1
|
Flores-Montoya G, Tian Z, Michii A, Chan SY, Sanchez N. The effects of developmental sub-chronic low-level lead exposure on microglia and a test of possible mitigation by apigenin in C57BL/6J young mice. Neurotoxicol Teratol 2025; 107:107406. [PMID: 39638160 DOI: 10.1016/j.ntt.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Developmental chronic low-level lead (Pb) exposure disrupts central nervous system function and diminishes neurocognition. Microglial cell activation might contribute to these deficits. The present study evaluated the effects of developmental sub-chronic low-level lead exposure on microglial cells and the possible effectiveness of a natural anti-inflammatory intervention with apigenin to mitigate these effects. From PND 0 to 28, 87 C57BL/6 J mice were exposed to one of six treatment conditions: 0 ppm Pb; 30 ppm Pb; 430 ppm Pb; 30 ppm Pb + 400 ppm apigenin; 430 ppm Pb + 400 ppm apigenin; or 400 ppm apigenin, via dams' drinking water. Following sacrifice, brain tissue was harvested and microglial cells were labeled via immunohistochemistry and counted within the dentate gyrus (DG) using unbiased stereology methods. It was hypothesized that developmental sub-chronic low-level lead exposure would increase microglial cell numbers within the DG and that apigenin treatment may mitigate these effects. A significant effect of treatment group was found and post-hoc analyses revealed that Pb-exposure generated an increased number of microglial cells as compared to controls. Interestingly, the 30 ppm Pb with apigenin treatment group did not generate microglial cell numbers different from the control group unexposed to Pb. These results suggested that developmental sub-chronic low-level lead exposure increased microglial cell activation within the DG and that, at low-levels of Pb exposure, apigenin treatment may mitigate these effects. These results provided the groundwork for studies that could identify an effective intervention to alleviate the effects of developmental chronic low-level lead exposure in child neurocognition.
Collapse
Affiliation(s)
- Gisel Flores-Montoya
- Laboratory of Neuroimmunology and Neurotoxicology, Carleton College, Psychology Department, United States of America.
| | - Zichen Tian
- Laboratory of Neuroimmunology and Neurotoxicology, Carleton College, Psychology Department, United States of America
| | - Ayasa Michii
- Laboratory of Neuroimmunology and Neurotoxicology, Carleton College, Psychology Department, United States of America
| | - Sze Ying Chan
- Laboratory of Neuroimmunology and Neurotoxicology, Carleton College, Psychology Department, United States of America
| | - Natalie Sanchez
- Laboratory of Neuroimmunology and Neurotoxicology, Carleton College, Psychology Department, United States of America
| |
Collapse
|
2
|
Haque E, Adamcakova-Dodd A, Jing X, Wang H, Jarmusch AK, Thorne PS. Multi-omics inhalation toxicity assessment of urban soil dusts contaminated by multiple legacy sources of lead (Pb). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136120. [PMID: 39405708 PMCID: PMC11698073 DOI: 10.1016/j.jhazmat.2024.136120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
Although animal studies have evaluated lead (Pb) toxicity, they are limited to soluble forms, such as Pb-acetate, which do not reflect the range found in the exposome. Recent studies on Pb speciation of residential soils in urban areas revealed that the initial Pb sources are not persistent and are extensively repartitioned into adsorbed forms of Pb rather than insoluble phosphates. We investigated the inhalation and neurological toxicity of dusts generated from a surficial soil sample collected from a residential site with an exposomic mixture of various Pb species, both adsorbed phases (Fe and Mn oxide, humate bound Pb) and mineral phases (Pb hydroxycarbonate, pyromorphite, galena). Mice inhaled East Chicago dust (ECD) generated from a composite soil sample for 4 h/day, 7 days/week, for 4 weeks. Mice were necropsied immediately, 1, 14 and 30 days post exposure to evaluate both toxicity and recovery. Exposure to ECD caused changes in memory and spatial learning in the Morris Water Maze test. RNAseq analysis of the hippocampus region revealed multiple differentially expressed genes and impacts on pathways involved in ion channel complexes, and neuron-to-neuron synapse. Metabolomics analysis of plasma highlighted significant alterations in metabolic processes immediately after exposure that resolved after 14 days of rest.
