1
|
Behr AC, Fæste CK, Azqueta A, Tavares AM, Spyropoulou A, Solhaug A, Olsen AK, Vettorazzi A, Mertens B, Zegura B, Streel C, Ndiaye D, Spilioti E, Dubreil E, Buratti FM, Crudo F, Eriksen GS, Snapkow I, Teixeira JP, Rasinger JD, Sanders J, Machera K, Ivanova L, Gaté L, Le Hegarat L, Novak M, Smith NM, Tait S, Fraga S, Hager S, Marko D, Braeuning A, Louro H, Silva MJ, Dirven H, Dietrich J. Hazard characterization of the mycotoxins enniatins and beauvericin to identify data gaps and improve risk assessment for human health. Arch Toxicol 2025; 99:1791-1841. [PMID: 40137953 DOI: 10.1007/s00204-025-03988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025]
Abstract
Enniatins (ENNs) and beauvericin (BEA) are cyclic hexadepsipeptide fungal metabolites which have demonstrated antibiotic, antimycotic, and insecticidal activities. The substantial toxic potentials of these mycotoxins are associated with their ionophoric molecular properties and relatively high lipophilicities. ENNs occur extensively in grain and grain-derived products and are considered a food safety issue by the European Food Safety Authority (EFSA). The tolerable daily intake and maximum levels for ENNs in humans and animals remain unestablished due to key toxicological and toxicokinetic data gaps, preventing full risk assessment. Aiming to find critical data gaps impeding hazard characterization and risk evaluation, this review presents a comprehensive summary of the existing information from in vitro and in vivo studies on toxicokinetic characteristics and cytotoxic, genotoxic, immunotoxic, endocrine, reproductive and developmental effects of the most prevalent ENN analogues (ENN A, A1, B, B1) and BEA. The missing information identified showed that additional studies on ENNs and BEA have to be performed before sufficient data for an in-depth hazard characterisation of these mycotoxins become available.
Collapse
Affiliation(s)
- Anne-Cathrin Behr
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | | | - Amaya Azqueta
- Department of Pharmaceutical Sciences, UNAV University of Navarra, Pamplona, Spain
| | - Ana M Tavares
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Anita Solhaug
- NVI Norwegian Veterinary Institute, PO box 64, 1431, Ås, Norway
| | - Ann-Karin Olsen
- Department of Pharmaceutical Sciences, UNAV University of Navarra, Pamplona, Spain
| | - Ariane Vettorazzi
- Department for Environmental Chemistry and Health Effects, NILU Climate and Environment Institute, PO Box 100, 2027, Kjeller, Norway
| | - Birgit Mertens
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bojana Zegura
- NIB National Institute of Biology, Večna Pot 121, Ljubljana, Slovenia
| | - Camille Streel
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Dieynaba Ndiaye
- INRS Institut National de Recherche et de Sécurité Pour La Prévention Des Accidents du Travail Et Des Maladies Professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre-Lès-Nancy Cedex, France
| | - Eliana Spilioti
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Estelle Dubreil
- Fougères Laboratory, Toxicology of Contaminants Unit, ANSES French Agency for Food, Environmental and Occupational Health and Safety, 35306, Fougères Cedex, France
| | - Franca Maria Buratti
- Mechanisms, Biomarkers and Models Unit, Department Environmental and Health, ISS Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesco Crudo
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | | | - Igor Snapkow
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - João Paulo Teixeira
- Department of Environmental Health, INSA National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Josef D Rasinger
- IMR Norwegian Institute of Marine Research, Nordnes, PO box 1870, 5817, Bergen, Norway
| | - Julie Sanders
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Lada Ivanova
- NVI Norwegian Veterinary Institute, PO box 64, 1431, Ås, Norway
| | - Laurent Gaté
- INRS Institut National de Recherche et de Sécurité Pour La Prévention Des Accidents du Travail Et Des Maladies Professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre-Lès-Nancy Cedex, France
| | - Ludovic Le Hegarat
- Fougères Laboratory, Toxicology of Contaminants Unit, ANSES French Agency for Food, Environmental and Occupational Health and Safety, 35306, Fougères Cedex, France
| | - Matjaz Novak
- NIB National Institute of Biology, Večna Pot 121, Ljubljana, Slovenia
| | - Nicola M Smith
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Sabrina Tait
- Mechanisms, Biomarkers and Models Unit, Department Environmental and Health, ISS Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sónia Fraga
- Department of Environmental Health, INSA National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Sonja Hager
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | - Doris Marko
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | - Albert Braeuning
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Hubert Dirven
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jessica Dietrich
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Dayeh VR, Solhaug A, Hamilton ME, Linton LE, Lee LEJ, Bols NC. The impact of beauvericin on rainbow trout intestinal epithelial cells at different temperatures and dosing methods. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01014-5. [PMID: 39900744 DOI: 10.1007/s11626-025-01014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025]
Abstract
Mycotoxins in aquatic feeds and their effects on fish are becoming more important in aquaculture, as fishmeal and fish oil in feeds are being replaced with more sustainable plant protein. Here, we investigated the potential of the mycotoxin, beauvericin (BEA), to impact the rainbow trout (RT) intestine by using cultures of the epithelial cell line, RTgutGC. BEA was dosed in different ways and exposed at temperatures ranging from 4 to 26 °C before being evaluated for cell viability by the metabolic reduction of Alamar Blue, by the accumulation of Neutral Red (lysosomal activity), cytotoxicity (CellTox Green), and for wound healing. BEA induces cell death in RTgutGC cells. The lysosomes are the main target (Neutral Red assay is the most sensitive) while cytotoxicity and plasma membrane rupture (CellTox Green) occur at considerably higher concentrations. BEA caused a dose-dependent decline in Neutral Red reading at all tested temperatures but Alamar Blue readings did not decline at 4 °C. Under these conditions, BEA appears to impair only lysosomal activity. Wound healing was reduced at 4, 10, and 26 °C compared to 18 °C. Also BEA treatment, at non-cytotoxic concentrations, reduced wound healing, but the temperature had little influence on this. Different carrier vehicles (methanol, DMSO) and exposure methods (passive or active dispersal) for BEA exposure were also studied. Here, methanol and passive dispersal gave comparable results to exposure with DMSO and active dispersal. In contrast, when DMSO was dosed with passive dispersal, immediate cytotoxicity in combination with BEA was induced.
Collapse
Affiliation(s)
- Vivian R Dayeh
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | | | - Mark E Hamilton
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura E Linton
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
3
|
Sun X, Li Y, Xu H, Huang S, Liu Y, Liao S, Wang B. Terpestacin and Its Derivatives: Bioactivities and Syntheses. Chem Biodivers 2025; 22:e202401905. [PMID: 39318057 DOI: 10.1002/cbdv.202401905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Terpestacin (1), fusaproliferin (2), and their derivatives are a class of sesterterpenes featured by a trans-fused 5/15-membered ring skeleton. There are 45 natural products (1, 2, 4-27, 65-83) isolated from various wild fungi (Fusarium sp., Bipolaris sorokiniana, Arthrinium sp., etc.) or from genetic mutants via biosynthetic gene clusters mining, and 37 derivatives (28-64) produced by semi-synthetic modifications. These compounds show a diverse range of important bioactivities such as antivirus, antimicrobial, cytotoxic, phytotoxic, anti-flammatory, and brine shrimp lethal activities. To date, two racemic and five enantioselective chemical total syntheses of 1 (including 2 and their isomers) have been developed. Over the past decade, a number of biosynthetic gene clusters or their mutants, along with their encoding enzymes responsible for producing sesterterpenes such as terpestacin and its derivatives, have also been identified. This review covers the literature from the year 1993, when 1 was firstly discovered, to May 2024, focusing on the bioactivities and syntheses of 1 and its derivatives or isomers.
Collapse
Affiliation(s)
- Xin Sun
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| | - Yuyue Li
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huayan Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yonghong Liu
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengrong Liao
- Research Center for Marine Microbes, CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518104, China
- Shenzhen Clinical College of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| |
Collapse
|
4
|
Liu R, Ouyang J, Li L. Anti-tumor activity of beauvericin: focus on intracellular signaling pathways. Mycotoxin Res 2024; 40:535-546. [PMID: 39289326 DOI: 10.1007/s12550-024-00561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Beauvericin, a Fusarium mycotoxin commonly found in feeds, particularly cereals worldwide, exhibits a wide array of biofunction. It exhibits anticancer characteristics in addition to its antiviral, antifungal and antibacterial capabilities against gram-positive and gram-negative microorganisms. The mechanism underlying most of beauvericin's properties lies in its ionophoric activity. By facilitating calcium (Ca2+) flow from the extracellular space as well as its release from intracellular reservoirs, beauvericin increases intracellular free Ca2+. This elevation in Ca2+ levels leads to detrimental effects on mitochondria and oxidative stress, ultimately resulting in apoptosis and cell death. Studies on various cancer cell lines have shown that beauvericin induces apoptosis upon exposure. Moreover, besides its cytotoxic effects, beauvericin also inhibits cancer growth and progression by exerting anti-angiogenic and anti-migratory effects on cancer cells. Additionally, beauvericin possesses immunomodulatory properties, albeit less explored. Recent research indicates its potential to enhance the maturation and activation of dendritic cells (DCs) and T cells, both directly through its interaction with Toll-like receptor 4 (TLR4) and indirectly by increasing intracellular Ca2+ levels. Hence, beauvericin could serve as an adjuvant in chemoimmunotherapy regimens to enhance treatment outcomes. Given these diverse properties, beauvericin emerges as an intriguing candidate for developing effective cancer treatments. This review explores the cellular signaling pathways involved in its anticancer effects.
