1
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Chen Y, Zhao J, Ye H, Ceylan-Isik AF, Zhang B, Liu Q, Yang Y, Dong M, Luo B, Ren J. Beneficial impact of cardiac heavy metal scavenger metallothionein in sepsis-provoked cardiac anomalies dependent upon regulation of endoplasmic reticulum stress and ferroptosis but not autophagy. Life Sci 2024; 336:122291. [PMID: 38030060 DOI: 10.1016/j.lfs.2023.122291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
AIMS Sepsis represents a profound proinflammatory response with a major contribution from oxidative injury. Here we evaluated possible impact of heavy metal scavenger metallothionein (MT) on endotoxin lipopolysaccharide (LPS)-induced oxidative stress, endoplasmic reticulum (ER) stress, autophagy, and ferroptosis enroute to myocardial injury along with interplay among these stress domains. MATERIALS AND METHODS Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ responses were monitored in myocardia from WT and transgenic mice with cardiac-selective MT overexpression challenged with LPS. Oxidative stress, stress signaling (p38, ERK, JNK), ER stress, autophagy, and ferroptosis were scrutinized. KEY FINDINGS RNAseq analysis revealed discrepant patterns in ferroptosis between LPS-exposed and normal murine hearts. LPS insult enlarged LV end systolic dimension, suppressed fractional shortening, ejection fraction, maximal velocity of shortening/relengthening and peak shortening, as well as elongated relengthening along with dampened intracellular Ca2+ release and reuptake. In addition, LPS triggered oxidative stress (lowered glutathione/glutathione disulfide ratio and O2- production), activation of stress cascades (p38, ERK, JNK), ER stress (GRP78, PERK, Gadd153, and IRE1α), inflammation (TNFα and iNOS), unchecked autophagy (LCB3, Beclin-1 and Atg7), ferroptosis (GPx4 and SLC7A11) and interstitial fibrosis. Although MT overexpression itself did not reveal response on cardiac function, it attenuated or mitigated LPS-evoked alterations in echocardiographic, cardiomyocyte contractile and intracellular Ca2+ characteristics, O2- production, TNFα level, ER stress and ferroptosis (without affecting autophagy, elevated AMP/ATP ratio, and iNOS). In vitro evidence revealed beneficial effects of suppression of oxidative stress, ER stress and ferroptosis against LPS-elicited myocardial anomalies. SIGNIFICANCE These data strongly support the therapeutic promises of MT and ferroptosis in septic cardiomyopathy.
Collapse
Affiliation(s)
- Yuanzhuo Chen
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jian Zhao
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China
| | - Asli F Ceylan-Isik
- Ankara Yildirim Beyazit University, Faculty of Medicine, Department of Medical Pharmacology, Bilkent, Ankara, Turkey
| | - Bingfang Zhang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bijun Luo
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
3
|
Al-Awaida W, Goh KW, Al-Ameer HJ, Gushchina YS, Torshin VI, Severin AE, Al Bawareed O, Srour B, Al Farraj J, Hamad I. Assessing the Protective Role of Epigallocatechin Gallate (EGCG) against Water-Pipe Smoke-Induced Toxicity: A Comparative Study on Gene Expression and Histopathology. Molecules 2023; 28:7502. [PMID: 38005223 PMCID: PMC10673035 DOI: 10.3390/molecules28227502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to water-pipe smoking, whether flavored or unflavored, has been shown to instigate inflammation and oxidative stress in BALB/c mice. This consequently results in alterations in the expression of inflammatory markers and antioxidant genes. This study aimed to scrutinize the impact of Epigallocatechin gallate (EGCG)-a key active component of green tea-on inflammation and oxidative stress in BALB/c mice exposed to water-pipe smoke. The experimental setup included a control group, a flavored water-pipe smoke (FWP) group, an unflavored water-pipe smoke (UFWP) group, and EGCG-treated flavored and unflavored groups (FWP + EGCG and UFWP + EGCG). Expression levels of IL-6, IL1B, TNF-α, CAT, GPXI, MT-I, MT-II, SOD-I, SOD-II, and SOD-III were evaluated in lung, liver, and kidney tissues. Histopathological changes were also assessed. The findings revealed that the EGCG-treated groups manifested a significant decline in the expression of inflammatory markers and antioxidant genes compared to the FWP and UFWP groups. This insinuates that EGCG holds the capacity to alleviate the damaging effects of water-pipe smoke-induced inflammation and oxidative stress. Moreover, enhancements in histopathological features were observed in the EGCG-treated groups, signifying a protective effect against tissue damage induced by water-pipe smoking. These results underscore the potential of EGCG as a protective agent against the adverse effects of water-pipe smoking. By curbing inflammation and oxidative stress, EGCG may aid in the prevention or mitigation of smoking-associated diseases.
Collapse
Affiliation(s)
- Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba 11821, Jordan; (B.S.); (J.A.F.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia;
| | - Hamzeh J. Al-Ameer
- Department of Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman 19328, Jordan;
| | - Yulia Sh. Gushchina
- Department of General and Clinical Pharmacology, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia;
| | - Vladimir I. Torshin
- Department of Normal Physiology, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (V.I.T.); (A.E.S.); (O.A.B.)
| | - Alexandr E. Severin
- Department of Normal Physiology, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (V.I.T.); (A.E.S.); (O.A.B.)
| | - Omar Al Bawareed
- Department of Normal Physiology, Medical Institute, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (V.I.T.); (A.E.S.); (O.A.B.)
| | - Besan Srour
- Department of Biology and Biotechnology, American University of Madaba, Madaba 11821, Jordan; (B.S.); (J.A.F.)
| | - Jude Al Farraj
- Department of Biology and Biotechnology, American University of Madaba, Madaba 11821, Jordan; (B.S.); (J.A.F.)
