1
|
Amini H, Shirpoor A, Naderi R. Nandrolone decanoate induces heart injury via oxidative damage and mitochondrial apoptotic pathway by regulation of TLR4/NF-κB/NLRP3 axis in male rats: The rescue effect of N-acetylcysteine. Steroids 2025; 214:109563. [PMID: 39894191 DOI: 10.1016/j.steroids.2025.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Myocardial apoptosis is a leading cause of damage in cardiac tissues of nandrolone (ND) treatment. However, its molecular mechanism is not fully understood. This study aims to investigate the effect of ND with or without N -acetylcysteine (NAC) treatment on oxidative damage and TLR4/NF-κB /NLRP3 signaling pathway in the heart of male rats. Eighteen male Wistar rats with a weight range of 220 ± 10 g were selected. They were divided into three groups (n = 6): control (C) group, ND group, NAC + ND group. After six weeks of treatment, the TUNEL staining indicated that ND increased the number of apoptotic cells in the hearts of male rats. The molecular analysis demonstrated that ND exposure resulted in increased protein levels of cytochrome c, c-Caspase-3/p-Caspase-3 ratio, p53, TLR4, NF-κB, NLRP3, and 8-OHdG with a concomitant up-regulation of LDH and CK-MB enzymes activity in the heart tissue compared to the C group. Our findings suggested that ND can cause damage to heart tissue via induction of DNA damage, apoptosis, and probably TLR4/NF-κB/NLRP3 signaling pathway plays a crucial role in this process. It also demonstrates that these negative effects of ND can be reduced by using NAC treatment as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Haniyeh Amini
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
de Melo Junior AF, Escouto L, Pimpão AB, Peixoto P, Brasil G, Ronchi SN, Pereira SA, Bissoli NS. Anabolic-androgen steroids: A possible independent risk factor to Cardiovascular, Kidney and Metabolic Syndrome. Toxicol Appl Pharmacol 2025; 495:117238. [PMID: 39855308 DOI: 10.1016/j.taap.2025.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Millions of individuals make illicit use of anabolic-androgenic steroids (AAS), remaining a public health issue. It often leads to detrimental effects, including cardiovascular and renal diseases, besides hormonal and metabolic imbalances. The objective of this review is to emphasize the contribution of oxidative stress and inflammation to these effects and connect the findings of experimental animal studies with the alterations found in clinical contexts, in AAS users. The study's results showed that AAS promotes a redox disruption and a pro-inflammatory state on organs that are involved in important physiologic processes. These drugs increase inflammatory high-sensitivity C-reactive protein (hs-CRP) and cytokines that contribute to the progression of atherosclerosis, cardiovascular disease risk or endpoints, including stroke, myocardial infarction and death. In the kidney, the AAS increase proteinuria and structural damage. Studies have linked AAS abuse with high BP, low HDL-C levels, high triglyceride levels and impaired fasting blood glucose that characterize Metabolic syndrome. Overall, the studies indicate that oxidative stress, apoptosis, and AAS-mediated inflammation play a significant role in tissue damage, regardless of the dose and duration of exposure, and we point it as a putative independent risk factor to Cardiovascular, Kidney and Metabolic syndrome.
Collapse
Affiliation(s)
- Antonio Ferreira de Melo Junior
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Leonardo Escouto
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - António B Pimpão
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Pollyana Peixoto
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Silas Nascimento Ronchi
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Sofia Azeredo Pereira
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal.
| | - Nazaré Souza Bissoli
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal; Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
3
|
Pinto TG, Malacarne IT, Takeshita WM, de Barros Viana M, Renno ACM, Ribeiro DA. Is genotoxicity a suitable biomarker for monitoring anabolic-androgenic steroids exposure in vivo? A systematic review and meta-analysis. J Appl Toxicol 2025; 45:77-88. [PMID: 38840431 DOI: 10.1002/jat.4656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Steroids stand for a class of hormones (natural and synthetic) known to be helpful for a number of disorders. Despite the aforementioned beneficial effects of using these hormones, anabolic-androgenic steroids (AAS) are also widely abused in a non-therapeutic manner for muscle-building and strength-increasing properties that may lead to genotoxicity in different tissues. The present study aims to understand whether genotoxicity may be a suitable biomarker for AAS exposure in vivo in both experimental animal and human studies. All studies published in PubMed/Medline, Scopus, and Web of Science electronic databases that presented data on DNA damage caused by AAS were analyzed. A total of 15 articles were included in this study, and after thoroughly reviewing the studies, a total of 8 articles were classified as Strong, 6 were classified as Moderate, and only 1 was classified as Weak, totaling 14 studies being considered either Strong or Moderate. This classification makes it possible to consider the present findings as reliable. The meta-analysis data revealed a statistically significant difference in Wistar rat testis cells with AAS compared to control for tail length and % tail DNA (p < 0.001), so that the selected articles were considered homogeneous and the I2 of 0% indicated low heterogeneity. In summary, genotoxicity can be considered a suitable biomarker for monitoring AAS exposure as a result of DNA breakage and oxidative DNA damage.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Ingra Tais Malacarne
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Wilton Mitsunari Takeshita
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University, UNESP, Araçatuba, SP, Brazil
| | - Milena de Barros Viana
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| |
Collapse
|
4
|