Collapse
Affiliation(s)
- Ruoxuan Liu
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jie Ouyang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liming Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Patra A, Ghosh SS, Saini GK. Exploring potential molecular targets and therapeutic efficacy of beauvericin in triple-negative breast cancer cells. Comput Biol Chem 2024; 112:108154. [PMID: 39029290 DOI: 10.1016/j.compbiolchem.2024.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Triple negative breast cancer (TNBC) presents a significant global health concern due to its aggressive nature, high mortality rate and limited treatment options, highlighting the urgent need for targeted therapies. Beauvericin, a bioactive fungal secondary metabolite, possess significant anticancer potential, although its molecular targets in cancer cells remain unexplored. This study has investigated possible molecular targets of beauvericin and its therapeutic insights in TNBC cells. In silico studies using molecular docking and MD simulation predicted the molecular targets of beauvericin. The identified targets included MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK with average binding energy of -90.1, -44.3, -72.1, -105 and -60.8 KJ/mol, respectively, implying its multifaceted roles in reversing drug resistance, inhibiting epigenetic modulators and oncogenic tyrosine kinases. Beauvericin has significantly reduced the viability of MDA-MB-231 and MDA-MB-468 cells, with IC50 concentrations of 4.4 and 3.9 µM, while concurrently elevating the intracellular ROS by 9.0 and 7.9 folds, respectively. Subsequent reduction of mitochondrial transmembrane potential in TNBC cells, has confirmed the induction of oxidative stress, leading to apoptotic cell death, as observed by flow cytometric analyses. Beauvericin has also arrested cell cycle at G1-phase and impaired the spheroid formation and clonal expansion abilities of TNBC cells. The viability of spheroids was reduced upon beauvericin treatment, exhibiting IC50 concentrations of 10.3 and 6.2 µM in MDA-MB-468 and MDA-MB-231 cells, respectively. In conclusion, beauvericin has demonstrated promising therapeutic potential against TNBC cells through possible inhibition of MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, North Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, North Guwahati, Assam 781039, India.
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, North Guwahati, Assam 781039, India.
| |
Collapse
|
6
|
Patra A, Arora A, Ghosh SS, Kaur Saini G. Beauvericin Reverses Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through Regulation of Notch Signaling and Autophagy. ACS Pharmacol Transl Sci 2024; 7:2878-2893. [PMID: 39296261 PMCID: PMC11406685 DOI: 10.1021/acsptsci.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
Metastasis stands as a prime contributor to triple-negative breast cancer (TNBC) associated mortality worldwide, presenting heightened severity and significant challenges due to limited treatment options. Addressing TNBC metastasis necessitates innovative approaches and novel therapeutics to specifically target its propensity for dissemination to distant organs. Targeted therapies capable of reversing epithelial-to-mesenchymal transition (EMT) play a crucial role in suppressing metastasis and enhancing the treatment response. Beauvericin, a promising fungal secondary metabolite, exhibits significant potential in diminishing the viability of EMT-induced TNBC cells by triggering intracellular oxidative stress, as evidenced by an enhanced reactive oxygen species level and reduced mitochondrial transmembrane potential. In monolayer cultures, it has exhibited an IC50 of 2.3 μM in both MDA-MB-468 and MDA-MB-231 cells, while in 3D spheroids, the IC50 values are 9.7 and 7.1 μM, respectively. Beauvericin has also reduced the migratory capability of MDA-MB-468 and MDA-MB-231 cells by 1.5- and 1.7-fold, respectively. Both qRT-PCR and Western blot analysis have shown significant upregulation in the expression of epithelial marker (E-cadherin) and downregulation in the expression of mesenchymal markers (N-cadherin, vimentin, Snail, Slug, and β-catenin), following treatment, indicating reversal of EMT. Furthermore, beauvericin has suppressed the Notch signaling pathway by substantially downregulating Notch-1, Notch-3, Hes-1, and cyclinD3 expression and induced autophagy as observed by elevated expression of autophagy markers LC3 and Beclin-1. In conclusion, beauvericin has successfully downregulated TNBC cell survival by inducing oxidative stress and suppressed their migratory potential by reversing EMT through the inhibition of Notch signaling and activation of autophagy.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Liang WZ, Chia YY, Sun HJ, Sun GC. Exploration of beauvericin's toxic effects and mechanisms in human astrocytes and N-acetylcysteine's protective role. Toxicon 2024; 243:107734. [PMID: 38670497 DOI: 10.1016/j.toxicon.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 μM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Huai-Jhih Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114202, Taiwan.
| |
Collapse
|
8
|
Liao Y, Wei F, He Z, He J, Ai Y, Guo C, Zhou L, Luo D, Li C, Wen Y, Zeng J, Ma X. Animal-derived natural products for hepatocellular carcinoma therapy: current evidence and future perspectives. Front Pharmacol 2024; 15:1399882. [PMID: 38803433 PMCID: PMC11129636 DOI: 10.3389/fphar.2024.1399882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high morbidity and mortality rate, and the survival rate of HCC patients remains low. Animal medicines have been used as potential therapeutic tools throughout the long history due to their different structures of biologically active substances with high affinity to the human body. Here, we focus on the effects and the mechanism of action of animal-derived natural products against HCC, which were searched in databases encompassing Web of Science, PubMed, Embase, Science Direct, Springer Link, and EBSCO. A total of 24 natural products from 12 animals were summarized. Our study found that these natural products have potent anti-hepatocellular carcinoma effects. The mechanism of action involving apoptosis induction, autophagy induction, anti-proliferation, anti-migration, and anti-drug resistance via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), Ras/extracellular signal regulated kinases (ERK)/mitogen-activated protein kinase (MAPK), Wnt/β-catenin, and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways. Huachansu injection and sodium cantharidate have been used in clinical applications with good efficacy. We review the potential of animal-derived natural products and their derivatives in the treatment of HCC to date and summarize their application prospect and toxic side effects, hoping to provide a reference for drug development for HCC.
Collapse
Affiliation(s)
- Yichao Liao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Endoscopy Center, Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jingxue He
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanlin Ai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Huang Z, Zhu W, Bai Y, Bai X, Zhang H. Non-ribosomal peptide synthetase (NRPS)-encoding products and their biosynthetic logics in Fusarium. Microb Cell Fact 2024; 23:93. [PMID: 38539193 PMCID: PMC10967133 DOI: 10.1186/s12934-024-02378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 11/11/2024] Open
Abstract
Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangjie Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yifan Bai
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Hasuda AL, Bracarense APFRL. Toxicity of the emerging mycotoxins beauvericin and enniatins: A mini-review. Toxicon 2024; 239:107534. [PMID: 38013058 DOI: 10.1016/j.toxicon.2023.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Beauvericin and enniatins, emerging mycotoxins produced mainly by Fusarium species, are natural contaminants of cereals and cereal products. These mycotoxins are cyclic hexadepsipeptides with ionophore properties and their toxicity mechanism is related to their ability to transport cations across the cell membrane. Beauvericin and enniatins are cytotoxic, as they decrease cell viability, promote cell cycle arrest, and increase apoptosis and the generation of reactive oxygen species in several cell lines. They also cause changes at the transcriptomic level and have immunomodulatory effects in vitro and in vivo. Toxicokinetic results are scarce, and, despite its proven toxic effects in vitro, no regulation or risk assessment has yet been performed due to a lack of in vivo data. This mini-review aims to report the information available in the literature on studies of in vitro and in vivo toxic effects with beauvericin and enniatins, which are mycotoxins of increasing interest to animal and human health.