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan;
| |
Collapse
|
4
|
Bi Y, Yang GH, Guo ZZ, Cai W, Chen SB, Zhou X, Li YM. Chronic high‑salt intake induces cardiomyocyte autophagic vacuolization during left ventricular maladaptive remodeling in spontaneously hypertensive rats. Exp Ther Med 2023; 25:148. [PMID: 36911373 PMCID: PMC9995711 DOI: 10.3892/etm.2023.11847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
The role of autophagy in high-salt (HS) intake associated hypertensive left ventricular (LV) remodeling remains unclear. The present study investigated the LV autophagic change and its association with the hypertensive LV remodeling induced by chronic HS intake in spontaneously hypertensive rats (SHR). Wistar Kyoto (WKY) rats and SHR were fed low-salt (LS; 0.5% NaCl) and HS (8.0% NaCl) diets and were subjected to invasive LV hemodynamic analysis after 8, 12 and 16 weeks of dietary intervention. Reverse transcription-quantitative PCR and western blot analysis were performed to investigate the expression of autophagy-associated key components. The LV morphologic staining was performed at the end of the study. The rat H9c2 ventricular myoblast cell-associated experiments were performed to explore the mechanism of HS induced autophagic change. A global autophagy-associated key component, as well as increased cardiomyocyte autophagic vacuolization, was observed after 12 weeks of HS intake. During this period, the heart from HS-diet-fed SHR exhibited a transition from compensated LV hypertrophy to decompensation, as shown by progressive impairment of LV function and interstitial fibrosis. Myocardial extracellular [Na+] and the expression of tonicity-responsive enhancer binding protein (TonEBP) was significantly increased in HS-fed rats, indicating myocardial interstitial hypertonicity by chronic HS intake. The global autophagic change and overt deterioration of LV function were not observed in LS-fed SHR and HS-fed WKY rats. The study of rat H9c2 cardiomyocytes demonstrated a cytosolic [Na+] elevation-mediated, reactive oxygen species-dependent the autophagic change occurred when exposed to an increased extracellular [Na+]. The present findings demonstrated that a myocardial autophagic change participates in the maladaptive LV remodeling induced by chronic HS intake in SHR, which provides a possible target for future intervention studies on HS-induced hypertensive LV remodeling.
Collapse
Affiliation(s)
- Ying Bi
- Department of Internal Medicine, Tianjin Corps Hospital of The Chinese People's Armed Police Forces, Tianjin 300163, P.R. China.,Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Guo-Hong Yang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Zhao-Zeng Guo
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Wei Cai
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Shao-Bo Chen
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Xin Zhou
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China.,Department of Cardiovascular Diseases, General Hospital Tianjin Medical University, Tianjin 300052, P.R. China
| | - Yu-Ming Li
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of The Chinese People's Armed Police Forces, Tianjin 300162, P.R. China.,Department of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin 300457, P.R. China
| |
Collapse
|
5
|
Ibarrola DA, Arrua W, Gonzalez JE, Soverina Escobar MS, Centurión J, Campuzano Benitez AM, Ovando Soria FM, Rodas González EI, Arrúa KG, Acevedo Barrios MB, Heinichen OY, Montalbetti Y, Campuzano-Bublitz MA, Kennedy ML, Figueredo Thiel SJ, Alvarenga NL, Hellión-Ibarrola MC. The antihypertensive and diuretic effect of crude root extract and saponins from Solanum sisymbriifolium Lam., in L-NAME-induced hypertension in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115605. [PMID: 35973627 DOI: 10.1016/j.jep.2022.115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum sisymbriifolium Lam., is used in Paraguayan folk medicine claiming antihypertensive and diuretic properties. AIM OF THE STUDY This study aimed to determine the influence of chronic oral administration of the crude root extract and saponins obtained from S. sisymbriifolium Lam., on the blood pressure of male and female rats with hypertension induced by L-NAME, and its consequences on diuresis, the body weight, blood glucose, and level of serum parameters of liver and kidney functionality. MATERIALS AND METHODS Wistar rats were randomly divided into seven male, and seven female groups (8 animals each), which received as 6-week pretreatment, 0.9% saline solution (two groups; 0.1mL/10 g of b.w.), L-arginine (100.0 mg/kg/day), enalapril (15.0 mg/kg/day), crude extract (CESs 100.0 mg/kg/day), and saponin purified fraction (1.0, and 10.0 mg/kg/day), and treated with L-NAME (20 mg/kg/day/i.p.) twice, 1, and 6 h after pre-treatment. The animals' body weight, glycemia, and blood pressure were recorded weekly, while serum, hepatic, renal, and histological parameters were analyzed at the end of 6-week of treatment. RESULTS A protective effect of CESs (100.0 mg/kg/day), and saponins (1.0, and 10.0 mg/kg/day) against hypertension induced by L-NAME was verified in the systolic, diastolic, and mean blood pressure values, which were significantly lower than the positive L-NAME-hypertensive control group (male and female) at the end of the 6-week treatment. Also, pretreatment with enalapril (15.0 mg/kg/day) induced an efficient protective activity, which validates the method used. Likewise, the volume of urine, creatinine, uric acid, urea, and electrolyte excretion was enhanced at the end of 6-week of treatment in concordance with the reduction in serum level of the same parameters, compatible with the improvement of the diuretic activity. The glycemia, body weight, heart rate, and functional hepato-renal parameters were not modified after a 6-week of treatment, in comparison to the control group, indicating relatively acceptable harmless properties of CESs and saponins. Interestingly, the HDL level in females was increased in contrast to male rats by chronic saponins treatment when compared with the negative control group. CONCLUSIONS It can be concluded that either the increment in blood pressure (systolic, diastolic, and median) or cardiorenal remodeling effects in male and female rats submitted to L-NAME-induced hypertensive condition, were prevented and well-preserved without a significant variation during a period of 6-week of pretreatment with CESs and saponins pretreatments. Likewise, an important diuretic effect was revealed after this period of treatment.