Shirpoor A, Naderi R. Nandrolone decanoate induced kidney injury through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB pathway: The effect of moderate exercise. Steroids 2024; 211:109503. [PMID: 39208922 DOI: 10.1016/j.steroids.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg)(N), Exercise (Exe), Nandrolone + Exercise (N+Exe). RESULTS: After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered idealtheranomiRNAcandidates for diagnosis and treatment. Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-β protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-β pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Sinha A, Deb VK, Datta A, Yadav S, Phulkar A, Adhikari S. Evaluation of structural features of anabolic-androgenic steroids: entanglement for organ-specific toxicity. Steroids 2024; 212:109518. [PMID: 39322097 DOI: 10.1016/j.steroids.2024.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Anabolic-androgenic steroids (AASs), more correctly termed "steroidal androgens", are a broad category of compounds including both synthetic derivatives and endogenously produced androgens like testosterone, which have long been employed as performance-enhancing substances, primarily among recreational athletes and some professionals. While their short-term effects on muscle physiology are well-documented, the long-term health consequences remain inadequately understood. A key finding is the disruption of hormone production, leading to reversible and irreversible changes, particularly with prolonged use. While debate exists over the prevalence of adverse effects, studies suggest a spectrum of somatic and psychiatric consequences, highlighting the need for improved understanding and prevention strategies. AASs are not only affect muscle structure but also influence mood, behavior, and body image, potentially exacerbating substance dependence and psychological distress. Liver alterations are a prominent concern, with oxidative stress implicated in AAS-induced hepatotoxicity. Reproductive complications, including gonadal atrophy and infertility, are common, alongside virilization and feminization effects in both genders. Cardiovascular effects are particularly worrisome, with AASs implicated in hypertension, dyslipidemia, and increased thrombotic risk, contributing to cardiovascular morbidity and mortality. Moreover, AASs may enhance cancer risks, potentially accelerating carcinogenesis in various tissues, including the prostate. The review emphasizes the need for comprehensive public health initiatives to mitigate harm, including harm minimization strategies, routine health screenings, and targeted interventions for AAS users. Understanding the complex interplay of biological mechanisms and systemic effects is crucial for informing clinical management and preventive measures. This review also examines the biological impact of AASs on human muscles, detailing mechanisms of action, chemistry, and associated health risks such as liver damage, cardiovascular disease, and endocrine dysfunction.
Collapse
Affiliation(s)
- Ankan Sinha
- Department of Physical Education, Govt. Degree College, Dharmanagar, Tripura(N) 799253, India.
| | - Vishal Kumar Deb
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Abhijit Datta
- Department of Botany, Ambedkar College, Fatikroy, Unakoti 799290 Tripura, India
| | - Satpal Yadav
- Department of Sports Biomechanics, LNIPE, NERC, Guwahati 782402 Assam, India
| | - Ashish Phulkar
- Department of Sports Management and Coaching, LNIPE, Gwalior 474002, Madhya Pradesh, India
| | - Suman Adhikari
- Department of Chemistry, Govt. Degree College, Dharmanagar, Tripura(N) 799253, India.
| |
Collapse
|
6
|
Momoh R. Anabolic-Androgenic Steroid Abuse Causes Cardiac Dysfunction. Am J Mens Health 2024; 18:15579883241249647. [PMID: 38686840 PMCID: PMC11062222 DOI: 10.1177/15579883241249647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
This article aims to review available literature evidence about the harmful effects of long-term anabolic-androgenic steroid (AAS) abuse on the heart. A review of 11 existing literature articles regarding this association has been used in the development of this review article. There is increasing medical literature documentation of the eventual harmful effect of AAS misuse or abuse on the heart. Individuals who misuse these steroids are susceptible to significant debilitation and loss of productive person-hours, and in severe cases, it can lead to death. Raising awareness about this potentially deleterious effect of anabolic steroids is crucial to prevent its misuse or abuse.
Collapse
|
7
|
Hattab S, Saleh B, Qasarweh L, Draidi M, Zyoud SH. Knowledge and attitudes toward the use of anabolic-androgenic steroids among physical education university students: a cross-sectional study from Palestine. Sci Rep 2024; 14:2146. [PMID: 38273101 PMCID: PMC10810783 DOI: 10.1038/s41598-024-52787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Abstract
The use of androgenic-anabolic steroids (AASs) has increased in recent years, especially among athletes, due to their effect on body shape and performance. These agents could have serious side effects on this highly susceptible population, which tends to use these substances frequently to promote muscle growth and physical performance. Therefore, this study aimed to evaluate the knowledge and attitudes toward the use of anabolic androgenic steroids among physical education university students in Palestine. A cross-sectional study of physical education students from November 2020 to January 2021 was conducted using an electronic questionnaire. The main outcome was to measure the level of knowledge and use of the AAS. A total of 380 students were included. The mean age of the students was 21 years (SD = 4.2), and the study participants were distributed almost equally according to sex. Approximately a quarter of the students were smokers. Eighty percent (80%) of the study participants were from the West Bank, while the remaining 20% were from Jerusalem and 48 territories. Furthermore, most of the students lived with their families; half lived in cities, approximately 152 (40%) lived in villages, and only 29 (8%) lived in camps. The average level of knowledge of the AAS was 2.95 out of 8 (37/100), with a median of three. Furthermore, only 36 (10%) of the participants had satisfactory knowledge, scoring 80% or more. Regarding the use of AAS, 11 (2.9%) participants, all males, confirmed that they were currently using AAS. Additionally, approximately 28 (7%) had previously used them, while 30 (8%) planned to try them in the future. Overall, 221 (58%) patients were confirmed to use vitamins and minerals. Our study showed that most of the participants had a substantial lack of information on the potential side effects of AAS, while the level of use was comparable with that of other populations.