Collapse
Affiliation(s)
- Ezazul Haque
- Human Toxicology Program, Graduate College, University of Iowa, Iowa City, Iowa, USA; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA; Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Alan K Jarmusch
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Peter S Thorne
- Human Toxicology Program, Graduate College, University of Iowa, Iowa City, Iowa, USA; Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
3
|
Yánez-Jácome GS, Romero-Estévez D, Rosero-Jácome AP, Cipriani-Avila I, Navarrete H, Vélez-Terreros PY. Lead content in cinnamon and its health risk assessment for Ecuadorian consumers. Food Chem Toxicol 2024; 193:115010. [PMID: 39299376 DOI: 10.1016/j.fct.2024.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lead (Pb) is a poisonous metal that affects organs and the nervous system. Its presence in spices such as cinnamon has been identified as a potential human exposure pathway. In late October 2023, a safety alert was issued in the United States regarding four children with elevated Pb levels in their blood after consuming apple-cinnamon fruit puree manufactured and exported by an Ecuadorian company. Thus, this study aimed to determine the Pb content in 61 ground and stick cinnamon samples, from different commercial brands and lots sold in Ecuador. Results showed that ground cinnamon samples had almost twice the level of Pb (0.80 ± 0.75 mg/kg) than stick samples (0.36 ± 0.28 mg/kg). Three ground samples had Pb content above the maximum level established by Ecuadorian and European Union regulations (2.0 mg/kg). A Kruskal-Wallis test showed significant differences in Pb content between ground and stick cinnamon (p < 0.05). The HQ values showed negligible non-carcinogenic effects for children and adults, even at the highest Pb content. However, the carcinogenic risk of ground cinnamon at maximum and mean Pb concentrations was found for the population. Our study highlights the deficiencies in current surveillance systems and the lack of effective national regulations for exposure to foodborne metals.
Collapse
Affiliation(s)
- Gabriela S Yánez-Jácome
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Pichincha 170525, Ecuador
| | - David Romero-Estévez
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Pichincha 170525, Ecuador
| | - Ana P Rosero-Jácome
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito. Av. 12 de Octubre 1076 y Roca, Quito, 170525, Ecuador
| | - Isabel Cipriani-Avila
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito. Av. 12 de Octubre 1076 y Roca, Quito, 170525, Ecuador
| | - Hugo Navarrete
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito. Av. 12 de Octubre 1076 y Roca, Quito, 170525, Ecuador
| | - Pamela Y Vélez-Terreros
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Pichincha 170525, Ecuador.
| |
Collapse
|
4
|
SOBIN CHRISTINA, GUTIéRREZ‐VEGA MARISELA, FLORES‐MONTOYA GISEL, RIO MICHELLEDEL, ALVAREZ JUANM, OBENG ALEXANDER, AVILA JALEEN, HETTIARACHCHI GANGA. Improving Equitability and Inclusion for Testing and Detection of Lead Poisoning in US Children. Milbank Q 2023; 101:48-73. [PMID: 36717973 PMCID: PMC10037693 DOI: 10.1111/1468-0009.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023] Open
Abstract
Policy Points Child lead poisoning is associated with socioeconomic inequity and perpetuates health inequality. Methods for testing and detection of child lead poisoning are ill suited to the current demographics and characteristics of the problem. A three-pronged revision of current testing approaches is suggested. Employing the suggested revisions can immediately increase our national capacity for equitable, inclusive testing and detection. ABSTRACT: Child lead poisoning, the longest-standing child public health epidemic in US history, is associated with socioeconomic inequity and perpetuates health inequality. Removing lead from children's environments ("primary prevention") is and must remain the definitive solution for ending child lead poisoning. Until that goal can be realized, protecting children's health necessarily depends on the adequacy of our methods for testing and detection. Current methods for testing and detection, however, are no longer suited to the demographics and magnitude of the problem. We discuss the potential deployment and feasibility of a three-pronged revision of current practices including: 1) acceptance of capillary samples for final determination of lead poisoning, with electronic documentation of "clean" collection methods submitted by workers who complete simple Centers for Disease Control and Prevention-endorsed online training and certification for capillary sample collection; 2) new guidance specifying the analysis of capillary samples by inductively coupled plasma mass spectrometry or graphite furnace atomic absorption spectrometry with documented limit of detection ≤0.2 μg/dL; and 3) adaptive "census tract-specific" universal testing and monitoring guidance for children from birth to 10 years of age. These testing modifications can bring child blood lead level (BLL) testing into homes and communities, immediately increasing our national capacity for inclusive and equitable detection and monitoring of dangerous lower-range BLLs in US children.