Collapse
Affiliation(s)
- D A Ibarrola
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay.
| | - W Arrua
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - J E Gonzalez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M S Soverina Escobar
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - J Centurión
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - A M Campuzano Benitez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - F M Ovando Soria
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - E I Rodas González
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - K G Arrúa
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M B Acevedo Barrios
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - O Y Heinichen
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - Y Montalbetti
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M A Campuzano-Bublitz
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M L Kennedy
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - S J Figueredo Thiel
- Departamento de Patología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - N L Alvarenga
- Departamento de Fitoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M C Hellión-Ibarrola
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| |
Collapse
|
6
|
Jing H, Xie R, Bai Y, Duan Y, Sun C, Wang Y, Cao R, Ling Z, Qu X. The Mechanism Actions of Astragaloside IV Prevents the Progression of Hypertensive Heart Disease Based on Network Pharmacology and Experimental Pharmacology. Front Pharmacol 2021; 12:755653. [PMID: 34803698 PMCID: PMC8602690 DOI: 10.3389/fphar.2021.755653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Astragaloside IV (AS-IV) has been used to treat cardiovascular disease. However, whether AS-IV exerts a protective effect against hypertensive heart disease has not been investigated. This study aimed to investigate the antihypertensive and cardioprotective effects of AS-IV on L-NAME-induced hypertensive rats via network pharmacology and experimental pharmacology. The network pharmacology and bioinformatics analyses were performed to obtain the potential targets of AS-IV and hypertensive heart disease. The rat hypertension model was established by administrated 50 mg/kg/day of L-NAME for 5 weeks. Meanwhile, hypertension rats were intragastrically administrated with vehicle or AS-IV or fosinopril for 5 weeks. Cardiovascular parameters (systolic blood pressure, diastolic blood pressure, mean arterial pressure, heart rates, and body weight), cardiac function parameters (LVEDd, LVEDs, and fractional shortening), cardiac marker enzymes (creatine kinase, CK-MB, and lactate dehydrogenase), cardiac hypertrophy markers (atrial natriuretic peptide and brain natriuretic peptide), endothelial function biomarkers (nitric oxide and eNOS), inflammation biomarkers (IL-6 and TNF-α) and oxidative stress biomarkers (SOD, MDA, and GSH) were measured and cardiac tissue histology performed. Network pharmacological analysis screened the top 20 key genes in the treatment of hypertensive heart disease treated with AS-IV. Besides, AS-IV exerted a beneficial effect on cardiovascular and cardiac function parameters. Moreover, AS-IV alleviated cardiac hypertrophy via down-regulating the expression of ANP and BNP and improved histopathology changes of cardiac tissue. AS-IV improved endothelial function via the up-regulation of eNOS expression, alleviated oxidative stress via increasing antioxidant enzymes activities, and inhibited cardiac inflammation via down-regulating IL-6 and TNF-α expression. Our findings suggested that AS-IV is a potential therapeutic drug to improve L-NAME-induced hypertensive heart disease partly mediated via modulation of eNOS and oxidative stress.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongsheng Xie
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Bai
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuchen Duan
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chongyang Sun
- Department of CT, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Wang
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongyi Cao
- Blood Transfusion Department, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zaisheng Ling
- Department of CT, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiovascular, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Hu H, Chen W, Tao Z, Li Z, He J, Peng Y, Ma J, Wen H, Li J, Wang X, Zhong M. Cyclosporin A alleviates trophoblast apoptosis and senescence by promoting autophagy in preeclampsia. Placenta 2021; 117:95-108. [PMID: 34785431 DOI: 10.1016/j.placenta.2021.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Abnormal extravillous trophoblast (EVT) function is closely related to preeclampsia (PE) and may be caused by inadequate autophagy, apoptosis, and senescence. Cyclosporin A (CsA) is an effective immunosuppressant that has been reported to stimulate autophagy and exert benign biological effects on EVTs. Therefore, we hypothesized that CsA may display therapeutic efficacy against PE by activating autophagy. METHODS We established the nitro-l-arginine methyl ester (l-NAME)-induced preeclamptic mice model and a hypoxia-reoxygenation (H/R) model in vitro. The effects of CsA on autophagy were evaluated by western blotting (WB). The effects of CsA on apoptosis were analyzed by Hematoxylin-eosin (H&E) staining, cell apoptosis assay and WB. Senescence-associated β-galactosidase (SA-β-gal) staining, RT-qPCR and WB were used to examine the senescence level. RT-qPCR were used to detect the senescence-associated secretory phenotype (SASP) level. DCFH-DA fluorescent probe, dihydroethidium (DHE) staining and mitochondrial membrane potential (ΔΨm) were used to detect senescence-associated mitochondrial dysfunction (SAMD). RESULTS CsA alleviated PE-like symptoms and reduced placental necrosis and senescence in mice injected with l-NAME. CsA ameliorated placental SASP and SAMD level induced by l-NAME. CsA also upregulated the expression of autophagic proteins in mouse placentas disrupted using l-NAME. In vitro, we found that CsA reversed H/R-induced apoptosis and senescence, as well as decreasing SASP and SAMD levels and upregulating autophagic proteins levels. Notably, 3-methyladenine (3-MA), an early phase inhibitor of autophagosome formation, abolished the protective effects of CsA against H/R. DISCUSSION CsA may display some therapeutic effects against PE by activating autophagy in vivo and in vitro.