Collapse
Affiliation(s)
- Suhaib Hattab
- Physiology, Pharmacology and Toxicology Division, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Bashar Saleh
- Department of Physical Education, An-Najah National University, Nablus, Palestine
| | - Laith Qasarweh
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mahmoud Draidi
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus, 44839, Palestine
| |
Collapse
|
8
|
Tibúrcio FC, Leite APS, Muller KS, Pinto CG, Valentino E, Castro PATDS, Matsumura CY, de Carvalho SF, Matheus SMM. Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1940. [PMID: 38003989 PMCID: PMC10673219 DOI: 10.3390/medicina59111940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Nandrolone decanoate (ND) is the most widely used among the anabolic androgenic steroids (AAS), synthetic substances derived from testosterone, to improve muscular and health gains associated with exercises. The AAS leads to physical performance enhancement and presents anti-aging properties, but its abuse is associated with several adverse effects. Supraphysiological doses of AAS with or without physical exercise can cause morphological and functional alterations in neuromuscular interactions. This study aims to investigate the effects of ND supraphysiological doses in neuromuscular interactions, focusing on the soleus muscle and its neuromuscular junctions (NMJs) in rats, associated or not with physical exercise. Materials and Methods: Forty male Sprague Dawley rats were divided into four groups: sedentary and exercised groups, with or without ND at the dose of 10 mg/kg/week. The animals were treated for eight weeks, with intramuscular injections, and the soleus muscle was collected for morphological analyses. Results: The supraphysiological doses of ND in the sedentary group caused muscle degeneration, evidenced by splitting fibers, clusters of small fibers, irregular myofibrils, altered sarcomeres, an increase in collagen deposition and in the number of type I muscle fibers (slow-twitch) and central nuclei, as well as a decrease in fibers with peripheral nuclei. On the other hand, in the ND exercise group, there was an increase in the NMJs diameter with scattering of its acetylcholine receptors, although no major morphological changes were found in the skeletal muscle. Thus, the alterations caused by ND in sedentary rats were partially reversed by physical exercise. Conclusions: The supraphysiological ND exposure in the sedentary rats promoted an increase in muscle oxidative pattern and adverse morphological alterations in skeletal muscle, resulting from damage or post-injury regeneration. In the ND-exercised rats, no major morphological changes were found. Thus, the physical exercise partially reversed the alterations caused by ND in sedentary rats.
Collapse
Affiliation(s)
- Felipe Cantore Tibúrcio
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Ana Paula Silveira Leite
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Kevin Silva Muller
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Carina Guidi Pinto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Erick Valentino
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Paula Aiello Tomé de Souza Castro
- Department of Physical Therapy, Center for Biological and Health Sciences, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Cintia Yuri Matsumura
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Shelly Favorito de Carvalho
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil;
| | - Selma Maria Michelin Matheus
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| |
Collapse
|
9
|
Cicek B, Hacimuftuoglu A, Yeni Y, Danisman B, Ozkaraca M, Mokhtare B, Kantarci M, Spanakis M, Nikitovic D, Lazopoulos G, Tsarouhas K, Tsatsakis A, Taghizadehghalehjoughi A. Chlorogenic Acid Attenuates Doxorubicin-Induced Oxidative Stress and Markers of Apoptosis in Cardiomyocytes via Nrf2/HO-1 and Dityrosine Signaling. J Pers Med 2023; 13:jpm13040649. [PMID: 37109035 PMCID: PMC10140899 DOI: 10.3390/jpm13040649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Doxorubicin (DOX) is extensively used for cancer treatments; however, its clinical application is limited because of its cardiotoxic adverse effects. A combination of DOX and agents with cardioprotective properties is an effective strategy to ameliorate DOX-related cardiotoxicity. Polyphenolic compounds are ideal for the investigation of novel cardioprotective agents. Chlorogenic acid (CGA), an essential dietary polyphenol found in plants, has been previously reported to exert antioxidant, cardioprotective, and antiapoptotic properties. The current research evaluated CGA's in vivo cardioprotective properties in DOX-induced cardiotoxicity and the probable mechanisms underlying this protection. (2) Methods: CGA's cardioprotective properties were investigated in rats that were treated with CGA (100 mg/kg, p.o.) for fourteen days. The experimental model of cardiotoxicity was induced with a single intraperitoneal (15 mg/kg i.p.) injection of DOX on the 10th day. (3) Results: Treatment with CGA significantly improved the DOX-caused altered cardiac damage markers (LDH, CK-MB, and cTn-T), and a marked improvement in cardiac histopathological features accompanied this. DOX downregulated the expression of Nrf2/HO-1 signaling pathways, and the CGA reversed this effect. Consistently, caspase-3, an apoptotic-related marker, and dityrosine expression were suppressed, while Nrf2 and HO-1 expressions were elevated in the cardiac tissues of DOX-treated rats after treatment with the CGA. Furthermore, the recovery was confirmed by the downregulation of 8-OHdG and dityrosine (DT) expressions in immunohistochemical findings. (4) Conclusions: CGA demonstrated a considerable cardioprotective effect against DOX-induced cardiotoxicity. One of the possible mechanisms for these protective properties was the upregulation of the Nrf2/HO-1-dependent pathway and the downregulation of DT, which may ameliorate oxidative stress and cardiomyocyte apoptosis. These findings suggest that CGA may be cardioprotective, particularly in patients receiving DOX-based chemotherapy.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey
| | - Betul Danisman
- Department of Biophysics, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mecit Kantarci
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Marios Spanakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Dragana Nikitovic, Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios Lazopoulos
- Department of Cardiac Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
10
|