Collapse
Affiliation(s)
| | | | | | - MICHELLE DEL RIO
- Environmental and Occupational Health, School of Public HealthIndiana University
| | - JUAN M. ALVAREZ
- School of Public HealthUniversity of Texas Health Science Center at Houston
| | | | | | | |
Collapse
|
5
|
Early-life low-level lead exposure alters anxiety-like behavior, voluntary alcohol consumption and AC5 protein content in adult male and female C57BL/6 J mice. Neurotoxicol Teratol 2023; 95:107149. [PMID: 36539102 DOI: 10.1016/j.ntt.2022.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Despite efforts to eradicate sources of environmental lead (Pb), children, predominately in lower socioeconomic areas, are still frequently exposed to unsafe levels of Pb from soils, dust, and water. Human studies suggest that Pb exposure is associated with altered drug consumption in adults; however, there is limited research at comparable exposure levels (blood Pb levels <10 μg/dL). To model how early-life, low-level Pb exposure affects alcohol consumption in adulthood, we exposed postnatal day (PND) 21 C57Bl/6 J mice to either 30 ppm or 0 ppm Lead (IV) Acetate in distilled water until PND 42, and testing began in adulthood. We predicted that mice with early-life Pb exposure would exhibit greater anxiety-like behavior and consume more alcohol in a three-week Drinking-in-the-Dark procedure (20% v/v) and a 24-h two-bottle choice procedure (10% v/v). We also predicted that Pb exposure would decrease whole-brain content of Adenylate Cyclase-5 (AC5), a protein linked to anxiety-like behaviors and alcohol drinking. There was no difference in limited-access binge-like consumption between exposure groups; however, Pb-exposed mice displayed higher two-bottle choice alcohol intake and preference. Furthermore, Pb-exposed mice exhibited greater anxiety-like behaviors in experiments conducted before an alcohol drinking history but not after. Finally, Pb-exposed mice exhibited an upregulation of whole-brain AC5 protein content. However, this difference was not found in the nucleus accumbens, dorsomedial or dorsolateral striatum. These findings conclude that early-life Pb exposure alters voluntary alcohol consumption and whole-brain AC5 protein content in adulthood. Future studies are necessary to further understand the mechanism behind how Pb exposure alters alcohol intake.
Collapse
|
6
|
Dinçkol Ö, Fuentes B, Tartaglione AM, Pino A, Calamandrei G, Ricceri L. Low-Level Lead Exposure During Development Differentially Affects Neurobehavioral responses in Male and Female Mouse Offspring: A Longitudinal Study. Neurotoxicology 2022; 91:188-199. [DOI: 10.1016/j.neuro.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 12/09/2022]
|
7
|
Ramírez S, Haddad-Tóvolli R, Radosevic M, Toledo M, Pané A, Alcolea D, Ribas V, Milà-Guasch M, Pozo M, Obri A, Eyre E, Gómez-Valadés AG, Chivite I, Van Eeckhout T, Zalachoras I, Altirriba J, Bauder C, Imbernón M, Garrabou G, Garcia-Ruiz C, Nogueiras R, Soto D, Gasull X, Sandi C, Brüning JC, Fortea J, Jiménez A, Fernández-Checa JC, Claret M. Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders. Cell Metab 2022; 34:269-284.e9. [PMID: 35108514 PMCID: PMC8815774 DOI: 10.1016/j.cmet.2021.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
Obesity and type 2 diabetes are associated with cognitive dysfunction. Because the hypothalamus is implicated in energy balance control and memory disorders, we hypothesized that specific neurons in this brain region are at the interface of metabolism and cognition. Acute obesogenic diet administration in mice impaired recognition memory due to defective production of the neurosteroid precursor pregnenolone in the hypothalamus. Genetic interference with pregnenolone synthesis by Star deletion in hypothalamic POMC, but not AgRP neurons, deteriorated recognition memory independently of metabolic disturbances. Our data suggest that pregnenolone's effects on cognitive function were mediated via an autocrine mechanism on POMC neurons, influencing hippocampal long-term potentiation. The relevance of central pregnenolone on cognition was also confirmed in metabolically unhealthy patients with obesity. Our data reveal an unsuspected role for POMC neuron-derived neurosteroids in cognition. These results provide the basis for a framework to investigate new facets of POMC neuron biology with implications for cognitive disorders.