Collapse
Affiliation(s)
- Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zixin Tao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiju Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiexing He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - You Peng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiting Wen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xuefei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Skalny AV, Kopylov PY, Paoliello MMB, Chang JS, Aschner M, Bobrovnitsky IP, Chao JCJ, Aaseth J, Chebotarev SN, Tinkov AA. Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158195. [PMID: 34360489 PMCID: PMC8345938 DOI: 10.3390/ijerph18158195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
The objective of the present study was to evaluate hair toxic metal levels in patients with obesity and/or coronary heart disease (CHD). Following a 2 × 2 factorial design, subjects without CHD were grouped into normal weight control (n = 123) and obese groups (n = 140). Patients suffering from CHD were divided into normal weight (n = 180) and obese CHD subjects (n = 240). Hair Al, As, Cd, Hg, Ni, and Pb levels were evaluated using inductively-coupled plasma mass-spectrometry. The data demonstrate that hair Al and Hg levels were higher in obese subjects as compared to normal weight controls. Normal weight CHD patients were characterized by significantly higher hair Al, As, Cd, and Pb levels when compared to healthy subjects. The highest hair Al, As, and Pb levels were observed in obese CHD patients, significantly exceeding the respective values in other groups. Factorial analysis revealed significant influence of factorial interaction (CHD*obesity) only for hair Pb content. Given the role of obesity as a risk factor for CHD, it is proposed that increased toxic metal accumulation in obesity may promote further development of cardiovascular diseases.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (A.V.S.); (P.Y.K.)
- Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia;
| | - Philippe Yu Kopylov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (A.V.S.); (P.Y.K.)
| | - Monica M. B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (M.M.B.P.); (M.A.)
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina 86057-970, Brazil
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (J.-S.C.); (J.C.-J.C.)
- College of Public Health, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (M.M.B.P.); (M.A.)
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
| | - Igor P. Bobrovnitsky
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Centre for Strategic Planning of FMBA of Russia, 123182 Moscow, Russia
| | - Jane C.-J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (J.-S.C.); (J.C.-J.C.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Jan Aaseth
- College of Public Health, Taipei Medical University, Taipei 110, Taiwan;
- Research Department, Innlandet Hospital Trust, 2380 Brumunddal, Norway
| | - Sergei N. Chebotarev
- Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia;
| | - Alexey A. Tinkov
- College of Public Health, Taipei Medical University, Taipei 110, Taiwan;
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Correspondence: ; Tel.: +7-961-937-8198
| |
Collapse
|
9
|
New drug targets for hypertension: A literature review. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166037. [PMID: 33309796 DOI: 10.1016/j.bbadis.2020.166037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the most prevalent cardiovascular diseases worldwide. However, in the population of resistant hypertension, blood pressure is difficult to control effectively. Moreover, antihypertensive drugs may have adverse effect currently. Hence, new therapeutic targets and treatments are needed to uncovered and exploited to control hypertension and its comorbidities. In the past, classical drug targets, such as the aldosterone receptor, aldosterone synthase, and ACE2/angiotensin 1-7/Mas receptor axis, have been investigated. Recently, vaccines and drugs targeting the gastrointestinal microbiome, which represent drug classes, have also been investigated for the management of blood pressure. In this review, we summarized current knowledge on classical and new drug targets and discussed the potential utility of new drugs in the treatment of hypertension.
Collapse
|
10
|
Morphological and Functional Characteristics of Animal Models of Myocardial Fibrosis Induced by Pressure Overload. Int J Hypertens 2020; 2020:3014693. [PMID: 32099670 PMCID: PMC7013318 DOI: 10.1155/2020/3014693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial fibrosis is characterized by excessive deposition of myocardial interstitial collagen, abnormal distribution, and excessive proliferation of fibroblasts. According to the researches in recent years, myocardial fibrosis, as the pathological basis of various cardiovascular diseases, has been proven to be a core determinant in ventricular remodeling. Pressure load is one of the causes of myocardial fibrosis. In experimental models of pressure-overload-induced myocardial fibrosis, significant increase in left ventricular parameters such as interventricular septal thickness and left ventricular posterior wall thickness and the decrease of ejection fraction are some of the manifestations of cardiac damage. These morphological and functional changes have a serious impact on the maintenance of physiological functions. Therefore, establishing a suitable myocardial fibrosis model is the basis of its pathogenesis research. This paper will discuss the methods of establishing myocardial fibrosis model and compare the advantages and disadvantages of the models in order to provide a strong basis for establishing a myocardial fibrosis model.
Collapse
|
11
|
Xue M, Joo YA, Li S, Niu C, Chen G, Yi X, Liang Y, Chen Z, Shen Y, Ye W, Cai L, Wang X, Jin L, Cong W. Metallothionein Protects the Heart Against Myocardial Infarction via the mTORC2/FoxO3a/Bim Pathway. Antioxid Redox Signal 2019; 31:403-419. [PMID: 30860395 DOI: 10.1089/ars.2018.7597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aims: Cardiac-specific overexpression of metallothionein (MT) has been shown to be beneficial in ischemic heart disease, but the detailed mechanisms through which MT protects against myocardial infarction (MI) remain unknown. This study assessed the involvement of the mTORC2/FoxO3a/Bim pathway in the cardioprotective effects of MT. Results: MI was induced in wild-type (FVB) mice and in cardiac-specific MT-overexpressing transgenic (MT-TG) mice by ligation of the left anterior descending (LAD) coronary artery. Cardiac function was better; infarct size and cardiomyocyte apoptosis were lower in MT-TG mice than in FVB mice after MI. Moreover, MT-TG mice exhibited better phenotypes after LAD ligation than FVB mice treated with Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP; a reactive oxygen species [ROS] scavenger) and cardiac-specific catalase-overexpressing transgenic (CAT-TG) mice, which showed the same ROS levels as MT-TG mice after MI. Activation of mechanistic target of rapamycin complex 2 (mTORC2) was essential for the cardioprotective effects of MT against MI. In addition, MT attenuated the downregulation of phospho-FoxO3a after MI, inhibiting the expression of the apoptosis-associated gene Bim, located downstream of FoxO3a, and reducing the level of apoptosis after MI. To mimic ischemic-injured FVB and MT-TG mice in vitro, H9c2 and MT-overexpressing H9c2 (H9c2MT7) cardiomyocytes were subjected to oxygen and glucose deprivation, with the results being consistent with those obtained in vivo. Innovation and Conclusion: The cardioprotective effects of MT against MI are not entirely dependent upon its ability to eliminate ROS. Rather, MT overexpression mostly protects against MI through the mTORC2-FoxO3a-Bim pathway.