Kataoka T, Fukamoto A, Hotta Y, Sanagawa A, Maeda Y, Furukawa-Hibi Y, Kimura K. Effect of High Testosterone Levels on Endothelial Function in Aorta and Erectile Function in Rats. Sex Med 2022; 10:100550. [PMID: 35939869 PMCID: PMC9537240 DOI: 10.1016/j.esxm.2022.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Testosterone is an important hormone for the physical and mental health of men; however testosterone administration has also been suggested to adversely affect the cardiovascular system. AIM To investigate the effects of excessive testosterone administration on vascular endothelial and erectile function in rats. METHODS A total of seventy-five 12-week-old rats were divided into the following groups: Sham, castrated (Cast), castrated with subcutaneous administration of 100 mg/kg/month testosterone (Cast + T1), and castrated with subcutaneous administration of 100 mg/kg/week testosterone (Cast + T4). To observe the changes in testosterone level after the administration, rats were further divided into the following groups: control; T(6.25), wherein the rats were subcutaneously injected with 6.25 mg/kg testosterone; T(25) per week, wherein the rats were subcutaneously injected with 25 mg/kg testosterone per week; and T(100), wherein the rats were subcutaneously injected with 100 mg/kg testosterone per week. The relaxation responses of aorta were measured in these rats using standardized methods, and their erectile function was also evaluated. Statistical analysis of the obtained data was performed using two-way analysis of variance (ANOVA), Tukey-Kramer's multiple comparison test, or Student's t-test. OUTCOMES At the end of the study period, endothelial function was evaluated through measurement of isometric tension, while erectile function was assessed using intracavernosal pressure (ICP), mean arterial pressure (MAP), and the expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), sirtuin 1 (Sirt1) and vascular endothelial growth factor A. RESULTS The ICP/MAP ratio in the Cast group (0.42 ± 0.04) was significantly lower than that in the Sham group (0.79 ± 0.07). The ICP/MAP ratio in the Cast + T1 group (0.73 ± 0.06) was significantly higher than that in the Cast group (P < .01) and that of the Cast + T4 (0.38 ± 0.01) group was unchanged (P > .05). The T(25) and T(100) groups exhibited significantly lower responses to ACh than the control group at 4 weeks (P < .01). Meanwhile, the ICP/MAP ratios in the T(25) group (0.44 ± 0.07) and T(100) group (0.47 ± 0.03) were significantly lower than that in the control group (0.67 ± 0.05) at stimulation frequencies of 16 Hz (P < .05). The expression of androgen receptor, Sirt1, and eNOS were significantly lower while that of iNOS was higher in the T(25) group compared with the control group (P < .05). CLINICAL TRANSLATION The results based on this animal model indicate that extremely high testosterone levels may affect endothelial and erectile function. STRENGTHS AND LIMITATIONS We found that high-dose testosterone administration decreased endothelial function in aorta and erectile function in rats. A major limitation of this study is that the blood concentration may not be representative of that in humans, and further research is needed. CONCLUSION The findings suggest that high doses of testosterone may cause endothelial dysfunction in the aorta and erectile dysfunction in rats and that the blood concentration should be monitored after testosterone administration. Kataoka T, Fukamoto A, Hotta Y, et al. Effect of High Testosterone Levels on Endothelial Function in Aorta and Erectile Function in Rats. Sex Med 2022;10:100550.
Collapse
Affiliation(s)
- Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Pharmacology, Kataoka's lab, Graduate School of Pharmaceutical Sciences, Chiba Institute of Science, Chiba, Japan.
| | - Ayako Fukamoto
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akimasa Sanagawa
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoko Furukawa-Hibi
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
11
|
Georgiadis N, Tsarouhas K, Dorne JLCM, Kass GEN, Laspa P, Toutouzas K, Koulaouzidou EA, Kouretas D, Tsitsimpikou C. Cardiotoxicity of Chemical Substances: An Emerging Hazard Class. J Cardiovasc Dev Dis 2022; 9:226. [PMID: 35877588 PMCID: PMC9316944 DOI: 10.3390/jcdd9070226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Human health risks and hazards from chemical substances are well regulated internationally. However, cardiotoxicity, is not defined as a stand-alone hazard and therefore there are no defined criteria for the classification of substances as cardiotoxic. Identifying and regulating substances that cause cardiovascular adverse effects would undoubtedly strengthen the national health systems. (2) Methods: To overcome the aforementioned gap, a roadmap is proposed for identifying regulatory criteria from animal studies and endorse legislation in order to classify substances as cardiotoxic. The roadmap consists of: (i) the identification of the appropriate animal species and strains; (ii) the identification of the lines of scientific evidence (e.g., histopathological, biochemical and echocardiographic indices etc.) from animal studies with relevance to humans; (iii) the statistical analysis and meta-analysis for each line of scientific evidence after exposure to well-established cardiotoxicants to humans (e.g., anthracyclines) in order to identify threshold values or range of normal and/ or altered values due to exposure; (iv) validation of the above described lines of evidence in animals exposed to other alleged cardiotoxic substances (e.g., anabolic androgen steroids (AAS) and pesticides); (v) establishment of mechanisms of action based on information of either known or alleged cardiotoxicants; and (vi) introduction of novel indices and in silico methods. (3) Results: Preliminary results in rats indicate a clear distinction from normal values to values measured in rats exposed to anthracyclines regarding left ventricle (LV) fractional shortening (FS) and LV ejection fraction (EF). A distinctive pattern is similarly observed for Creatine Kinase-Myocardial Band isoenzyme (CK-MB) and cardiac tissue glutathione (GSH). These findings are encouraging and indicate that there is room for targeted research to this end, and that these specific indices and biochemical markers should be further investigated in order to be developed to regulatory criteria. (4) Conclusions: Further research should be conducted by both the scientific and regulatory community that aims to clearly define the cardiotoxicity hazard caused by chemicals and develop a full set of scientific criteria.