Collapse
Affiliation(s)
- Amanda Lopes Hasuda
- Laboratory of Animal Pathology, Londrina State University, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Londrina State University, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
11
|
Bi Y, Wu L, Li B, Hao Y, Li Z, Zhang J, Cheng A, Yuan G, Fan J. Effects of beauvericin on the blood cells of Bombyx mori. J Invertebr Pathol 2023; 201:108003. [PMID: 37838064 DOI: 10.1016/j.jip.2023.108003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In this study, silkworms were treated by injection of the bioactive depsipeptide beauvericin (BEA) to explore its effect on the cellular immunity of larvae of the silkworm Bombyx mori. The results showed that: The LC50 of BEA for silkworms on the 3rd day of the 4th instar was 362.36 µM. The total count of circulating hemocytes in the silkworms decreased at 12 h after injection with 350 µM BEA, and reached the minimum value at 72 h post-treatment; at 48 h post-treatment, a large number of nodules formed by the aggregation of blood cells of the silkworms were observed under the light microscope. The survival rate of hemocytes in the larvae treated with BEA was significantly reduced in a dose-dependent manner in vivo and in vitro. The encapsulation of Q-Sepharose Fast Flow (QFF) gel particles by hemocytes in the treatment group was significantly higher than that in the control group at 1.5 h and 3 h post-treatment (P < 0.05). Moreover, the melanization ratio of QFF gel particles kept increasing with treatment time. The melanization rate at 24 h after treatment was significantly higher than that at other times (P < 0.05), reaching 55.33 %. Under the scanning electron microscope, BEA-treated larvae showed protrusions on the surface of their blood cells in vivo. Under the transmission electron microscope, it was observed that silkworm hemocytes were vacuolated. This study demonstrated that BEA had an effect on the blood cells of silkworms, and has thrown some light on the inhibitory effect and mechanism of BEA on insect cellular immunity.
Collapse
Affiliation(s)
- Yong Bi
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Lingzhi Wu
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Baozhen Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Yanping Hao
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Zixiao Li
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jiwei Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Aiying Cheng
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Guizhen Yuan
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jinhua Fan
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China.
| |
Collapse
|
12
|
Mendonça GRQ, Peters LP, Lopes LM, Sousa AH, Carvalho CM. Native fungi from Amazon with potential for control of Aedes aegypti L. (Diptera: Culicidae). BRAZ J BIOL 2023; 83:e274954. [PMID: 37909558 DOI: 10.1590/1519-6984.274954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 11/03/2023] Open
Abstract
Aedes aegypti L. (Diptera: Culicidae) is the main transmitter of pathogens that cause human diseases, including dengue, chikungunya, zika and yellow fever. Faced with this problem, this study aims to select fungi with entomopathogenic potential against Ae. aegypti and develop formulations that optimize the control action of entomopathogenic fungi in the semi-field condition. 23 fungal strains native from Amazon were inoculated in Potato-Dextrose-Agar (PDA) culture medium for 14 days and then transferred by scraping to tubes containing 0.9% NaCl solution. To obtain the larvae, eggs were collected using traps in peridomestic environments for 7 days. 20 larvae of Ae. aegypti in 125 mL erlenmeyers containing 20 mL of conidial suspension at a concentration of 1x106 conidia/mL for initial selection and 1×104, 1×105, 1×106 and 1×107 conidia/mL for determination of LC50. Mortality was checked every 24 h for 5 days. The three fungi with the best virulence rates were identified using molecular techniques. The compatibility between fungi at a concentration of 1×106 conidia/mL and oily adjuvants, mineral oil and vegetable oil (andiroba, chestnut and copaiba) at concentrations of 0.1, 0.5 and 1% was evaluated. The germination capacity of 100 conidia per treatment was evaluated after incubation at 28 ºC for 24 h. To evaluate the entomopathogenic potential of the fungal formulations, conidial suspensions (1×106 conidia/mL) were added with 0.1% mineral and vegetable oil. The treatments were submitted to laboratory and semi-field conditions and mortality was verified every 24 h for 5 days. Beauveria sp. (4,458) (LC50 = 8.66× 103), Metarhizium anisopliae (4,420) (LC50 = 5.48×104) and M. anisopliae (4,910) (LC50 = 1.13×105) were significantly more effective in the larval control of Ae. aegypti, in relation to the other fungal morphospecies evaluated. Mineral oil was better compatible in all treatments evaluated. Beauveria sp. (4,458) was considerably less virulent under semi-field conditions. M. anisopliae (4,910) formulated with mineral oil increased larval mortality to 100% on the 4th day in the laboratory and on the 5th day in the semi-field. Fungal formulations developed from native Amazonian isolates represent a promising tool for the development of strategies to control Ae. aegypti.
Collapse
Affiliation(s)
- G R Q Mendonça
- Universidade Federal do Acre, Programa de Pós-graduação em Ciência, Inovação e Tecnologia para Amazônia, Rio Branco, AC, Brasil
| | - L P Peters
- Universidade Federal do Acre, Centro de Ciências da Saúde e do Desporto, Rio Branco, AC, Brasil
| | - L M Lopes
- Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Rio Branco, AC, Brasil
| | - A H Sousa
- Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Rio Branco, AC, Brasil
| | - C M Carvalho
- Universidade Federal do Acre, Programa de Pós-graduação em Ciência, Inovação e Tecnologia para Amazônia, Rio Branco, AC, Brasil
- Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Rio Branco, AC, Brasil
| |
Collapse
|
13
|
Wang G, Qiao Y, Zhao Y, Song Y, Li M, Jin M, Yang D, Yin J, Li J, Liu W. Beauvericin exerts an anti-tumor effect on hepatocellular carcinoma by inducing PI3K/AKT-mediated apoptosis. Arch Biochem Biophys 2023; 745:109720. [PMID: 37611353 DOI: 10.1016/j.abb.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Beauvericin is a world-spread mycotoxin isolated from the traditional Chinese medicine, Bombyx batryticatus (BB), which has been widely used to treat various neoplastic diseases. This study investigated the anti-hepatocellular carcinoma (HCC) activity of beauvericin and its potential mechanism. In this study, H22-bearing mice were intraperitoneally injected with 3, 5, 7 mg/kg of beauvericin once per-week over a three-week period. TUNEL staining determined the extent of tumor apoptosis induced by beauvericin. ELISA kits detected the level of IL-2, Perforin, and TNF-α, IFN-γ level in the serum. H22 hepatoma cells were exposed to beauvericin (5, 10, and 20 μmol/L) to investigate the underlying pathway. CCK-8 assay was used to observe the influence of beauvericin on the growth of H22 cells. Flow cytometry was used to detect the cell apoptosis and ROS level. Western blotting was performed to detect apoptotic and PI3K/AKT pathway protein production. The results showed that beauvericin could remarkably inhibit the growth of HCC in mice, combined with elevated TNF-α and IL-2. In vitro, beauvericin significantly promoted the generation of ROS, up-regulated Bax/Bcl-2 ratio and cleaved caspase-9, cleaved caspase-3 levels, down-regulated p-PI3K/PI3K ratio, p-AKT/AKT ratio, promoted the apoptosis of H22 cells, and inhibited the growth of H22 cells. Remarkably, treatment with PI3K/AKT activator (740Y-P and SC79) could prevent beauvericin-induced H22 cell apoptosis. These findings collectively indicate that beauvericin inhibits HCC growth by inducing apoptosis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Gui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yamei Qiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yunyan Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yuanyuan Song
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Mengyang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Jing Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
14
|
Deb L, Dutta P, Mandal MK, Singh SB. Antimicrobial Traits of Beauveria bassiana Against Rhizoctonia solani, the Causal Agent of Sheath Blight of Rice Under Field Conditions. PLANT DISEASE 2023:PDIS04220806RE. [PMID: 37327392 DOI: 10.1094/pdis-04-22-0806-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Beauveria bassiana, an entomopathogenic fungus, has recently drawn attention worldwide not only as a potential biocontrol agent against insect pests but also for its other beneficial roles as plant disease antagonist, endophyte, plant growth promoter, and beneficial rhizosphere colonizer. In the present study, 53 native isolates of B. bassiana were screened for antifungal ability against Rhizoctonia solani, the causal agent of sheath blight of rice. Also, the mechanisms underlying such interaction and the responsible antimicrobial traits involved were studied. Following this, potential B. bassiana isolates were assayed against the reduction of sheath blight of rice under field conditions. The results showed that B. bassiana exhibited antagonistic behavior against R. solani with a percent mycelial inhibition recorded maximum of up to 71.15%. Mechanisms behind antagonism were the production of cell-wall-degrading enzymes, mycoparasitism, and the release of secondary metabolites. The study also deciphered several antimicrobial traits and the presence of virulent genes in B. bassiana as a determinant of potential plant disease antagonists. Under field conditions, combined application of the B. bassiana microbial consortium as a seed treatment, seedling root dip, and foliar sprays showed reduced sheath blight disease incidence and severity up to 69.26 and 60.50%, respectively, along with enhanced plant-growth-promoting attributes. This is one of the few studies investigating the antagonistic abilities of the entomopathogenic fungus B. bassiana against phytopathogen R. solani and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Lipa Deb
- School of Crop Protection, College of Post-Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya 793103, India
| | - Pranab Dutta
- School of Crop Protection, College of Post-Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya 793103, India
| | - Mihir Kumar Mandal
- Department of Plant Pathology, University of California-Davis, Salinas, CA 93905, U.S.A
| | | |
Collapse
|
15
|
Xu R, Shandilya UK, Yiannikouris A, Karrow NA. Traditional and emerging Fusarium mycotoxins disrupt homeostasis of bovine mammary cells by altering cell permeability and innate immune function. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:388-397. [PMID: 36733782 PMCID: PMC9883199 DOI: 10.1016/j.aninu.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022]
Abstract
High incidence of traditional and emerging Fusarium mycotoxins in cereal grains and silages can be a potential threat to feed safety and ruminants. Inadequate biodegradation of Fusarium mycotoxins by rumen microflora following ingestion of mycotoxin-contaminated feeds can lead to their circulatory transport to target tissues such as mammary gland. The bovine udder plays a pivotal role in maintaining milk yield and composition, thus, human health. However, toxic effects of Fusarium mycotoxins on bovine mammary gland are rarely studied. In this study, the bovine mammary epithelial cell line was used as an in-vitro model of bovine mammary epithelium to investigate effects of deoxynivalenol (DON), enniatin B (ENB) and beauvericin (BEA) on bovine mammary gland homeostasis. Results indicated that exposure to DON, ENB and BEA for 48 h significantly decreased cell viability in a concentration-dependent manner (P < 0.001). Exposure to DON at 0.39 μmol/L and BEA at 2.5 μmol/L for 48 h also decreased paracellular flux of FITC-40 kDa dextran (P < 0.05), whereas none of the mycotoxins affected transepithelial electrical resistance after 48 h exposure. The qPCR was performed for assessment of expression of gene coding tight junction (TJ) proteins, toll-like receptor 4 (TLR4) and cytokines after 4, 24 and 48 h of exposure. DON, ENB and BEA significantly upregulated the TJ protein zonula occludens-1, whereas markedly downregulated claudin 3 (P < 0.05). Exposure to DON at 1.35 μmol/L for 4 h significantly increased expression of occludin (P < 0.01). DON, ENB and BEA significant downregulated TLR4 (P < 0.05). In contrast, ENB markedly increased expression of cytokines interleukin-6 (IL-6) (P < 0.001), tumor necrosis factor α (TNF-a) (P < 0.05) and transforming growth factor-β (TGF-β) (P < 0.01). BEA significantly upregulated IL- 6 (P < 0.001) and TGF-β (P = 0.01), but downregulated TNF-α (P < 0.001). These results suggest that DON, ENB and BEA can disrupt mammary gland homeostasis by inducing cell death as well as altering its paracellular permeability and expression of genes involved in innate immune function.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, Nicholasville, KY 40356, USA
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada,Corresponding author.