Collapse
Affiliation(s)
- Mei Xue
- 1 Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Young A Joo
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Santie Li
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chao Niu
- 3 The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Gen Chen
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinchu Yi
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yangzhi Liang
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhiwei Chen
- 3 The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingjie Shen
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weijian Ye
- 3 The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lu Cai
- 4 Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, Kentucky
| | - Xu Wang
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Litai Jin
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weitao Cong
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
12
|
Yang L, Ma J, Tan Y, Zheng Q, Dong M, Guo W, Xiong L, Yang J, Ren J. Cardiac-specific overexpression of metallothionein attenuates L-NAME-induced myocardial contractile anomalies and apoptosis. J Cell Mol Med 2019; 23:4640-4652. [PMID: 31104354 PMCID: PMC6584723 DOI: 10.1111/jcmm.14375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 01/21/2023] Open
Abstract
Hypertension contributes to the high cardiac morbidity and mortality. Although oxidative stress plays an essential role in hypertensive heart diseases, the mechanism remains elusive. Transgenic mice with cardiac overexpression of metallothionein, a heavy metal‐binding scavenger, were challenged with NG‐nitro‐L‐arginine methyl ester (L‐NAME) for 14 days prior to measurement of myocardial contractile and intracellular Ca2+ anomalies as well as cell signalling mechanisms using Western blot and immunofluorescence analysis. L‐NAME challenge elicited hypertension, macrophage infiltration, oxidative stress, inflammation and cardiac dysfunction manifested as increased proinflammatory macrophage marker F4/80, interleukin‐1β (IL‐1β), intracellular O2- production, LV end systolic and diastolic diameters as well as depressed fractional shortening. L‐NAME treatment reduced mitochondrial membrane potential (MMP), impaired cardiomyocyte contractile and intracellular Ca2+ properties as evidenced by suppressed peak shortening, maximal velocity of shortening/relengthening, rise in intracellular Ca2+, along with elevated baseline and peak intracellular Ca2+. These unfavourable mechanical changes and decreased MMP (except blood pressure and macrophage infiltration) were alleviated by overexpression of metallothionein. Furthermore, the apoptosis markers including BAD, Bax, Caspase 9, Caspase 12 and cleaved Caspase 3 were up‐regulated while the anti‐apoptotic marker Bcl‐2 was decreased by L‐NAME treatment. Metallothionein transgene reversed L‐NAME‐induced changes in Bax, Bcl‐2, BAD phosphorylation, Caspase 9, Caspase 12 and cleaved Caspase 3. Our results suggest that metallothionein protects against L‐NAME‐induced myocardial contractile anomalies in part through inhibition of apoptosis.
Collapse
Affiliation(s)
- Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming
| | - Jipeng Ma
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming.,Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Tan
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming.,Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Maolong Dong
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming.,Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Guo
- Department of Animal Sciences, University of Wyoming, Laramie, Wyoming
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
13
|
Kumar S, Wang G, Liu W, Ding W, Dong M, Zheng N, Ye H, Liu J. Hypoxia-Induced Mitogenic Factor Promotes Cardiac Hypertrophy via Calcium-Dependent and Hypoxia-Inducible Factor-1α Mechanisms. Hypertension 2018; 72:331-342. [PMID: 29891648 DOI: 10.1161/hypertensionaha.118.10845] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
HIMF (hypoxia-induced mitogenic factor/found in inflammatory zone 1/resistin like α) is a secretory and cytokine-like protein and serves as a critical stimulator of hypoxia-induced pulmonary hypertension. With a role for HIMF in heart disease unknown, we explored the possible roles for HIMF in cardiac hypertrophy by overexpressing and knocking down HIMF in cardiomyocytes and characterizing HIMF gene (himf) knockout mice. We found that HIMF mRNA and protein levels were upregulated in phenylephrine-stimulated cardiomyocyte hypertrophy and our mouse model of transverse aortic constriction-induced cardiac hypertrophy, as well as in human hearts with dilated cardiomyopathy. Furthermore, HIMF overexpression could induce cardiomyocyte hypertrophy, as characterized by elevated protein expression of hypertrophic biomarkers (ANP [atrial natriuretic peptide] and β-MHC [myosin heavy chain-β]) and increased cell-surface area compared with controls. Conversely, HIMF knockdown prevented phenylephrine-induced cardiomyocyte hypertrophy and himf ablation in knockout mice significantly attenuated transverse aortic constriction-induced hypertrophic remodeling and cardiac dysfunction. HIMF overexpression increased the cytosolic Ca2+ concentration and activated the CaN-NFAT (calcineurin-nuclear factor of activated T cell) and MAPK (mitogen-activated protein kinase) pathways; this effect could be prevented by reducing cytosolic Ca2+ concentration with L-type Ca2+ channel blocker nifedipine or inhibiting the CaSR (Ca2+ sensing receptor) with Calhex 231. Furthermore, HIMF overexpression increased HIF-1α (hypoxia-inducible factor) expression in neonatal rat ventricular myocytes, and HIMF knockout inhibited HIF-1α upregulation in transverse aortic constriction mice. Knockdown of HIF-1α attenuated HIMF-induced cardiomyocyte hypertrophy. In conclusion, HIMF has a critical role in the development of cardiac hypertrophy, and targeting HIMF may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Santosh Kumar
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Gang Wang
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Wenjuan Liu
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Wenwen Ding
- Institute for Cancer Prevention and Treatment, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.)
| | - Ming Dong
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Na Zheng
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Hongyu Ye
- Department of Cardiothoracic Surgery, Zhongshan People's Hospital, China (H.Y.)
| | - Jie Liu
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| |
Collapse
|
14
|
An Intervention Target for Myocardial Fibrosis: Autophagy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6215916. [PMID: 29850542 PMCID: PMC5911341 DOI: 10.1155/2018/6215916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis (MF) is the result of metabolic imbalance of collagen synthesis and metabolism, which is widespread in various cardiovascular diseases. Autophagy is a lysosomal degradation pathway which is highly conserved. In recent years, research on autophagy has been increasing and the researchers have also become cumulatively aware of the specified association between autophagy and MF. This review highlights the role of autophagy in MF and the potential effects through the administration of medicine.