Collapse
Affiliation(s)
- Nikolaos Georgiadis
- European Chemicals Agency, 00150 Helsinki, Finland;
- Department of Biochemistry & Biotechnology, University of Thessaly, 38221 Larissa, Greece; (P.L.); (C.T.)
| | | | | | - George E. N. Kass
- European Food Safety Authority, 43126 Parma, Italy; (J.-L.C.M.D.); (G.E.N.K.)
| | - Petroula Laspa
- Department of Biochemistry & Biotechnology, University of Thessaly, 38221 Larissa, Greece; (P.L.); (C.T.)
| | - Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Medical School, University of Athens, 11527 Athens, Greece;
| | - Elisabeth A. Koulaouzidou
- Division of Dental Tissues’ Pathology and Therapeutics (Basic Dental Sciences, Endodontology and Operative Dentistry), School of Dentistry, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Kouretas
- Department of Biochemistry & Biotechnology, University of Thessaly, 38221 Larissa, Greece; (P.L.); (C.T.)
| | - Christina Tsitsimpikou
- Department of Biochemistry & Biotechnology, University of Thessaly, 38221 Larissa, Greece; (P.L.); (C.T.)
- Directorate of Energy, Industrial & Chemical Products, General Chemical State Laboratory of Greece, 11521 Athens, Greece
| |
Collapse
|
12
|
Melsom HS, Heiestad CM, Eftestøl E, Torp MK, Gundersen K, Bjørnebekk AK, Thorsby PM, Stensløkken KO, Hisdal J. Reduced arterial elasticity after anabolic-androgenic steroid use in young adult males and mice. Sci Rep 2022; 12:9707. [PMID: 35690664 PMCID: PMC9188580 DOI: 10.1038/s41598-022-14065-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/22/2022] [Indexed: 01/16/2023] Open
Abstract
High-doses of anabolic-androgenic steroids (AAS) is efficient for building muscle mass, but pose a risk of cardiovascular side effects. Little is known of the effect of AAS on vasculature, but previous findings suggest unfavorable alterations in vessel walls and vasoreactivity. Here, long-term effect of AAS on vascular function and morphology were examined in male weightlifters, and in a mimicking animal model. Arterial elasticity and morphology were tested with ultrasound, pulse wave velocity (PWV) and carotid intima media thickness (cIMT) in 56 current male AAS users, and 67 non-exposed weightlifting controls (WLC). Female mice were treated with testosterone for 14 days and echocardiography were applied to evaluate vascular function and morphology. Male AAS users had higher PWV (p = 0.044), reduced carotid artery compliance (p = 0.0005), and increased cIMT (p = 0.041) compared to WLC. Similar functional changes were found in the ascending aorta of mice after 7- (p = 0.043) and 14 days (p = 0.001) of testosterone treatment. This animal model can be used to map molecular mechanisms responsible for complications related to AAS misuse. Considering the age-independent stiffening of major arteries and the predictive power of an increase in PWV and cIMT, the long-term users of AAS are at increased risk of severe cardiovascular events.
Collapse
Affiliation(s)
- H S Melsom
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| | - C M Heiestad
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - E Eftestøl
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - M K Torp
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - K Gundersen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - A K Bjørnebekk
- The Anabolic Androgenic Steroid Research Group, Oslo University Hospital, Oslo, Norway
| | - P M Thorsby
- Biochemical Endocrinology and Metabolism Research Group, Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - K O Stensløkken
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - J Hisdal
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Motevalian M, Joukar S, Esmaeili-Mahani S, Karimi A, Masoumi-Ardakani Y, Safari S. Interaction of high-intensity endurance exercise and nandrolone on cardiac remodeling: role of adipo-cardiac axis. Horm Mol Biol Clin Investig 2021; 43:63-70. [PMID: 34786896 DOI: 10.1515/hmbci-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Given the cardiac pathological remodeling following to anabolic androgenic steroids (AASs) consumption, we examined the effect of chronic administration of nandrolone decanoate with high-intensity endurance exercise on the left ventricular hypertrophy index, levels of hydroxyproline, tumor necrosis factor-alpha (TNF-α), adiponectin (APN) and its receptors (AdipoR1 and AdipoR2) expression in rats' hearts. METHODS The male Wistar rats randomly divided to six groups included the control (CTL), exercise (Ex), nandrolone (Nan), vehicle (Arach), trained vehicle (Ex + Arach), and trained nandrolone (Ex + Nan) groups that were treated for eight weeks. RESULTS Nandrolone consumption significantly enhanced the hypertrophy index (p<0.05) and exercise intensified this effect. It also increased the level of cardiac hydroxyproline (p<0.001), however exercise completely masked this effect. The values of TNF-α protein and AdipoR1 protein significantly increased in trained nandrolone-treated (Ex + Nan) group in comparison with CTL group (p<0.05), however, did not show significant alteration in Nan or Ex groups. High-intensity endurance exercise significantly enhanced the AdipoR2 protein (p<0.05), but, co-administration of nandrolone with exercise prevented this effect. The mRNA expression of AdipoR1 significantly reduced in the animals that received nandrolone for eight weeks and exercise recovered this effect (p<0.001). CONCLUSIONS Despite an additive effect of high-intensity endurance exercise plus nandrolone on TNF-α level, their effects on hydroxyproline and APN receptors expression is incompatible in heart of rat. It is suggests a part of beneficial regulatory role of endurance exercise against nandrolone induced heart remodeling may apply through modulation of APN system.