| |
Collapse
|
16
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
17
|
Agahi F, Juan C, Font G, Juan-García A. Neurotoxicity of zearalenone's metabolites and beauvericin mycotoxins via apoptosis and cell cycle disruption. Toxicology 2021; 456:152784. [PMID: 33872728 DOI: 10.1016/j.tox.2021.152784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Cell cycle progression and programmed cell death are imposed by pathological stimuli of extrinsic or intrinsic including the exposure to neurotoxins, oxidative stress and DNA damage. All can cause abrupt or delayed cell death, inactivate normal cell survival or cell death networks. Nevertheless, the mechanisms of the neuronal cell death are unresolved. One of the cell deaths triggers which have been wildly studied, correspond to mycotoxins produced by Fusarium species, which have been demonstrated cytotoxicity and neurotoxicity through impairing cell proliferation, gene expression and induction of oxidative stress. The aim of present study was to analyze the cell cycle progression and cell death pathway by flow cytometry in undifferentiated SH-SY5Y neuronal cells exposed to α-zearalenol (α-ZEL), β-zearalenol (β-ZEL) and beauvericin (BEA) over 24 h and 48 h individually and combined at the following concentration ranges: from 1.56 to 12.5 μM for α-ZEL and β-ZEL, from 0.39 to 2.5 μM for BEA, from 1.87 to 25 μM for binary combinations and from 3.43 to 27.5 μM for tertiary combination. Alterations in cell cycle were observed remarkably for β-ZEL at the highest concentration in all treatments where engaged (β-ZEL, β-ZEL + BEA and β-ZEL + α-ZEL), for both 24 h and 48 h. by activating the cell proliferation in G0/G1 phase (up to 43.6 %) and causing delays or arrests in S and G2/M phases (up to 19.6 %). Tertiary mixtures revealed increases of cell proliferation in subG0 phase by 4-folds versus control. Similarly, for cell death among individual treatments β-ZEL showed a significant growth in early apoptotic cells population at the highest concentration assayed as well as for all combination treatments where β-ZEL was involved, in both early apoptotic and apoptotic/necrotic cell death pathways.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
18
|
Wakil W, Tahir M, Al-Sadi AM, Shapiro-Ilan D. Interactions Between Two Invertebrate Pathogens: An Endophytic Fungus and an Externally Applied Bacterium. Front Microbiol 2020; 11:522368. [PMID: 33329412 PMCID: PMC7734284 DOI: 10.3389/fmicb.2020.522368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
The members of family Noctuidae exist in diverse environments and many species from this group are of agriculture importance, particularly Helicoverpa spp. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a major pest of many legumes and cereal crops. Due to environmental and regulatory concerns, safe alternatives to broad spectrum chemical insecticides are needed for the control of key noctuid pests such as H. armigera. A strain of Beauveria bassiana (Cordycipitaceae: Hypocreales) was evaluated for its ability to colonize endophytically in chickpea plants, and its effectiveness against second (L2) and fourth (L4) larval instars of H. armigera. B. bassiana was inoculated to chickpea plants through injection and endophytic establishment was confirmed by re-isolating the fungi from leaf samples. A detached leaf assay was used to evaluate pathogenicity. Bacillus thuringiensis was also applied to both larval stages through leaf dip method. In a novel approach, combined treatments of bacteria and endophytic fungi were compared with single-pathogen treatments. Relative to the single treatments, the combined pathogen treatments exhibited an increase in larval mortality, and decrease in pupation, adult emergence and egg eclosion. Specifically, synergistic effects on mortality were observed when larvae were exposed to simultaneous application of B. bassiana (1 × 108 conidia ml-1) with B. thuringiensis (0.75 μg ml-1). Both instars exhibited varying level of growth, development, frass production, diet consumption and fecundity when exposed to the chickpea leaves inoculated with endophytic B. bassiana and dipped with sub-lethal doses of B. thuringiensis. These findings indicate that the integrated application of endophytic colonized B. bassiana and B. thuringiensis can be effectively used against H. armigera.
Collapse
Affiliation(s)
- Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tahir
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
- Department of Entomology, College of Agriculture and Environmental Sciences, The Islamia University, Bahawalpur, Pakistan
| | - Abdullah M. Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
19
|
The mycotoxin beauvericin impairs development, fertility and life span in the nematode Caenorhabditis elegans accompanied by increased germ cell apoptosis and lipofuscin accumulation. Toxicol Lett 2020; 334:102-109. [PMID: 33002525 DOI: 10.1016/j.toxlet.2020.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Beauvericin is an ubiquitous mycotoxin with relevant occurrence in food and feed. It causes a high toxicity in several cell lines, but its general mechanism of action is not fully understood and only limited in vivo studies have been performed. We used Caenorhabditis elegans as a model organism to investigate effects of beauvericin. The mycotoxin displays a moderate acute toxicity at 100 μM; at this concentration also reproductive toxicity occurred (reduction of total progeny to 32.1 %), developmental toxicity was detectable at 250 μM. However, even lower concentrations were capable to reduce stress resistance and life span of the nematode: A significant reduction was detected at 10 μM beauvericin (decrease in mean survival time of 4.3 % and reduction in life span of 12.9 %). An increase in lipofuscin fluorescence was demonstrated starting at 10 μM suggesting oxidative stress as a mechanism of beauvericin toxicity. Beauvericin (100 μM) increases the number of apoptotic germ cells comparable to the positive control UV-C (400 J/m2). Conclusion: Low concentrations of beauvericin are capable to cause adverse effects in C. elegans, which may be relevant for hazard identification of this compound.
Collapse
|
20
|
In Vitro Activity of Beauvericin against All Developmental Stages of Sarcoptes scabiei. Antimicrob Agents Chemother 2020; 64:AAC.02118-19. [PMID: 32122897 DOI: 10.1128/aac.02118-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
Scabies is a frequent cutaneous infection caused by the mite Sarcoptes scabiei in a large number of mammals, including humans. As the resistance of S. scabiei against several chemical acaricides has been previously documented, the establishment of alternative and effective control molecules is required. In this study, the potential acaricidal activity of beauvericin was assessed against different life stages of S. scabiei var. suis and in comparison with dimpylate and ivermectin, two commercially available molecules used for the treatment of S. scabiei infection in animals and/or humans. The toxicity of beauvericin against cultured human fibroblast skin cells was evaluated using an MTT proliferation assay. In our in vitro model, developmental stages of S. scabiei were placed in petri dishes filled with Columbia agar supplemented with pig serum and different concentrations of the drugs. Cell sensitivity assays demonstrated low toxicity of beauvericin against primary human fibroblast skin cells. At 0.5 and 5 mM, beauvericin showed higher activity against adults and eggs of S. scabiei compared to dimpylate and ivermectin. These results revealed that the use of beauvericin is promising and might be considered for the treatment of S. scabiei infection.