Collapse
|
15
|
Macroautophagy and Chaperone-Mediated Autophagy in Heart Failure: The Known and the Unknown. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8602041. [PMID: 29576856 PMCID: PMC5822756 DOI: 10.1155/2018/8602041] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/22/2017] [Indexed: 02/04/2023]
Abstract
Cardiac diseases including hypertrophic and ischemic cardiomyopathies are increasingly being reported to accumulate misfolded proteins and damaged organelles. These findings have led to an increasing interest in protein degradation pathways, like autophagy, which are essential not only for normal protein turnover but also in the removal of misfolded and damaged proteins. Emerging evidence suggests a previously unprecedented role for autophagic processes in cardiac physiology and pathology. This review focuses on the major types of autophagic processes, the genes and protein complexes involved, and their regulation. It discusses the key similarities and differences between macroautophagy, chaperone-mediated autophagy, and selective mitophagy structures and functions. The genetic models available to study loss and gain of macroautophagy, mitophagy, and CMA are discussed. It defines the markers of autophagic processes, methods for measuring autophagic activities, and their interpretations. This review then summarizes the major studies of autophagy in the heart and their contribution to cardiac pathology. Some reports suggest macroautophagy imparts cardioprotection from heart failure pathology. Meanwhile, other studies find macroautophagy activation may be detrimental in cardiac pathology. An improved understanding of autophagic processes and their regulation may lead to a new genre of treatments for cardiac diseases.
Collapse
|
16
|
Pei Z, Deng Q, Babcock SA, He EY, Ren J, Zhang Y. Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: Role of autophagy and ER stress. Toxicol Lett 2017; 284:10-20. [PMID: 29174818 DOI: 10.1016/j.toxlet.2017.11.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023]
Abstract
Diabetes mellitus leads to oxidative stress and contractile dysfunction in the heart. Although several rationales have been speculated, the precise mechanism behind diabetic cardiomyopathy remains elusive. This study was designed to assess the role of inhibition of advanced glycation endproducts (AGE) in streptozotocin (STZ)-induced diabetic cardiac dysfunction. Cardiac contractile function was assessed in normal C57BL/6 and STZ (200mg/kg, single injection and maintained for 2 wks)-induced diabetic mice treated with or without the AGE inhibitor aminoguanidine (50mg/kg/d in drinking water) for 2 weeks using echocardiography and IonOptix MyoCam techniques. Diabetes compromised cardiac contractile function shown as reduced fractional shortening and ejection fraction, enlarged left ventricular end systolic/diastolic diameters, decreased peak shortening, maximal velocity of shortening/relengthening, prolonged shortening and relengthening duration as well as impaired intracellular Ca2+ homeostasis, the effects of which were alleviated or reversed by aminoguanidine treatment. Diabetes also inhibited autophagy, increased ER stress and phosphorylation of pro-hypertrophic signaling molecules Akt and mTOR, the effect of which was reversed by aminoguanidine. In vitro study revealed that methylglyoxal-derived AGE (MG-AGE) incubation in isolated cardiomyocytes promoted oxidation of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) and production of superoxide, the effects of which were negated by the autophagy inducer rapamycin, the ER stress chaperone TUDCA or the antioxidant N-acetylcysteine. Taken together, these data revealed that inhibition of AGE formation rescues against experimental diabetes-induced cardiac remodeling and contractile dysfunction possible through regulation of autophagy and ER stress.
Collapse
Affiliation(s)
- Zhaohui Pei
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, China
| | - Qinqin Deng
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang, Jiangxi 330009, China
| | - Sara A Babcock
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Emily Y He
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 210032, China.
| | - Yingmei Zhang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 210032, China.
| |
Collapse
|
17
|
Bienvenu LA, Morgan J, Reichelt ME, Delbridge LM, Young MJ. Chronic in vivo nitric oxide deficiency impairs cardiac functional recovery after ischemia in female (but not male) mice. J Mol Cell Cardiol 2017; 112:8-15. [DOI: 10.1016/j.yjmcc.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022]
|
18
|
Jin S, Teng X, Xiao L, Xue H, Guo Q, Duan X, Chen Y, Wu Y. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway. Exp Biol Med (Maywood) 2017; 242:1831-1841. [PMID: 28971696 DOI: 10.1177/1535370217732325] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reductions in hydrogen sulfide (H2S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in Nω-nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dtmax and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and dysfunction. The cardioprotective effects of NaHS were counteracted by Gli which inhibited the Akt/eNOS/NO pathway. This suggests that the effects of hydrogen sulfide were mediated by the activation of the KATP channels. In conclusion, hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease via the activation of the Akt/eNOS/NO pathway, which was mediated by KATP channels. Impact statement 1. We found that H2S ameliorated L-NAME-induced cardiac remodeling and dysfunction, and played a protective role in L-NAME-induced hypertensive heart disease, which the existing studies have not reported. 2. H2S activated the Akt/eNOS/NO pathway, thereby playing a cardioprotective role in L-NAME-induced hypertensive heart disease. 3. The cardioprotective effect of H2S was mediated by ATP-sensitive potassium channels.