Collapse
Affiliation(s)
- Manijeh Motevalian
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran
| | - Abdollah Karimi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Safari
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Carteri RB, Kopczynski A, Rodolphi MS, Strogulski NR, Wannmacher CMD, Franceschi ID, Hammerschmitt ME, Driemeier D, Portela LV. Anabolic-androgenic steroids impair mitochondrial function and redox status in the heart and liver of mice. Steroids 2021; 172:108861. [PMID: 33984388 DOI: 10.1016/j.steroids.2021.108861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Supraphysiological doses of anabolic-androgenic steroids (AAS) may cause long-term functional abnormalities, particularly in the heart and liver, which may only represent the later-stage of the cumulative damage caused by dysfunctional organelles. We investigated whether mid-term supraphysiological doses of Testosterone and Nandrolone impair mitochondrial Ca2+ and membrane potential (ΔΨm) dynamics, and redox machinery in the heart and liver of mice. CF1 albino mice were treated daily with 15 mg/kg of Nandrolone (ND) or Testosterone (T), or oil (vehicle) for 19 days. Preparations enriched in mitochondria from the heart or liver were used to perform assays of Ca2+ influx/efflux, ΔΨm, and H2O2 production. ND significantly impaired mitochondrial Ca2+ influx in the heart, and ΔΨm in both organs. ND and T increased H2O2 levels in the heart and liver relative to controls. Also, ND increased oxidative damage to lipids and proteins (TBARS and carbonyls) in the heart, and both AAS decreased glutathione peroxidase activity in the heart and liver. In summary, supraphysiological doses of ND, and in a lesser extend T, impaired mitochondrial Ca2+ influx and ΔΨm, and redox homeostasis being early mechanistic substrates for inducing heart and liver tissue damage.
Collapse
Affiliation(s)
- Randhall B Carteri
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Centro Universitário Metodista - Instituto Porto Alegre (IPA), Porto Alegre, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marcelo S Rodolphi
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Nathan R Strogulski
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Clovis M D Wannmacher
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Itiane D Franceschi
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marcia E Hammerschmitt
- Setor de Patologia Veterinária, Faculdade de Veterinária da Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária da Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Luis V Portela
- Laboratory of Neurotrauma and Biomarkers, PPG-Ciências Biológicas Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Palmer JA, Smith AM, Gryshkova V, Donley ELR, Valentin JP, Burrier RE. A Targeted Metabolomics-Based Assay Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Identifies Structural and Functional Cardiotoxicity Potential. Toxicol Sci 2021; 174:218-240. [PMID: 32040181 DOI: 10.1093/toxsci/kfaa015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Implementing screening assays that identify functional and structural cardiotoxicity earlier in the drug development pipeline has the potential to improve safety and decrease the cost and time required to bring new drugs to market. In this study, a metabolic biomarker-based assay was developed that predicts the cardiotoxicity potential of a drug based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Assay development and testing was conducted in 2 phases: (1) biomarker identification and (2) targeted assay development. In the first phase, metabolomic data from hiPSC-CM spent media following exposure to 66 drugs were used to identify biomarkers that identified both functional and structural cardiotoxicants. Four metabolites that represent different metabolic pathways (arachidonic acid, lactic acid, 2'-deoxycytidine, and thymidine) were identified as indicators of cardiotoxicity. In phase 2, a targeted, exposure-based biomarker assay was developed that measured these metabolites and hiPSC-CM viability across an 8-point concentration curve. Metabolite-specific predictive thresholds for identifying the cardiotoxicity potential of a drug were established and optimized for balanced accuracy or sensitivity. When predictive thresholds were optimized for balanced accuracy, the assay predicted the cardiotoxicity potential of 81 drugs with 86% balanced accuracy, 83% sensitivity, and 90% specificity. Alternatively, optimizing the thresholds for sensitivity yields a balanced accuracy of 85%, 90% sensitivity, and 79% specificity. This new hiPSC-CM-based assay provides a paradigm that can identify structural and functional cardiotoxic drugs that could be used in conjunction with other endpoints to provide a more comprehensive evaluation of a drug's cardiotoxicity potential.
Collapse
Affiliation(s)
| | - Alan M Smith
- Stemina Biomarker Discovery, Inc, Madison, Wisconsin
| | - Vitalina Gryshkova
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | | - Jean-Pierre Valentin
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | |
Collapse
|
16
|
Simão VA, Lupi Júnior LA, Adan Araujo Leite G, Cherici Camargo IC, de Almeida Chuffa LG. Nandrolone decanoate causes uterine injury by changing hormone levels and sex steroid receptors in a dose- and time-dependent manner. Reprod Toxicol 2021; 102:98-108. [PMID: 33984419 DOI: 10.1016/j.reprotox.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023]
Abstract
Different doses of nandrolone decanoate (ND) were used to investigate the expression of uterine sex steroid receptors (AR, ER-α, and ER-β) and the levels of serum sex hormones after treatment and recovery periods in adult rats. ND doses of 1.87, 3.75, 7.5, or 15 mg/kg b.w. or mineral oil (control group) were injected subcutaneously for 15 days, and the experimental groups were divided into three periods of evaluation: (a) ND treatment for 15 days, (b) ND treatment followed by 30-day-recovery and (c) ND treatment followed by 60-day-recovery. Estrous cycle was monitored daily. At the end of each experimental period, rats were euthanized for the collection of serum samples and uterine tissues. All animals showed persistent diestrus and only the highest ND dose was capable of inducing persistent diestrus until 60-day-recovery. Immunoexpression of uterine sex steroid receptors varied in a time-dependent manner. While AR expression was increase after treatment period, ER-α and ER-β expressions decreased after 60- and 30-day-recovery, respectively. ND also increased the serum levels of testosterone, 17β-estradiol, and dihydrotestosterone, especially at the highest doses of 7.5 and 15 mg ND/kg until 30 days of recovery. The levels of progesterone were significantly reduced in all ND-treated animals. No significant difference was observed in the levels of follicle-stimulating hormone, whereas the levels of luteinizing hormone varied according to specific dose and period. We conclude that uterine sex steroid receptors and sex hormones are affected by ND administration and these alterations can be only restored following lower doses and long recovery periods.