Collapse
|
21
|
van Stuijvenberg J, Proksch P, Fritz G. Targeting the DNA damage response (DDR) by natural compounds. Bioorg Med Chem 2020; 28:115279. [PMID: 31980363 DOI: 10.1016/j.bmc.2019.115279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 12/31/2022]
Abstract
Natural compounds (NC) are an important source of anticancer drugs. The genomic DNA of tumor cells is a major target of conventional anticancer therapeutics (cAT). DNA damage elicits a complex stress response programme termed DNA damage response (DDR), with the PI3-like kinase ATM and ATR being the key regulators. Since the DDR coordinates mechanisms of DNA repair and apoptosis, hence regulating the balance between death and survival, it is an attractive target of novel anticancer strategies. The aim of the study was to identify natural compounds derived from endophytic fungi, lichens, marine sponges or plants that interfere with mechanisms of the DDR. To this end, the cytotoxic and DDR modulating potency of 296 natural compounds, used alone or in combination with the cAT cisplatin (Cis) and doxorubicin (Doxo) was investigated by fluorescence-based analysis of the ATM/ATR-catalyzed S139 phosphorylation of histone 2AX (γH2AX), a surrogate marker of DNA damage-triggered DDR. After initial screening, a total of ten natural compounds were identified that were toxic in pancreatic carcinoma cells and activated the DDR on their own and/or promoted the DDR if used in combination with cAT. Their mode of action was shown to be independent of drug transport mechanisms. Based on their chemical structures, DDR modulatory activity and published data we suggest the marine NC 5-epi-nakijiquinone Q and 5-epi-ilimaquinone as well as the fungal compound secalonic acid F as most promising NC-based drug candidates for future synthesis of DDR-modulating chemical derivatives and their preclinical in vitro and in vivo testing.
Collapse
Affiliation(s)
- Jana van Stuijvenberg
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Appl Microbiol Biotechnol 2019; 103:9287-9303. [DOI: 10.1007/s00253-019-10209-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
|
23
|
García-Herranz V, Valdehita A, Navas J, Fernández-Cruz M. Cytotoxicity against fish and mammalian cell lines and endocrine activity of the mycotoxins beauvericin, deoxynivalenol and ochratoxin-A. Food Chem Toxicol 2019; 127:288-297. [DOI: 10.1016/j.fct.2019.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022]
|
24
|
Wu Q, Patocka J, Kuca K. Beauvericin, A Fusarium Mycotoxin: Anticancer Activity, Mechanisms, and Human Exposure Risk Assessment. Mini Rev Med Chem 2019; 19:206-214. [DOI: 10.2174/1389557518666180928161808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022]
Abstract
Beauvericin (BEA) is a cyclic hexadepsipeptide, which derives from Cordyceps cicadae. It is also produced by Fusarium species, which are parasitic to maize, wheat, rice and other important commodities. BEA increases ion permeability in biological membranes by forming a complex with essential cations, which may affect ionic homeostasis. Its ion-complexing capability allows BEA to transport alkaline earth metal and alkali metal ions across cell membranes. Importantly, increasing lines of evidence show that BEA has an anticancer effect and can be potentially used in cancer therapeutics. Normally, BEA performs the anticancer effect due to the induced cancer cell apoptosis via a reactive oxygen species-dependent pathway. Moreover, BEA increases the intracellular Ca2+ levels and subsequently regulates the activity of a series of signalling pathways including MAPK, JAK/STAT, and NF-κB, and finally causes cancer cell apoptosis. In vivo studies further show that BEA reduces tumour volumes and weights. BEA especially targets differentiated and invasive cancer types. Currently, the anticancer activity of BEA is a hot topic; however, there is no review article to discuss the anticancer activity of BEA. Therefore, in this review, we have mainly summarized the anticancer activity of BEA and thoroughly discussed its underlying mechanisms. In addition, the human exposure risk assessment of BEA is also discussed. We hope that this review will provide further information for understanding the anticancer mechanisms of BEA.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Jiri Patocka
- Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
25
|
Zhang X, Hu Q, Weng Q. Secondary metabolites (SMs) of Isaria cicadae and Isaria tenuipes. RSC Adv 2018; 9:172-184. [PMID: 35521576 PMCID: PMC9059538 DOI: 10.1039/c8ra09039d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
Both Isaria cicadae and Isaria tenuipes are important entomopathogenic fungi used in health foods and traditional herbal medicines in East Asia. However, the safety concerns for both fungal species have been attracting significant attention. Thus, surveying their secondary metabolites (SMs) will be beneficial to improving the safety of their fungal products. In the case of I. cicadae, its SMs mainly include nucleosides, amino acids, beauvericins, myriocin, and oosporein. In contrast, trichothecene derivatives, isariotins, cyclopenta benzopyrans and PKs, are found in the case of I. tenuipes. Among them, beauvericins, myriocin, oosporein and many trichothecene derivatives are toxic compounds. The toxicity and side effects of the fungal products may be related to these SMs. Thus, to ensure the safety of fungal products, the residues standards of SMs need to be reported. Furthermore, methods for the detection of their SMs and biological identification of their strains must be considered. This review gives new insight into the secondary metabolites of medical and edible fungi.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| | - Qiongbo Hu
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| | - Qunfang Weng
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
26
|
Wu Q, Patocka J, Nepovimova E, Kuca K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front Pharmacol 2018; 9:1338. [PMID: 30515098 PMCID: PMC6256083 DOI: 10.3389/fphar.2018.01338] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Abstract
Beauvericin (BEA) is an emerging Fusarium mycotoxin that contaminates food and feeds globally. BEA biosynthesis is rapidly catalyzed by BEA synthetase through a nonribosomal, thiol-templated mechanism. This mycotoxin has cytotoxicity and is capable of increasing oxidative stress to induce cell apoptosis. Recently, large evidence further shows that this mycotoxin has a variety of biological activities and is being considered a potential candidate for medicinal and pesticide research. It is noteworthy that BEA is a potential anticancer agent since it can increase the intracellular Ca2+ levels and induce the cancer cell death through oxidative stress and apoptosis. BEA has exhibited effective antibacterial activities against both pathogenic Gram-positive and Gram-negative bacteria. Importantly, BEA exhibits an effective capacity to inhibit the human immunodeficiency virus type-1 integrase. Moreover, BEA can simultaneously target drug resistance and morphogenesis which provides a promising strategy to combat life-threatening fungal infections. Thus, in this review, the synthesis and the biological activities of BEA, as well as, the underlying mechanisms, are fully analyzed. The risk assessment of BEA in food and feed are also discussed. We hope this review will help to further understand the biological activities of BEA and cast some new light on drug discovery.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Jiri Patocka
- Toxicology and Civil Protection, Faculty of Health and Social Studies, Institute of Radiology, University of South Bohemia České Budějovice, České Budějovice, Czechia.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
27
|
Toxicological effects of fumonisin B1 in combination with other Fusarium toxins. Food Chem Toxicol 2018; 121:483-494. [DOI: 10.1016/j.fct.2018.09.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/29/2022]
|
28
|
Kaushik V, Yakisich JS, Kumar A, Azad N, Iyer AKV. Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers (Basel) 2018; 10:E360. [PMID: 30262730 PMCID: PMC6211070 DOI: 10.3390/cancers10100360] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Ion homeostasis is extremely important for the survival of both normal as well as neoplastic cells. The altered ion homeostasis found in cancer cells prompted the investigation of several ionophores as potential anticancer agents. Few ionophores, such as Salinomycin, Nigericin and Obatoclax, have demonstrated potent anticancer activities against cancer stem-like cells that are considered highly resistant to chemotherapy and responsible for tumor relapse. The preclinical success of these compounds in in vitro and in vivo models have not been translated into clinical trials. At present, phase I/II clinical trials demonstrated limited benefit of Obatoclax alone or in combination with other anticancer drugs. However, future development in targeted drug delivery may be useful to improve the efficacy of these compounds. Alternatively, these compounds may be used as leading molecules for the development of less toxic derivatives.
Collapse
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anil Kumar
- Great Plains Health, North Platte, NE 69101, USA.