Collapse
Affiliation(s)
- Sheng Jin
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xu Teng
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Lin Xiao
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Hongmei Xue
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Qi Guo
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xiaocui Duan
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuhong Chen
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuming Wu
- 1 Department of Physiology, Hebei Medical University, Hebei 050017, China.,2 Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei 050017, China.,3 Key Laboratory of Vascular Medicine of Hebei Province, Hebei 050017, China
| |
Collapse
|
19
|
Zhang Y, Han L, Yang H, Pang J, Li P, Zhang G, Li F, Wang F. Bisphenol A affects cell viability involved in autophagy and apoptosis in goat testis sertoli cell. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:137-147. [PMID: 28846990 DOI: 10.1016/j.etap.2017.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) is shown to be the endocrine disruptor that induces reproductive dysfunction in male animals. In this study, we aim to probe the effects of BPA exposure on induction of autophagy in goat Sertoli Cells (gSCs), as well as the relationship between autophagy and apoptosis. Results indicated that exposure to BPA (100, 200, 300, 400, 500 and 600μM) decreased the cell viability in a concentration-dependent manner. Exposure of gSCs to 500μM BPA for 12h resulted in in vitro triggered loss of mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species (ROS) production. Apoptosis with an increase in Bax:Bcl-2 ratio and higher rates of autophagy, such as autophagosome formation and increased expression of autophagy-related markers were also induced in gSCs exposed to 500μM BPA. Furthermore, treatment with 350nM Rapamycin (Rap, autophagy activator) alleviated a decrease in cell viability, intracellular ROS production, and reduction of ΔΨm, as well as decreasing apoptosis. Collectively, our results indicated that gSCs viability was disrupted after BPA treatment through affecting ROS production, mitochondrial membrane potential and inducing autophagy/apoptosis.
Collapse
Affiliation(s)
- Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le Han
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peizhen Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengzhe Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
The Inhibitory Effect of WenxinKeli on H9C2 Cardiomyocytes Hypertrophy Induced by Angiotensin II through Regulating Autophagy Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7042872. [PMID: 28713489 PMCID: PMC5496123 DOI: 10.1155/2017/7042872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/02/2017] [Indexed: 01/25/2023]
Abstract
Objectives We investigated the role of cardiomyocyte autophagy and its regulatory mechanisms by WenxinKeli (WXKL) in cells subjected to hypertrophy. Methods H9C2 cardiomyocytes were divided into 8 groups. Cytoskeletal proteins as well as endogenously expressed autophagy marker proteins were studied by confocal imaging. Western blotting was used to assess the levels of light chain-3 (LC3) and mechanistic target of rapamycin (mTOR). The cell viability assay was used to detect the content of ATP. Flow cytometry was used to detect apoptotic cardiomyocytes. Results (1) Compared with the control group, the length and width of cells in the Angiotensin II (AngII) group were significantly increased, while those in the 3-methyladenine (3-MA) and the WXKL groups were decreased. (2) Compared with AngII group, the expression of LC3 II/I protein in the 3-MA and WXKL groups was downregulated, while the expression of mTOR protein was upregulated. (3) Compared with the AngII group, the cardiomyocytes in the WXKL group showed increased ATP and decreased apoptosis rate and number of autophagosome. Conclusions We propose a novel role of WXKL as a likely inhibitor of cardiac hypertrophy by regulation of pathological autophagy.
Collapse
|
21
|
Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6437467. [PMID: 28298952 PMCID: PMC5337354 DOI: 10.1155/2017/6437467] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus (DM) displays a high morbidity. The diabetic heart is susceptible to myocardial ischemia/reperfusion (MI/R) injury. Impaired activation of prosurvival pathways, endoplasmic reticulum (ER) stress, increased basal oxidative state, and decreased antioxidant defense and autophagy may render diabetic hearts more vulnerable to MI/R injury. Oxidative stress and mTOR signaling crucially regulate cardiometabolism, affecting MI/R injury under diabetes. Producing reactive oxygen species (ROS) and reactive nitrogen species (RNS), uncoupling nitric oxide synthase (NOS), and disturbing the mitochondrial quality control may be three major mechanisms of oxidative stress. mTOR signaling presents both cardioprotective and cardiotoxic effects on the diabetic heart, which interplays with oxidative stress directly or indirectly. Antihyperglycemic agent metformin and newly found free radicals scavengers, Sirt1 and CTRP9, may serve as promising pharmacological therapeutic targets. In this review, we will focus on the role of oxidative stress and mTOR signaling in the pathophysiology of MI/R injury in diabetes and discuss potential mechanisms and their interactions in an effort to provide some evidence for cardiometabolic targeted therapies for ischemic heart disease (IHD).
Collapse
|
22
|
Mammalian Metallothionein-2A and Oxidative Stress. Int J Mol Sci 2016; 17:ijms17091483. [PMID: 27608012 PMCID: PMC5037761 DOI: 10.3390/ijms17091483] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023] Open
Abstract
Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy.
Collapse
|
23
|
Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice. Mediators Inflamm 2016; 2016:7174127. [PMID: 27403038 PMCID: PMC4923606 DOI: 10.1155/2016/7174127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/25/2022] Open
Abstract
Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT(-/-))-mice (n = 8-10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT(-/-)-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2(-/-)-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT(-/-)-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2(-/-)-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling.