Collapse
Affiliation(s)
- Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marija Radosevic
- Neuroimmunology Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Adriana Pané
- Obesity Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alicia G Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Iñigo Chivite
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Tomas Van Eeckhout
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Corinna Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mónica Imbernón
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Internal Medicine Department, Faculty of Medicine, University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rubén Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; National Center for Diabetes Research (DZD), Neuherberg, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Amanda Jiménez
- Obesity Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain; Translational Research in Diabetes, Lipids and Obesity, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Rangel-Barajas C, Coronel I, Zhang Y, Hernández M, Boehm Ii SL. Low-level developmental lead exposure does not predispose to adult alcohol self-administration, but does increase the risk of relapsing to alcohol seeking in mice: Contrasting role of GLT1 and xCT brain expression. Neuropharmacology 2020; 181:108339. [PMID: 33010299 DOI: 10.1016/j.neuropharm.2020.108339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/27/2022]
Abstract
Lead (Pb) is a neurotoxic heavy metal pollutant. Despite the efforts to reduce Pb environmental exposure and to prevent Pb poisoning, exposure in human populations persists. Studies of adults with history of childhood lead exposure have consistently demonstrated cognitive impairments that have been associated with sustained glutamate signaling. Additionally, some clinical studies have also found correlations between Pb exposure and increased proclivity to drug addiction. Thus, here we sought to investigate if developmental Pb exposure can increase propensity to alcohol consumption and relapse using an alcohol self-administration paradigm. Because Pb exposure is associated with increased glutamatergic tone, we also studied the effects on the expression of synaptic and non-synaptic glutamate transporters in brain regions associated with drug addiction such as the nucleus accumbens (NAc), dorsomedial striatum (DMS), dorsolateral striatum (DLS), and medial prefrontal cortex (mPFC). We found that while developmental Pb exposure did not increase risk for alcohol self-administration, it did play a role in relapsing to alcohol. The effects were associated with differential expression of the glutamate transporter 1 (GLT1) and the glutamate/cystine antiporter (xCT). In the NAc and DLS the expression of GLT1 was found to be significantly reduced, while no changes were found in DMS or mPFC. Contrastingly, xCT was found to be upregulated in NAc but downregulated in DLS, with no changes in DMS or mPFC. Our data suggest that lead exposure is involved in relapse to alcohol seeking, an effect that could be associated with downregulation of GLT1 and xCT in the DLS.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Department of Psychology, School of Science, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA
| | - Israel Coronel
- Department of Psychology, School of Science, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA
| | - Yanping Zhang
- Department of Psychology, School of Science, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA
| | - Maribel Hernández
- Department of Psychology, School of Science, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA
| | - Stephen L Boehm Ii
- Department of Psychology, School of Science, Indiana University-Purdue University Indianapolis, 402 N Blackford St, Indianapolis, IN, 46202, USA; Indiana Alcohol Research Center, Indiana University School of Medicine, 340 W 10th St, Indianapolis, IN, 462020, USA.
| |
Collapse
|
10
|
Golub MS, Sobin CA. Statistical modeling with litter as a random effect in mixed models to manage "intralitter likeness". Neurotoxicol Teratol 2019; 77:106841. [PMID: 31863841 DOI: 10.1016/j.ntt.2019.106841] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
"Intralitter likeness," the possibility that the shared genetics and/or maternal environment in multiparous species causes strong similarity for outcome variables in littermates, violates a core statistical assumption, that of observation independence, when littermate outcomes are analyzed. Intralitter likeness has been of major concern to investigators for several decades. Despite consensus and guidance, many research reports in the rodent literature continue to ignore intralitter likeness. A historical review of the literature revealed that the long-preferred solution was to include litter as an effect in statistical models. Limitations in software development and computing capacity prior to 1990, however, appear to have led researchers and guidance authorities to endorse instead the method of using one value per litter. Here, the history of discussions regarding intralitter likeness in developmental neurotoxicological research is reviewed; growing knowledge regarding the biological bases and significance of intralitter likeness is discussed; principles underlying the use of litter as a random effect in mixed models are presented; statistical examples are provided illustrating the advantages and critical importance of including litter as a random effect in mixed models; and results using all data points (all pups from all litters) with litter as a random effect, are compared to results based on random selections of representative littermates. Mixed models with litter included as a random effect have distinct advantages for the analysis of clustered data. Modern computing capacity provides ready accessibility to mixed models for all researchers. Accessibility however does not preclude the need for appropriate expertise and consultation in the use of mixed (hierarchical) models.