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| | - Anand K V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA.
| |
Collapse
|
29
|
Heilos D, Röhrl C, Pirker C, Englinger B, Baier D, Mohr T, Schwaiger M, Iqbal SM, van Schoonhoven S, Klavins K, Eberhart T, Windberger U, Taibon J, Sturm S, Stuppner H, Koellensperger G, Dornetshuber-Fleiss R, Jäger W, Lemmens-Gruber R, Berger W. Altered membrane rigidity via enhanced endogenous cholesterol synthesis drives cancer cell resistance to destruxins. Oncotarget 2018; 9:25661-25680. [PMID: 29876015 PMCID: PMC5986646 DOI: 10.18632/oncotarget.25432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Destruxins, secondary metabolites of entomopathogenic fungi, exert a wide variety of interesting characteristics ranging from antiviral to anticancer effects. Although their mode of action was evaluated previously, the molecular mechanisms of resistance development are unknown. Hence, we have established destruxin-resistant sublines of HCT116 colon carcinoma cells by selection with the most prevalent derivatives, destruxin (dtx)A, dtxB and dtxE. Various cell biological and molecular techniques were applied to elucidate the regulatory mechanisms underlying these acquired and highly stable destruxin resistance phenotypes. Interestingly, well-known chemoresistance-mediating ABC efflux transporters were not the major players. Instead, in dtxA- and dtxB-resistant cells a hyper-activated mevalonate pathway was uncovered resulting in increased de-novo cholesterol synthesis rates and elevated levels of lanosterol, cholesterol as well as several oxysterol metabolites. Accordingly, inhibition of the mevalonate pathway at two different steps, using either statins or zoledronic acid, significantly reduced acquired but also intrinsic destruxin resistance. Vice versa, cholesterol supplementation protected destruxin-sensitive cells against their cytotoxic activity. Additionally, an increased cell membrane adhesiveness of dtxA-resistant as compared to parental cells was detected by atomic force microscopy. This was paralleled by a dramatically reduced ionophoric capacity of dtxA in resistant cells when cultured in absence but not in presence of statins. Summarizing, our results suggest a reduced ionophoric activity of destruxins due to cholesterol-mediated plasma membrane re-organization as molecular mechanism underlying acquired destruxin resistance in human colon cancer cells. Whether this mechanism might be valid also in other cell types and organisms exposed to destruxins e.g. as bio-insecticides needs to be evaluated.
Collapse
Affiliation(s)
- Daniela Heilos
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Bernhard Englinger
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Dina Baier
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Decentralized Biomedical Facilities of the Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Michaela Schwaiger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Sushilla van Schoonhoven
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | | | - Tanja Eberhart
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Ursula Windberger
- Decentralized Biomedical Facilities of the Medical University of Vienna, Vienna, Austria
| | - Judith Taibon
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Sonja Sturm
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Rita Dornetshuber-Fleiss
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Rosa Lemmens-Gruber
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Manyes L, Escrivá L, Ruiz M, Juan-García A. Beauvericin and enniatin B effects on a human lymphoblastoid Jurkat T-cell model. Food Chem Toxicol 2018. [DOI: 10.1016/j.fct.2018.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Ogura K, Terasaki Y, Miyoshi-Akiyama T, Terasaki M, Moss J, Noda M, Yahiro K. Vibrio cholerae Cholix Toxin-Induced HepG2 Cell Death is Enhanced by Tumor Necrosis Factor-Alpha Through ROS and Intracellular Signal-Regulated Kinases. Toxicol Sci 2018; 156:455-468. [PMID: 28087840 DOI: 10.1093/toxsci/kfx009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cholix toxin (Cholix) from Vibrio cholerae is a potent virulence factor exhibiting ADP-ribosyltransferase activity on eukaryotic elongation factor 2 (eEF2) of host cells, resulting in the inhibition of protein synthesis. Administration of Cholix or its homologue Pseudomonas exotoxin A (PEA) to mice causes lethal hepatocyte damage. In this study, we demonstrate cytotoxicity of Cholix on human hepatocytes in the presence of tumor necrosis factor α (TNF-α), which has been reported to play a fatal role in PEA administered to mice. Compared with incubating HepG2 cells with Cholix alone, co-treatment with TNF-α and Cholix (TNF-α/Cholix) significantly enhanced the activation of caspases, cytochrome c release from mitochondria into cytoplasm, and poly-ADP-ribose polymerase (PARP) cleavage, while incubation with TNF-α alone or co-treatment with TNF-α/catalytically inactive Cholix did not. In the early stage of cell death, Cholix increased phosphorylation of mitogen-activated protein kinases (e.g., p38, ERK, JNK) and Akt, which was not affected by TNF-α alone. MAPK inhibitors (SP600125, SB20852, and U0126) suppressed PARP cleavage induced by TNF-α/Cholix. Protein kinase inhibitor Go6976 suppressed JNK phosphorylation and PARP cleavage by TNF-α/Cholix. In contrast, PKC activator PMA in the absence of TNF-α promoted Cholix-induced PARP cleavage. Reactive oxygen species (ROS) inhibitor, N-acetyl cysteine (NAC), suppressed TNF-α/Cholix-induced JNK and ERK phosphorylation, resulting in inhibition of PARP cleavage. These data suggest that ROS and JNK pathways are important mediators of TNF-α/Cholix-induced HepG2 cell death.
Collapse
Affiliation(s)
- Kohei Ogura
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1590
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
32
|
In vitro mechanisms of Beauvericin toxicity: A review. Food Chem Toxicol 2017; 111:537-545. [PMID: 29154952 DOI: 10.1016/j.fct.2017.11.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 11/21/2022]
Abstract
Beauvericin (BEA) is a mycotoxin produced by many species of fungus Fusarium and by Beauveria bassiana; BEA is a natural contaminant of cereals and cereals based products and possesses a wide variety of biological properties. The mechanism of action seems to be related to its ionophoric activity, that increases ion permeability in biological membranes. As a consequence, BEA causes cytotoxicity in several cell lines and is capable to produce oxidative stress at molecular level. Moreover, BEA is genotoxic (produces DNA fragmentation, chromosomal aberrations and micronucleus) and causes apoptosis with the involvement of mitochondrial pathway. However, several antioxidant mechanisms protect cells against oxidative stress produced by BEA. Despite its strong cytotoxicity, no risk assessment have been still carried out by authorities due to a lack of toxicity data, so research on BEA toxicological impact is still going on. This review reports information available regarding BEA mechanistic toxicology with the aim of updating information regarding last researches on this mycotoxin.
Collapse
|
33
|
Escrivá L, Jennen D, Caiment F, Manyes L. Transcriptomic study of the toxic mechanism triggered by beauvericin in Jurkat cells. Toxicol Lett 2017; 284:213-221. [PMID: 29203277 DOI: 10.1016/j.toxlet.2017.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/10/2017] [Accepted: 11/27/2017] [Indexed: 01/28/2023]
Abstract
Beauvericin (BEA), an ionophoric cyclic hexadepsipeptide mycotoxin, is able to increase oxidative stress by altering membrane ion permeability and uncoupling oxidative phosphorylation. A toxicogenomic study was performed to investigate gene expression changes triggered by BEA exposure (1.5, 3 and 5 μM; 24 h) in Jurkat cells through RNA-sequencing and differential gene expression analysis. Perturbed gene expression was observed in a concentration dependent manner, with 43 differentially expressed genes (DEGs) overlapped in the three studied concentrations. Gene ontology (GO) analysis showed several biological processes related to electron transport chain, oxidative phosphorylation, and cellular respiration significantly altered. Molecular functions linked to mitochondrial respiratory chain and oxidoreductase activity were over-represented (q-value < 0.01). Pathway analysis revealed oxidative phosphorylation and electron transport chain as the most significantly altered pathways in all studied doses (z-score > 1.96; adj p-value < 0.05). 77 genes involved in the respiratory chain were significantly down-regulated at least at one dose. Moreover, 21 genes related to apoptosis and programmed cell death, and 12 genes related to caspase activity were significantly altered, mainly affecting initiator caspases 8, 9 and 10. The results demonstrated BEA-induced mitochondrial damage affecting the respiratory chain, and pointing to apoptosis through the caspase cascade in human lymphoblastic T cells.
Collapse
Affiliation(s)
- L Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain.
| | - D Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - F Caiment
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, The Netherlands
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
34
|
The Natural Fungal Metabolite Beauvericin Exerts Anticancer Activity In Vivo: A Pre-Clinical Pilot Study. Toxins (Basel) 2017; 9:toxins9090258. [PMID: 28837057 PMCID: PMC5618191 DOI: 10.3390/toxins9090258] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/27/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023] Open
Abstract
Recently, in vitro anti-cancer properties of beauvericin, a fungal metabolite were shown in various cancer cell lines. In this study, we assessed the specificity of this effect by comparing beauvericin cytotoxicity in malignant versus non-malignant cells. Moreover, we tested in vivo anticancer effects of beauvericin by treating BALB/c and CB-17/SCID mice bearing murine CT-26 or human KB-3-1-grafted tumors, respectively. Tumor size and weight were measured and histological sections were evaluated by Ki-67 and H/E staining as well as TdT-mediated-dUTP-nick-end (TUNEL) labeling. Beauvericin levels were determined in various tissues and body fluids by LC-MS/MS. In addition to a more pronounced activity against malignant cells, we detected decreased tumor volumes and weights in beauvericin-treated mice compared to controls in both the allo- and the xenograft model without any adverse effects. No significant differences were detected concerning percentages of proliferating and mitotic cells in tumor sections from treated and untreated mice. However, a significant increase of necrotic areas within whole tumor sections of beauvericin-treated mice was found in both models corresponding to an enhanced number of TUNEL-positive, i.e., apoptotic, cells. Furthermore, moderate beauvericin accumulation was detected in tumor tissues. In conclusion, we suggest beauvericin as a promising novel natural compound for anticancer therapy.