Collapse
|
24
|
Wiersma M, Henning RH, Brundel BJJM. Derailed Proteostasis as a Determinant of Cardiac Aging. Can J Cardiol 2016; 32:1166.e11-20. [PMID: 27345610 DOI: 10.1016/j.cjca.2016.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/12/2023] Open
Abstract
Age comprises the single most important risk factor for cardiac disease development. The incidence and prevalence of cardiac diseases, which represents the main cause of death worldwide, will increase even more because of the aging population. A hallmark of aging is that it is accompanied by a gradual derailment of proteostasis (eg, the homeostasis of protein synthesis, folding, assembly, trafficking, function, and degradation). Loss of proteostasis is highly relevant to cardiomyocytes, because they are postmitotic cells and therefore not constantly replenished by proliferation. The derailment of proteostasis during aging is thus an important factor that preconditions for the development of age-related cardiac diseases, such as atrial fibrillation. In turn, frailty of proteostasis in aging cardiomyocytes is exemplified by its accelerated derailment in multiple cardiac diseases. Here, we review 2 major components of the proteostasis network, the stress-responsive and protein degradation pathways, in healthy and aged cardiomyocytes. Furthermore, we discuss the relation between derailment of proteostasis and age-related cardiac diseases, including atrial fibrillation. Finally, we introduce novel therapeutic targets that might possibly attenuate cardiac aging and thus limit cardiac disease progression.
Collapse
Affiliation(s)
- Marit Wiersma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Ren J, Xu X, Wang Q, Ren SY, Dong M, Zhang Y. Permissive role of AMPK and autophagy in adiponectin deficiency-accentuated myocardial injury and inflammation in endotoxemia. J Mol Cell Cardiol 2016; 93:18-31. [PMID: 26906634 DOI: 10.1016/j.yjmcc.2016.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Adiponectin (APN), an adipose-derived adipokine, alleviates lipopolysaccharide (LPS)-induced injury in multiple organs including hearts although the underlying mechanism in endotoxemia remains elusive. This study was designed to examine the role of adiponectin in LPS-induced cardiac anomalies and inflammation as well as the underlying mechanism with a focus on autophagy - a conserved machinery for bulk degradation of intracellular components. METHODS AND RESULTS Wild-type (WT) and APN(-/-) mice were challenged with LPS (4mg/kg) or saline for 6h. Echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated. Markers of autophagy, apoptosis and inflammation including LC3B, p62, Beclin1, AMPK, mTOR, ULK, Caspase 3, Bcl-2, Bax, TLR4, TRAF6, MyD88, IL-1B, TNFα, HMGB1, JNK and IκB were examined using Western blot or RT-PCR. Our results showed that LPS challenge reduced fractional shortening, compromised cardiomyocyte contractile capacity, intracellular Ca(2+) handling properties, apoptosis and inflammation, which were accentuated by adiponectin ablation. Adiponectin ablation unmasked the LPS-induced cardiac remodeling (left ventricular end systolic diameter) and prolongation of cell shortening. The detrimental effects of adiponectin ablation were associated with dampened autophagy in response to LPS through an AMPK-mTOR-ULK1-dependent mechanism. In vivo administration of AMPK activator AICAR or the autophagy inducer rapamycin effectively attenuated or obliterated LPS-induced and adiponectin deficiency-accentuated responses without affecting TLR4, TRAF6 and MyD88. CONCLUSIONS The findings suggest that AMPK and autophagy may play a permissive role in the adiponectin deficiency-exacerbated cardiac dysfunction, apoptosis and inflammation under LPS challenge possibly at the post-TLR4 receptor level.
Collapse
Affiliation(s)
- Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Qiurong Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Sidney Y Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Maolong Dong
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Burn and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
26
|
Saraswathi V, Ganesan M, Perriotte-Olson C, Manickam DS, Westwood RA, Zimmerman MC, Ahmad IM, Desouza CV, Kabanov AV. Nanoformulated copper/zinc superoxide dismutase attenuates vascular cell activation and aortic inflammation in obesity. Biochem Biophys Res Commun 2016; 469:495-500. [PMID: 26692492 PMCID: PMC6368064 DOI: 10.1016/j.bbrc.2015.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endothelial cell (EC) oxidative stress can lead to vascular dysfunction which is an underlying event in the development of cardiovascular disease (CVD). The lack of a potent and bioavailable anti-oxidant enzyme is a major challenge in studies on antioxidant therapy. The objective of this study is to determine whether copper/zinc superoxide dismutase (CuZnSOD or SOD1) after nanoformulation (nanoSOD) can effectively reduce EC oxidative stress and/or vascular inflammation in obesity. METHODS Human aortic endothelial cells (HAECs) were treated with native- or nanoSOD for 6 h followed by treatment with linoleic acid (LA), a free fatty acid, for 6-24 h. To determine the in vivo relevance, the effectiveness of nanoSOD in reducing vascular cell activation was studied in a mouse model of diet-induced obesity. RESULTS We noted that nanoSOD was more effectively taken up by ECs than native SOD. Western blot analysis further confirmed that the intracellular accumulation of SOD1 protein was greatly increased upon nanoSOD treatment. Importantly, nanoSOD pretreatment led to a significant decrease in LA-induced oxidative stress in ECs which was associated with a marked increase in SOD enzyme activity in ECs. In vivo studies showed a significant decrease in markers of EC/vascular cell activation and/or inflammation in visceral adipose tissue (VAT), thoracic aorta, and heart collected from nanoSOD-treated mice compared to obese control mice. Interestingly, the expression of metallothionein 2, an antioxidant gene was significantly increased in nanoSOD-treated mice. CONCLUSION Our data show that nanoSOD is very effective in delivering active SOD to ECs and in reducing EC oxidative stress. Our data also demonstrate that nanoSOD will be a useful tool to reduce vascular cell activation in VAT and aorta in obesity which, in turn, can protect against obesity-associated CVD, in particular, hypertension.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| | - Murali Ganesan
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Curtis Perriotte-Olson
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Devika S Manickam
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A Westwood
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iman M Ahmad
- Radiation Science Technology Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, USA
| | - Cyrus V Desouza
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexander V Kabanov
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Vivar R, Humeres C, Muñoz C, Boza P, Bolivar S, Tapia F, Lavandero S, Chiong M, Diaz-Araya G. FoxO1 mediates TGF-beta1-dependent cardiac myofibroblast differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:128-38. [DOI: 10.1016/j.bbamcr.2015.10.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|