Collapse
Affiliation(s)
- Mari S Golub
- California National Primate Research Center, University of California, Davis, Davis, CA, United States of America
| | - Christina A Sobin
- College of Health Sciences, University of Texas EL Paso, El Paso, TX, United States of America; Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States of America.
| |
Collapse
|
11
|
Flores-Montoya MG, Bill CA, Vines CM, Sobin C. Early chronic low-level lead exposure reduced C-C chemokine receptor 7 in hippocampal microglia. Toxicol Lett 2019; 314:106-116. [PMID: 31306743 PMCID: PMC7815484 DOI: 10.1016/j.toxlet.2019.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/11/2019] [Accepted: 07/06/2019] [Indexed: 01/10/2023]
Abstract
Chronic low-level lead exposure alters cognitive function in young children however the mechanisms mediating these deficits in the brain are not known. Previous studies in our laboratory showed that early lead exposure reduced the number of microglial cells in hippocampus/dentate gyrus of C57BL/6 J mice. In the current study, C-C chemokine receptor 7 (CCR7) and major histocompatibility complex II (MHC II) were examined to investigate whether these neuroimmune factors which are known to trigger cell migration and antigen presentation, were altered by early chronic lead exposure. Thirty-six C57BL/6 J male mice were exposed to 0 ppm (controls, n = 12), 30 ppm (low-dose, n = 12), or 430 ppm (higher-dose, n = 12) of lead acetate via dams' milk from postnatal day (PND) 0 to 28. Flow cytometry was used to quantify cell types and cell surface expression of MHC II and CCR7 in hippocampal and whole brain microglia. Non-parametric independent samples median tests were used to test for statistically significant differences between groups. As compared to controls, CCR7 in hippocampal microglia was decreased in the low-dose group, measured as geometric mean fluorescence intensity (GMFI); in the higher-dose group CCR7+MHC II- hippocampal microglia were decreased. Further analyses revealed that the higher-dose group had decreased percentage of CCR7+MHC II- hippocampal macrophages as compared to controls but increased MHC II levels in CCR7+MHC II+ hippocampal macrophages as compared to controls. It was also noted that lead exposure disrupted the balance of MHC II and/or CCR7 in lead exposed animals. Reduced CCR7 in hippocampal microglia might alter the neuroimmune environment in hippocampi of lead exposed animals. Additional studies are needed to test this possibility.
Collapse
Affiliation(s)
- Mayra Gisel Flores-Montoya
- Dept of Psychology, The University of Texas at El Paso, El Paso, TX, USA; Dept of Psychology, Carleton College, Northfield, MN, USA.
| | - Colin A Bill
- Dept of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Charlotte M Vines
- Dept of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Christina Sobin
- Dept of Public Health Sciences, The University of Texas at El Paso, El Paso, TX, USA; Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
12
|
Tena A, Peru E, Martinetti LE, Cano JC, Loyola Baltazar CD, Wagler AE, Skouta R, Fenelon K. Long-term consequences of early postnatal lead exposure on hippocampal synaptic activity in adult mice. Brain Behav 2019; 9:e01307. [PMID: 31268249 PMCID: PMC6710227 DOI: 10.1002/brb3.1307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Lead (Pb) exposure yielding blood lead levels (BLL) as low as 2 µg/dl in children is an international problem. More common in US low-income neighborhoods, childhood Pb exposure can cause behavioral and cognitive deficits, including working memory impairments, which can persist into adulthood. So far, studies characterized short-term effects of high Pb exposure on neuronal structure and function. However, long-term consequences of early chronic Pb exposure on neuronal activity are poorly documented. METHODS Here, we exposed male and female mice (PND [postnatal day] 0 to PND 28) to one of three Pb treatments: 0 ppm (sodium-treated water, control), 30 ppm (low dose), and 330 ppm (high dose) lead acetate. Once the male and female mice were 9-12 months old, extracellular field recordings on hippocampal slices were performed. RESULTS We show that at CA3 to CA1 synapses, synaptic transmission was decreased and neuronal fiber activity was increased in males exposed to lowest level Pb. In contrast, both synaptic transmission and neuronal fiber activity were increased in females exposed to high Pb. The ventral hippocampus-medial prefrontal cortex (vHPC-mPFC) synapses are crucial for working memory in rodents. The lowest level Pb decreased vHPC-mPFC synaptic transmission, whereas high Pb decreased short-term synaptic depression. CONCLUSIONS Overall, we show for the first time that early exposure to either high or lowest level Pb has long-term consequences on different synaptic properties of at least two hippocampal synapses. Such consequences of early Pb exposure might worsen the cognitive decline observed in aging men and women. Our results suggest that additional efforts should focus on the consequences of early Pb exposure especially in at-risk communities.