Collapse
|
35
|
Gruber-Dorninger C, Novak B, Nagl V, Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7052-7070. [PMID: 27599910 DOI: 10.1021/acs.jafc.6b03413] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Modern analytical techniques can determine a multitude of fungal metabolites contaminating food and feed. In addition to known mycotoxins, for which maximum levels in food are enforced, also currently unregulated, so-called "emerging mycotoxins" were shown to occur frequently in agricultural products. The aim of this review is to critically discuss the relevance of selected emerging mycotoxins to food and feed safety. Acute and chronic toxicity as well as occurrence data are presented for enniatins, beauvericin, moniliformin, fusaproliferin, fusaric acid, culmorin, butenolide, sterigmatocystin, emodin, mycophenolic acid, alternariol, alternariol monomethyl ether, and tenuazonic acid. By far not all of the detected compounds are toxicologically relevant at their naturally occurring levels and are therefore of little or no health concern to consumers. Still, gaps in knowledge have been identified for several compounds. These gaps should be closed by the scientific community in the coming years to allow a proper risk assessment.
Collapse
Affiliation(s)
| | - Barbara Novak
- BIOMIN Research Center , Technopark 1, 3430 Tulln, Austria
| | - Veronika Nagl
- BIOMIN Research Center , Technopark 1, 3430 Tulln, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU) , Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| |
Collapse
|
36
|
Luz C, Saladino F, Luciano FB, Mañes J, Meca G. Occurrence, toxicity, bioaccessibility and mitigation strategies of beauvericin, a minor Fusarium mycotoxin. Food Chem Toxicol 2017; 107:430-439. [PMID: 28720287 DOI: 10.1016/j.fct.2017.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
Emerging Fusarium mycotoxins include the toxic secondary metabolites fusaproliferin, enniatins, beauvericin (BEA), and moniliform. BEA is produced by some entomo- and phytopathogenic Fusarium species and occurs naturally on corn and corn-based foods and feeds infected by Fusarium spp. BEA has shown various biological activities (antibacterial, antifungal, and insecticidal) and possesses toxic activity, including the induction of apoptosis, increase cytoplasmic calcium concentration and lead to DNA fragmentation in mammalian cell lines. Cereals food processing has an important effect on mycotoxin stability, leading to less-contaminated food compared to the raw materials. Different industrial processes have shown to be effective practices to reduce BEA contents due to thermal food processing applied, such as cooking, boiling, baking, frying, roasting and pasteurization. Some studies demonstrated the capacity of lactic acid bacteria to reduce the presence of the BEA in model solution and in food chain through fermentation processes, modifying this mycotoxin in a less toxic derivate. Prebiotic and probiotic ingredient can modulate the bioaccessibility of BEA reducing the risk of intake of this minor Fusarium mycotoxin. This review summarizes the existing data on occurrence, toxicity and especially on BEA reduction strategies in food and feed such as chemical reduction, biocontrol and food processing.
Collapse
Affiliation(s)
- C Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 4610, Burjassot, Spain
| | - F Saladino
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 4610, Burjassot, Spain
| | - F B Luciano
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - J Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 4610, Burjassot, Spain
| | - G Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 4610, Burjassot, Spain.
| |
Collapse
|
37
|
Mallebrera B, Maietti A, Tedeschi P, Font G, Ruiz MJ, Brandolini V. Antioxidant capacity of trans -resveratrol dietary supplements alone or combined with the mycotoxin beauvericin. Food Chem Toxicol 2017; 105:315-318. [DOI: 10.1016/j.fct.2017.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/24/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022]
|
38
|
Yoo S, Kim MY, Cho JY. Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:449-456. [PMID: 28706459 PMCID: PMC5507784 DOI: 10.4196/kjpp.2017.21.4.449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/28/2017] [Indexed: 12/16/2022]
Abstract
Beauvericin (BEA), a cyclic hexadepsipeptide produced by the fungus Beauveria bassiana, is known to have anti-cancer, anti-inflammatory, and anti-microbial actions. However, how BEA suppresses macrophage-induced inflammatory responses has not been fully elucidated. In this study, we explored the anti-inflammatory properties of BEA and the underlying molecular mechanisms using lipopolysaccharide (LPS)-treated macrophage-like RAW264.7 cells. Levels of nitric oxide (NO), mRNA levels of transcription factors and the inflammatory genes inducible NO synthase (iNOS) and interleukin (IL)-1, and protein levels of activated intracellular signaling molecules were determined by Griess assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter gene assay, and immunoblotting analysis. BEA dose-dependently blocked the production of NO in LPS-treated RAW264.7 cells without inducing cell cytotoxicity. BEA also prevented LPS-triggered morphological changes. This compound significantly inhibited nuclear translocation of the NF-κB subunits p65 and p50. Luciferase reporter gene assays demonstrated that BEA suppresses MyD88-dependent NF-κB activation. By analyzing upstream signaling events for NF-κB activation and overexpressing Src and Syk, these two enzymes were revealed to be targets of BEA. Together, these results suggest that BEA suppresses NF-κB-dependent inflammatory responses by suppressing both Src and Syk.
Collapse
Affiliation(s)
- Sulgi Yoo
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
39
|
Effect of Fusarium-Derived Metabolites on the Barrier Integrity of Differentiated Intestinal Porcine Epithelial Cells (IPEC-J2). Toxins (Basel) 2016; 8:toxins8110345. [PMID: 27869761 PMCID: PMC5127141 DOI: 10.3390/toxins8110345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/20/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022] Open
Abstract
The human, animal and plant pathogen Fusarium, which contaminates agricultural commodities worldwide, produces numerous secondary metabolites. An example is the thoroughly-investigated deoxynivalenol (DON), which severely impairs gastrointestinal barrier integrity. However, to date, the toxicological profile of other Fusarium-derived metabolites, such as enniatins, beauvericin, moniliformin, apicidin, aurofusarin, rubrofusarin, equisetin and bikaverin, are poorly characterized. Thus we examined their effects—as metabolites alone and as metabolites in combination with DON—on the intestinal barrier function of differentiated intestinal porcine epithelial cells (IPEC-J2) over 72 h. Transepithelial electrical resistance (TEER) was measured at 24-h intervals, followed by evaluation of cell viability using neutral red (NR) assay. Enniatins A, A1, B and B1, apicidin, aurofusarin and beauvericin significantly reduced TEER. Moniliformin, equisetin, bikaverin and rubrofusarin had no effect on TEER. In the case of apicidin, aurofusarin and beauvericin, TEER reductions were further substantiated by the addition of otherwise no-effect DON concentrations. In all cases, viability was unaffected, confirming that TEER reductions were not due to compromised viability. Considering the prevalence of mycotoxin contamination and the diseases associated with intestinal barrier disruption, consumption of contaminated food or feed may have substantial health implications.
Collapse
|
40
|
Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM, Dimopoulos G. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep 2016; 6:34084. [PMID: 27678168 PMCID: PMC5039729 DOI: 10.1038/srep34084] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission.
Collapse
Affiliation(s)
- Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - Benjamin J Blumberg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - Simone L Sandiford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - Andrew Pike
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - April M Clayton
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Tian J, Han JJ, Zhang X, He LW, Zhang YJ, Bao L, Liu HW. New Cyclohexadepsipeptides from an Entomogenous Fungus Fusarium proliferatum and Their Cytotoxicity and Autophagy-Inducing Activity. Chem Biodivers 2016; 13:852-60. [PMID: 27233912 DOI: 10.1002/cbdv.201500262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/10/2015] [Indexed: 11/11/2022]
Abstract
Five new cyclohexadepsipeptides termed as enniatins R - V (1 - 5) and seven known cyclohexadepsipeptides (6 - 12) were isolated from the solid culture of Fusarium proliferatum, a fungus isolated from the cadaver of an unidentified insect collected in Tibet. Their structures were elucidated by NMR and MS spectroscopic analysis. The X-ray single-crystal structure of 6 was reported for the first time. Enniatins R and S represented the first enniatins incorporating with an unusual 2,3-dihydroxy-isovaleric acid (Div) residue. The cytotoxicity and autophagy-inducing activities of 1 - 12 were evaluated in vitro. Beauvenniatin F (11) exhibited strong cytotoxicity against K562/A (adriamycin-resistant K562) with IC50 value of 3.78 μm, and also autophagy-inducing activity at the concentration of 20 μm in GFP-LC3 stable HeLa cells.