Collapse
Affiliation(s)
- Vinícius Augusto Simão
- Department of Biotechnology, Faculty of Sciences and Letters of Assis, FCL/UNESP, SP, 19806-900, Brazil.
| | - Luiz Antonio Lupi Júnior
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, IBB/UNESP, SP, 16618-689, Brazil.
| | - Gabriel Adan Araujo Leite
- Department of Cell Biology, Embryology and Genetics, Biological Sciences Center, UFSC, SC, 88040-900, Brazil.
| | | | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, IBB/UNESP, SP, 16618-689, Brazil.
| |
Collapse
|
17
|
Adverse Effects of Anabolic-Androgenic Steroids: A Literature Review. Healthcare (Basel) 2021; 9:healthcare9010097. [PMID: 33477800 PMCID: PMC7832337 DOI: 10.3390/healthcare9010097] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Anabolic-androgenic steroids (AASs) are a large group of molecules including endogenously produced androgens, such as testosterone, as well as synthetically manufactured derivatives. AAS use is widespread due to their ability to improve muscle growth for aesthetic purposes and athletes’ performance, minimizing androgenic effects. AAS use is very popular and 1–3% of US inhabitants have been estimated to be AAS users. However, AASs have side effects, involving all organs, tissues and body functions, especially long-term toxicity involving the cardiovascular system and the reproductive system, thereby, their abuse is considered a public health issue. The aim of the proposed review is to highlight the most recent evidence regarding the mechanisms of action of AASs and their unwanted effects on organs and lifestyle, as well as suggesting that AAS misuse and abuse lead to adverse effects in all body tissues and organs. Oxidative stress, apoptosis, and protein synthesis alteration are common mechanisms involved in AAS-related damage in the whole body. The cardiovascular system and the reproductive system are the most frequently involved apparatuses. Epidemiology as well as the molecular and pathological mechanisms involved in the neuropsychiatric side-effects of AAS abuse are still unclear, further research is needed in this field. In addition, diagnostically reliable tests for AAS abuse should be standardized. In this regard, to prevent the use of AASs, public health measures in all settings are crucial. These measures consist of improved knowledge among healthcare workers, proper doping screening tests, educational interventions, and updated legislation.
Collapse
|
18
|
Nandrolone Decanoate: Use, Abuse and Side Effects. ACTA ACUST UNITED AC 2020; 56:medicina56110606. [PMID: 33187340 PMCID: PMC7696474 DOI: 10.3390/medicina56110606] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Background and Objectives: Androgens play a significant role in the development of male reproductive organs. The clinical use of synthetic testosterone derivatives, such as nandrolone, is focused on maximizing the anabolic effects and minimizing the androgenic ones. Class II anabolic androgenic steroids (AAS), including nandrolone, are rapidly becoming a widespread group of drugs used both clinically and illicitly. The illicit use of AAS is diffused among adolescent and bodybuilders because of their anabolic proprieties and their capacity to increase tolerance to exercise. This systematic review aims to focus on side effects related to illicit AAS abuse, evaluating the scientific literature in order to underline the most frequent side effects on AAS abusers’ bodies. Materials and Methods: A systematic review of the scientific literature was performed using the PubMed database and the keywords “nandrolone decanoate”. The inclusion criteria for articles or abstracts were English language and the presence of the following words: “abuse” or “adverse effects”. After applying the exclusion and inclusion criteria, from a total of 766 articles, only 148 were considered eligible for the study. Results: The most reported adverse effects (found in more than 5% of the studies) were endocrine effects (18 studies, 42%), such as virilization, gynecomastia, hormonal disorders, dyslipidemia, genital alterations, and infertility; cardiovascular dysfunctions (six studies, 14%) such as vascular damage, coagulation disorders, and arteriosus hypertension; skin disorders (five studies, 12%) such as pricking, acne, and skin spots; psychiatric and mood disorders (four studies, 9%) such as aggressiveness, sleep disorders and anxiety; musculoskeletal disorders (two studies, 5%), excretory disorders (two studies, 5%), and gastrointestinal disorders (two studies, 5%). Conclusions: Based on the result of our study, the most common adverse effects secondary to the abuse of nandrolone decanoate (ND) involve the endocrine, cardiovascular, skin, and psychiatric systems. These data could prove useful to healthcare professionals in both sports and clinical settings.
Collapse
|
19
|
Saleh DO, Mansour DF, Mostafa RE. Rosuvastatin and simvastatin attenuate cisplatin-induced cardiotoxicity via disruption of endoplasmic reticulum stress-mediated apoptotic death in rats: targeting ER-Chaperone GRP78 and Calpain-1 pathways. Toxicol Rep 2020; 7:1178-1186. [PMID: 32995293 PMCID: PMC7501485 DOI: 10.1016/j.toxrep.2020.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin (CP) is a powerful antineoplastic chemotherapeutic agent with broad-spectrum properties. Acute and cumulative cardiotoxicity are major limiting factors for CP therapy. Various pathogenic pathways have been suggested to CP-induced cardiotoxicity; oxidative damage, ER stress, and programmed cell death/apoptosis. The present study aimed to assess the signaling mechanisms related to the advantageous effects of rosuvastatin (RSV) and simvastatin (SMV) against CP-related cardiac ER stress dependent apoptotic death in rats. Acute cardiotoxicity was induced by a single dose of CP (10 mg/kg, i.p.) on the 10th day of the experiment. RSV (10 mg/ kg/day) and SMV (10 mg/kg/day) were orally administered for 15 days. CP-treated rats showed significant alterations in electrocardiographic recordings and elevation in serum cardiac function biomarkers; troponin T content, lactate dehydrogenase and creatine kinase-MB levels as well as boost in the cardiac oxidative stress biomarkers. In addition, CP exposure resulted in GRP78 induction; an ER stress and elevation marker at calpain-1 content as well as activation of activated caspase-3 (ACASP3) and caspase-12 were reflected on CP-triggered apoptosis evidenced by elevation in the Bax/Bcl-2 ratio. However, RSV and SMV administration mitigate those adverse CP effects. Statins administration prominently alleviated CP-induced cardiac abnormalities exerting improvement in the ECG pattern and cardiac enzyme biomarkers. Interestingly, statins; RSV and SMV, disrupted CP-induced ER stress and the consequent apoptotic cell death evidenced by downregulation of ER-chaperone GRP78, calpain-1, ACASP3 and caspase-12 as well as decline in the Bax/Bcl-2 ratio. From all the previous findings, it can be suggested that statins namely; RSV and SMV, play protective role against CP-induced cardiac injury by regulating ER stress-mediated apoptotic pathways.