Collapse
Affiliation(s)
- Anahis Tena
- Department of Biological Sciences, College of ScienceUniversity of Texas at El PasoEl PasoTexas
| | - Eduardo Peru
- Department of Biological Sciences, College of ScienceUniversity of Texas at El PasoEl PasoTexas
| | - Luis E. Martinetti
- Department of Biological Sciences, College of ScienceUniversity of Texas at El PasoEl PasoTexas
| | - Jose C. Cano
- Department of Biological Sciences, College of ScienceUniversity of Texas at El PasoEl PasoTexas
| | | | - Amy E. Wagler
- Department of Mathematical Sciences, College of ScienceUniversity of Texas at El PasoEl PasoTexas
| | - Rachid Skouta
- Department of Chemistry, College of Natural ScienceUniversity of Massachusetts AmherstAmherstMassachusetts
| | - Karine Fenelon
- Department of Biological Sciences, College of ScienceUniversity of Texas at El PasoEl PasoTexas
- Biology Department, College of Natural ScienceUniversity of Massachusetts AmherstAmherstMassachusetts
| |
Collapse
|
13
|
Rocha A, Trujillo KA. Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 2019; 73:58-80. [PMID: 30836127 PMCID: PMC7462347 DOI: 10.1016/j.neuro.2019.02.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
Lead is a neurotoxin that produces long-term, perhaps irreversible, effects on health and well-being. This article summarizes clinical and preclinical studies that have employed a variety of research techniques to examine the neurotoxic effects of low levels of lead exposure. A historical perspective is presented, followed by an overview of studies that examined behavioral and cognitive outcomes. In addition, a short summary of potential mechanisms of action is provided with a focus on calcium-dependent processes. The current level of concern, or reference level, set by the CDC is 5 μg/dL of lead in blood and a revision to 3.5 μg/dL has been suggested. However, levels of lead below 3 μg/dL have been shown to produce diminished cognitive function and maladaptive behavior in humans and animal models. Because much of the research has focused on higher concentrations of lead, work on low concentrations is needed to better understand the neurobehavioral effects and mechanisms of action of this neurotoxic metal.
Collapse
MESH Headings
- Adolescent
- Adolescent Behavior/drug effects
- Adolescent Development/drug effects
- Adult
- Age Factors
- Aged
- Animals
- Brain/drug effects
- Brain/growth & development
- Child
- Child Behavior/drug effects
- Child Development/drug effects
- Child, Preschool
- Cognition/drug effects
- Dose-Response Relationship, Drug
- History, 20th Century
- History, 21st Century
- Humans
- Lead Poisoning, Nervous System, Adult/history
- Lead Poisoning, Nervous System, Adult/physiopathology
- Lead Poisoning, Nervous System, Adult/psychology
- Lead Poisoning, Nervous System, Childhood/history
- Lead Poisoning, Nervous System, Childhood/physiopathology
- Lead Poisoning, Nervous System, Childhood/psychology
- Mice
- Middle Aged
- Rats
- Risk Assessment
- Risk Factors
- Toxicity Tests
- Young Adult
Collapse
Affiliation(s)
- Angelica Rocha
- California State University San Marcos, San Marcos, CA 92069, USA.
| | - Keith A Trujillo
- California State University San Marcos, San Marcos, CA 92069, USA
| |
Collapse
|
14
|
Dominguez S, Flores-Montoya MG, Sobin C. Early chronic exposure to low-level lead alters total hippocampal microglia in pre-adolescent mice. Toxicol Lett 2018; 302:75-82. [PMID: 30352268 DOI: 10.1016/j.toxlet.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Developmental lead (Pb) exposure alters brain function through mechanisms that are not yet understood. A previous study showed that early lead exposure reduced microglia number in the dentate gyrus region of the hippocampus. Given the critical role of microglia in brain development, it is important to determine whether these differences are unique to the dentate gyrus, or occur throughout the hippocampus. Unbiased stereology was used to quantify microglia mean cell body number in total hippocampus, and compare the proportion of microglia in the ventral vs. dorsal regions. Total hippocampal volume was also measured and compared. The study included brain tissue from 30 pre-adolescent C57BL/6 J mice, exposed to 30 ppm Pb acetate (n = 10, mean BLL 3.4 μg/dL at sacrifice), 330 ppm Pb acetate (n = 10, mean BLL 14.1 μg/dL at sacrifice), or 0 ppm Pb acetate (n = 10, negative controls). In lead exposed animals, microglia mean cell body number was reduced in total hippocampus; total hippocampal volume was reduced. Importantly, effects in low- and high-dose exposure groups did not differ. Contrary to study hypotheses, the distribution of hippocampal microglia in the ventral vs. dorsal hippocampal regions did not differ. Overall, lowest and higher levels of lead exposure during development had strikingly similar disruptive effects in the neuroimmune system. Studies are needed to determine the immune and other mechanisms responsible for these effects. Future studies would benefit from larger samples to determine whether in fact there is a group by sex interaction driving the effects of early lead exposure on microglia.