Collapse
Affiliation(s)
- Jin Tian
- School of Medical Devices, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Jun-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Xue Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China.
| | - Lu-Wei He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Yong-Jie Zhang
- College of Life Science, Shanxi University, No. 92 Wucheng Road, Xiaodian District, Taiyuan, 03006, P. R. China
| | - Li Bao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, P. R. China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing, 100101, P. R. China.
| |
Collapse
|
42
|
|
43
|
Rodríguez-Carrasco Y, Heilos D, Richter L, Süssmuth RD, Heffeter P, Sulyok M, Kenner L, Berger W, Dornetshuber-Fleiss R. Mouse tissue distribution and persistence of the food-born fusariotoxins Enniatin B and Beauvericin. Toxicol Lett 2016; 247:35-44. [PMID: 26892719 PMCID: PMC5850989 DOI: 10.1016/j.toxlet.2016.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 11/24/2022]
Abstract
The fusariotoxins Enniatin B (Enn B) and Beauvericin (Bea) have recently aroused interest as food contaminants and as potential anticancer drugs. However, limited data are available about their toxic profile. Aim of this study was to investigate their pharmacological behavior in vivo and their persistence in mice. Therefore, liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to analyze the distribution of Enn B and Bea in selected tissue samples and biological fluids originating from mice treated intraperitoneally with these cyclohexadepsipeptides. Overall, no toxicological signs during life time or pathological changes were observed. Moreover, both fusariotoxins were found in all tissues and serum but not in urine. Highest amounts were measured in liver and fat demonstrating the moleculeś tendency to bioaccumulate in lipophilic tissues. While for Bea no metabolites could be detected, for Enn B three phase I metabolites (dioxygenated-Enn B, mono- and di-demethylated-Enn B) were found in liver and colon, with dioxygenated-Enn B being most prominent. Consequently, contribution of hepatic as well as intestinal metabolism seems to be involved in the overall metabolism of Enn B. Thus, despite their structural similarity, the metabolism of Enn B and Bea shows distinct discrepancies which might affect long-term effects and tolerability in humans.
Collapse
Affiliation(s)
- Yelko Rodríguez-Carrasco
- Department of Public Health, Faculty of Pharmacy, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjassot, Spain
| | - Daniela Heilos
- Department of Pharmacology and Toxicology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; Comprehensive Cancer Center of the Medical University, Spitalgasse 23, 1090 Vienna, Austria
| | - Lennart Richter
- Technische Universität Berlin, Institut für Chemie, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Petra Heffeter
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; Comprehensive Cancer Center of the Medical University, Spitalgasse 23, 1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, Währingergürtel 18-20, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Währingerstraße 13a, Vienna, Austria,; Institute of Laboratory Animal Pathology, Veterinary University of Vienna, Veterinärplatz 1, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; Comprehensive Cancer Center of the Medical University, Spitalgasse 23, 1090 Vienna, Austria; Research Platform "Translational Cancer Therapy Research", Vienna, Austria.
| | - Rita Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; Comprehensive Cancer Center of the Medical University, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
44
|
Risks of Mycotoxins from Mycoinsecticides to Humans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3194321. [PMID: 27144161 PMCID: PMC4842051 DOI: 10.1155/2016/3194321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/07/2015] [Indexed: 12/18/2022]
Abstract
There are more than thirty mycotoxins produced by fungal entomopathogens. Totally, they belong to two classes, NRP and PK mycotoxins. Most of mycotoxins have not been paid sufficient attention yet. Generally, mycotoxins do not exist in mycoinsecticide and might not be released to environments unless entomogenous fungus proliferates and produces mycotoxins in host insects or probably in plants. Some mycotoxins, destruxins as an example, are decomposed in host insects before they, with the insect's cadavers together, are released to environments. Many species of fungal entomopathogens have the endophytic characteristics. But we do not know if fungal entomopathogens produce mycotoxins in plants and release them to environments. On the contrary, the same mycotoxins produced by phytopathogens such as Fusarium spp. and Aspergillus spp. have been paid enough concerns. In conclusion, mycotoxins from mycoinsecticides have limited ways to enter environments. The risks of mycotoxins from mycoinsecticides contaminating foods are controllable.
Collapse
|
45
|
Mallebrera B, Juan-Garcia A, Font G, Ruiz MJ. Mechanisms of beauvericin toxicity and antioxidant cellular defense. Toxicol Lett 2016; 246:28-34. [DOI: 10.1016/j.toxlet.2016.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
46
|
Zouaoui N, Mallebrera B, Berrada H, Abid-Essefi S, Bacha H, Ruiz MJ. Cytotoxic effects induced by patulin, sterigmatocystin and beauvericin on CHO-K1 cells. Food Chem Toxicol 2016; 89:92-103. [PMID: 26802678 DOI: 10.1016/j.fct.2016.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/17/2015] [Accepted: 01/19/2016] [Indexed: 11/17/2022]
Abstract
Mycotoxins are produced by different genera of fungi; mainly Aspergillus, Penicillium and Fusarium. The natural co-occurrence of beauvericin (BEA), patulin (PAT) and sterigmatocystin (STE) has been proved in feed and food commodities. This study investigates the cytotoxicity of individual and combined mycotoxins BEA, PAT and STE. The cytotoxicity on immortalized ovarian cells (CHO-K1) was evaluated using the MTT assay. After 24, 48 and 72 h, the IC50 values were 2.9 μM for PAT and ranged from 10.7 to 2.2 μM and from 25.0 to 12.5 μM for BEA and STE, respectively. Cytotoxic interactions were assayed by the isobologram method, which provides a combination index (CI) value as a quantitative measure of the three mycotoxin interaction's degree. Binary and tertiary combinations showed a dose dependent effect. At low fraction affected, mycotoxin combinations were synergetic; whereas, at higher fraction affected, the combinations showed additive effect. Our results indicate that the co-occurrence of low concentrations of mycotoxin in food may increase their toxic effects.
Collapse
Affiliation(s)
- Nidhal Zouaoui
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia; Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Beatriz Mallebrera
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vincent Andrés Estelles, 46100, Burjassot, Valencia, Spain
| | - Houda Berrada
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vincent Andrés Estelles, 46100, Burjassot, Valencia, Spain
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia
| | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dentistry, Rue Avicenne, 5019, Monastir, Tunisia
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vincent Andrés Estelles, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
47
|
Fernández-Blanco C, Font G, Ruiz MJ. Interaction effects of enniatin B, deoxinivalenol and alternariol in Caco-2 cells. Toxicol Lett 2016; 241:38-48. [DOI: 10.1016/j.toxlet.2015.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/25/2023]
|
48
|
Juan-García A, Ruiz MJ, Font G, Manyes L. Enniatin A1, enniatin B1 and beauvericin on HepG2: Evaluation of toxic effects. Food Chem Toxicol 2015; 84:188-96. [DOI: 10.1016/j.fct.2015.08.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 12/28/2022]
|
49
|
Santos RR, Schoevers EJ, Roelen BAJ. Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod Biol Endocrinol 2014; 12:117. [PMID: 25427762 PMCID: PMC4258035 DOI: 10.1186/1477-7827-12-117] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/05/2014] [Indexed: 11/10/2022] Open
Abstract
Women presenting fertility problems are often helped by Assisted Reproductive Techniques (ART), such as in vitro fertilization (IVF) programs. However, in many cases the etiology of the in/subfertility remains unknown even after treatment. Although several aspects should be considered when assisting a woman with problems to conceive, a survey on the patients' exposure to contaminants would help to understand the cause of the fertility problem, as well as to follow the patient properly during IVF. Daily exposure to toxic compounds, mainly environmental and dietary ones, may result in reproductive impairment. For instance, because affects oocyte developmental competence. Many of these compounds, natural or synthetic, are endocrine disruptors or endocrine active substances that may impair reproduction. To understand the risks and the mechanism of action of such chemicals in human cells, the use of proper in vitro models is essential. The present review proposes the bovine and porcine models to evaluate toxic compounds on oocyte maturation, fertilization and embryo production in vitro. Moreover, we discuss here the species-specific differences when mice, bovine and porcine are used as models for human.
Collapse
Affiliation(s)
- Regiane R Santos
- />Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University,TD Utrecht,, P.O Box 80152, 3508 The Netherlands
- />Laboratory of Wild Animal Biology and Medicine, Federal University of Pará,, Rua Augusto Corrêa,Belém, CEP 66075-110 Pará Brazil
| | - Eric J Schoevers
- />Department of Farm Animal Health, Utrecht University,, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
| | - Bernard AJ Roelen
- />Department of Farm Animal Health, Utrecht University,, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
- />Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|