVTX-a appears less toxic than PLTX, its cytotoxicity at nanomolar concentrations after short exposure time rises some concern for human health. The sandwich ELISA can be a viable screening method for OVTXs detection in monitoring program.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Science, University of Trieste , 34127 Trieste, Italy
| | - Martino Forino
- Department of Pharmacy, University of Napoli Federico II , 80131 Napoli, Italy
| | | | - Luciana Tartaglione
- Department of Pharmacy, University of Napoli Federico II , 80131 Napoli, Italy
| | | | - Rossella Pistocchi
- Interdepartmental Center for Research in Environmental Sciences, University of Bologna , 481230 Ravenna, Italy
| | - Mark Poli
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, 21701-5011 United States
| | - Silvio Sosa
- Department of Life Science, University of Trieste , 34127 Trieste, Italy
| | - Chiara Florio
- Department of Life Science, University of Trieste , 34127 Trieste, Italy
| | - Patrizia Ciminiello
- Department of Pharmacy, University of Napoli Federico II , 80131 Napoli, Italy
| | - Aurelia Tubaro
- Department of Life Science, University of Trieste , 34127 Trieste, Italy
| |
Collapse
|
16
|
Patocka J, Gupta RC, Wu QH, Kuca K. Toxic potential of palytoxin. ACTA ACUST UNITED AC 2015; 35:773-780. [DOI: 10.1007/s11596-015-1506-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 07/06/2015] [Indexed: 01/07/2023]
|
17
|
Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:9282-97. [PMID: 26262634 PMCID: PMC4555280 DOI: 10.3390/ijerph120809282] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay), 3.8 × 10−5 M (AlamarBlue® assay), and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.
Collapse
|
18
|
Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8263-80. [PMID: 26193294 PMCID: PMC4515721 DOI: 10.3390/ijerph120708263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023]
Abstract
Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.
Collapse
|
19
|
Cheung RCF, Ng TB, Wong JH. Marine Peptides: Bioactivities and Applications. Mar Drugs 2015; 13:4006-43. [PMID: 26132844 PMCID: PMC4515606 DOI: 10.3390/md13074006] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity. Amino Acids 2015; 47:1433-43. [DOI: 10.1007/s00726-015-1980-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 02/05/2023]
|