Collapse
Affiliation(s)
- Salvador Dominguez
- Dept of Public Health Sciences, University of Texas, El Paso, TX, United States; Border Biomedical Research Center, Toxicology Core, University of Texas, El Paso, TX, United States
| | - Mayra Gisel Flores-Montoya
- Border Biomedical Research Center, Toxicology Core, University of Texas, El Paso, TX, United States; Dept of Psychology, University of Texas, El Paso, TX, United States
| | - Christina Sobin
- Dept of Public Health Sciences, University of Texas, El Paso, TX, United States; Border Biomedical Research Center, Toxicology Core, University of Texas, El Paso, TX, United States; Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
15
|
Teixeira FB, de Oliveira ACA, Leão LKR, Fagundes NCF, Fernandes RM, Fernandes LMP, da Silva MCF, Amado LL, Sagica FES, de Oliveira EHC, Crespo-Lopez ME, Maia CSF, Lima RR. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex. Front Mol Neurosci 2018; 11:125. [PMID: 29867340 PMCID: PMC5962769 DOI: 10.3389/fnmol.2018.00125] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 02/04/2023] Open
Abstract
Mercury is a toxic metal that can be found in the environment in three different forms – elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood–brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.
Collapse
Affiliation(s)
- Francisco B Teixeira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Ana C A de Oliveira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luana K R Leão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Nathália C F Fagundes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rafael M Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luanna M P Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Márcia C F da Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Lilian L Amado
- Laboratory of Ecotoxicology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Fernanda E S Sagica
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Edivaldo H C de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Maria E Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Cristiane S F Maia
- Laboratory of Inflammation and Behavior Pharmacology, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Brazil
| | - Rafael R Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
16
|
Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex-Dependent Effects of Developmental Lead Exposure on the Brain. Front Genet 2018; 9:89. [PMID: 29662502 PMCID: PMC5890196 DOI: 10.3389/fgene.2018.00089] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.
Collapse
Affiliation(s)
- Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vikrant Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Zhang B, Huo X, Xu L, Cheng Z, Cong X, Lu X, Xu X. Elevated lead levels from e-waste exposure are linked to decreased olfactory memory in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1112-1121. [PMID: 28802781 DOI: 10.1016/j.envpol.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/05/2023]
Abstract
Lead (Pb) is a developmental neurotoxicant and can cause abnormal development of the nervous system in children. Hence, the aim of this study was to investigate the effect of Pb exposure on child olfactory memory by correlating the blood Pb levels of children in Guiyu with olfactory memory tests. We recruited 61 preschool children, 4- to 7-years of age, from Guiyu and 57 children from Haojiang. The mean blood Pb level of Guiyu children was 9.40 μg/dL, significantly higher than the 5.04 μg/dL mean blood Pb level of Haojiang children. In addition, approximately 23% of Guiyu children had blood Pb levels exceeding 10.00 μg/dL. The correlation analysis showed that blood Pb levels in children highly correlated with e-waste contact (rs = 0.393). Moreover, the mean concentration of serum BDNF in Guiyu children (35.91 ng/ml) was higher than for Haojiang (28.10 ng/ml) and was positively correlated with blood Pb levels. Both item and source olfactory memory tests at 15 min, 5 h and 24 h after odor exposure showed that scores were lower in Guiyu children indicative of reduced olfactory memory in Guiyu children. Olfactory memory tests scores negatively correlated with blood Pb and serum BDNF levels, but were positively associated with parental education levels. At the same time, scores of both tests on children in the high blood Pb level group (blood Pb levels > 5.00 μg/dL) were lower than those in the low blood Pb level group (blood Pb levels ≤ 5.00 μg/dL), implying that Pb exposure decreases olfactory memory in children. Our findings suggest that Pb exposure in e-waste recycling and dismantling areas could result in an increase in serum BDNF level and a decrease in child olfactory memory, in addition, BDNF might be involved in olfactory memory impairment.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
18
|
Sun B, Zhang X, Yin Y, Sun H, Ge H, Li W. Effects of sulforaphane and vitamin E on cognitive disorder and oxidative damage in lead-exposed mice hippocampus at lactation. J Trace Elem Med Biol 2017; 44:88-92. [PMID: 28965607 DOI: 10.1016/j.jtemb.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022]
Abstract
OBJECT To investigate the effects of sulforaphane (SFN) and vitamin E (VE) on spatial learning and memory ability and oxidative damage of hippocampus in lead-exposed mice at lactation. METHODS A total of 18 adult Kunming mice, all 12 female mice were divided into two groups by body weight randomly, 10 mice drank water containing 0.2% lead acetate at lactation, the other 2 mice drank lead free deionized water named as the normal group. Then, they were mated at a 1:2 ratio of male to female. After weaning, the pups were divided into 5 groups by weight randomly (10 each group): normal saline (NS) group, corn oil (CO) group, SFN group, VE group and SFN+VE group. They were subject to gavage daily for four weeks. Gavage doses of SFN and VE were 25mg/kg and 30 IU/kg respectively. Meanwhile, 10 pups of the normal group were selected randomly as the control (C) group. The C group was normally raised for 4 weeks. The spatial learning and memory ability of them were evaluated by the Morris water maze test, and the lead level in the blood was determined by polarography. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in hippocampus were measured by the kits. RESULTS Compared with the NS and CO groups, the lead level in the blood of SFN and SFN+VE group had a significant decrease. In water maze test, the mice treated with SFN or/and VE performed better than mice of the NS and CO groups. In addition, a remarkable decrease in MDA level was found in mice treated with SFN or/and VE than those in NS and CO groups. What's more, there was no statistical distinction of SOD activity in SFN group than that of NS group. SOD activity significantly increased was observed in VE and SFN+VE groups than that of CO group. CONCLUSION Sulforaphane and vitamin E could ameliorate cognitive decline and oxidative damage in pups with lead exposure at lactation from maternal milk.
Collapse
Affiliation(s)
- Beibei Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaohuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yanyan Yin
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hualei Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huina Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Sex-specific effects of developmental lead exposure on the immune-neuroendocrine network. Toxicol Appl Pharmacol 2017; 334:142-157. [DOI: 10.1016/j.taap.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/28/2017] [Accepted: 09/09/2017] [Indexed: 01/22/2023]
|
20
|
Both physiology and epidemiology support zero tolerable blood lead levels. Toxicol Lett 2017; 280:232-237. [DOI: 10.1016/j.toxlet.2017.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/17/2017] [Accepted: 08/14/2017] [Indexed: 11/24/2022]
|
21
|
Sobin C, Flores-Montoya MG, Alvarez JM. Early chronic low-level Pb exposure alters global exploratory behaviors but does not impair spatial and object memory retrieval in an object-in-place task in pre-adolescent C57BL/6J mice. Neurotoxicol Teratol 2017; 61:104-114. [PMID: 28089843 DOI: 10.1016/j.ntt.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
The mechanisms by which early chronic low-level lead (Pb) exposure disrupts the developing brain are not yet understood. Rodent models have provided promising results however behavioral tests sensitive to effects at lowest levels of exposure during development are needed. Preadolescent animals (N=52) exposed to low and higher levels of Pb via lactation from birth to PND 28 completed the Object-in-Place Task of visual spatial and visual object memory retrieval (at PND 28). Generalized linear mixed models were used, controlling for sex and litter as a random effect. As compared with controls, global vertical exploratory behavior (rearing) markedly increased during memory retrieval. The findings suggested that early chronic Pb exposure altered the development of critical exploratory functions needed for learning and survival. Behaviors exhibited in novel spatial and novel object zone perimeters suggested that the Object-in-Place task is a valid measure of visual spatial and visual object memory in pre-adolescent C57BL/6J mice. Additional studies are needed to understand how early chronic low-level lead exposure disrupts the trajectory and possible linkages of critical exploratory and perceptual systems during development.
Collapse
Affiliation(s)
- Christina Sobin
- Department of Public Health Sciences, College of Health Sciences, University of Texas, El Paso, USA; Border Biomedical Research Center, Toxicology Core, University of Texas, El Paso, USA; Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Mayra Gisel Flores-Montoya
- Border Biomedical Research Center, Toxicology Core, University of Texas, El Paso, USA; Department of Psychology, University of Texas, El Paso, USA
| | - Juan Manuel Alvarez
- Department of Public Health Sciences, College of Health Sciences, University of Texas, El Paso, USA; Border Biomedical Research Center, Toxicology Core, University of Texas, El Paso, USA
| |
Collapse
|