Collapse
Affiliation(s)
- Dalia O Saleh
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| | - Dina F Mansour
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| | - Rasha E Mostafa
- Department of Pharmacology, National Research Centre (ID: 60014618), 33 El Buhouth st-Dokki P.O:12622, Cairo, Egypt
| |
Collapse
|
20
|
Gürünlüoğlu K, Demircan M, Koç A, Koçbıyık A, Taşçı A, Durmuş K, Gürünlüoğlu S, Gözükara Bağ H. The Effects of Different Burn Dressings on Length of Telomere and Expression of Telomerase in Children With Thermal Burns. J Burn Care Res 2020; 40:302-311. [PMID: 30805617 DOI: 10.1093/jbcr/irz019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Burns are a common traumatic injury triggered by local tissue damage and a systemic response. In this study, we evaluated the effects of different burn dressings on telomere kinetics in children with thermal burn injury. METHODS Sixty children with thermal burn were included in this prospective study. The burn area of the patients included 20 to 50% total body surface area. Three different dressings (hydrofiber with silver [HFAg], poylactic membrane [PLM], and silver sulfadiazine [SSD]) and control groups were created. Telomere length in nucleated blood cells and telomerase expression in the skin tissue were evaluated in control and burn groups. RESULTS In the whole burn groups, telomere length in blood cells increased. The length of telomeres increased the most in the SSD group. The PLM group is the treatment that increases the number of squamous cell counts in the basal layer and telomerase expression in the skin. In HFAg and SSD groups, the expression of telomerase in the skin is decreased. In the HFAg group, the basal layer in the skin was also reduced in squamous cells. CONCLUSION In all burn groups, the telomere length of nucleated cells in the blood was higher than in the control group. SSD dressing along with autografting is the treatment method that maximizes telomere length in blood cells. The PLM has the most increased telomerase expression in the skin of burned patients. The PLM application increases the number of cells on both burned and normal skin.
Collapse
Affiliation(s)
- Kubilay Gürünlüoğlu
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Malatya, Turkey
| | - Mehmet Demircan
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Malatya, Turkey
| | - Ahmet Koç
- Department of Medical Genetics, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Alper Koçbıyık
- Pathology Laboratory, Istanbul Kanuni Sultan Suleyman Education and Research Hospital, Turkey
| | - Aytaç Taşçı
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Malatya, Turkey
| | - Kübra Durmuş
- Department of Medical Genetics, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Semra Gürünlüoğlu
- Pathology Laboratory, Malatya Education and Research Hospital, Turkey
| | - Harika Gözükara Bağ
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İnönü University, Malatya, Turkey
| |
Collapse
|
21
|
Georgiadis N, Tsarouhas K, Rezaee R, Nepka H, Kass GEN, Dorne JLCM, Stagkos D, Toutouzas K, Spandidos DA, Kouretas D, Tsitsimpikou C. What is considered cardiotoxicity of anthracyclines in animal studies. Oncol Rep 2020; 44:798-818. [PMID: 32705236 PMCID: PMC7388356 DOI: 10.3892/or.2020.7688] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Anthracyclines are commonly used anticancer drugs with well-known and extensively studied cardiotoxic effects in humans. In the clinical setting guidelines for assessing cardiotoxicity are well-established with important therapeutic implications. Cardiotoxicity in terms of impairment of cardiac function is largely diagnosed by echocardiography and based on objective metrics of cardiac function. Until this day, cardiotoxicity is not an endpoint in the current general toxicology and safety pharmacology preclinical studies, although other classes of drugs apart from anthracyclines, along with everyday chemicals have been shown to manifest cardiotoxic properties. Also, in the relevant literature there are not well-established objective criteria or reference values in order to uniformly characterize cardiotoxic adverse effects in animal models. This in depth review focuses on the evaluation of two important echocardiographic indices, namely ejection fraction and fractional shortening, in the literature concerning anthracycline administration to rats as the reference laboratory animal model. The analysis of the gathered data gives promising results and solid prospects for both, defining anthracycline cardiotoxicity objective values and delineating the guidelines for assessing cardiotoxicity as a separate hazard class in animal preclinical studies for regulatory purposes.
Collapse
Affiliation(s)
| | | | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| | - Haritini Nepka
- Department of Pathology, University Hospital of Larissa, 41334 Larissa, Greece
| | | | | | - Dimitrios Stagkos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Medical School, University of Athens, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Christina Tsitsimpikou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
22
|
Gürünlüoğlu K, Gül M, Koçbıyık A, Koç A, Üremiş N, Gürünlüoğlu S, Bağ HG, Karaca Y, Taşçi A, Gül S, Üremiş MM, Durmuş K, Demircan M. Investigation of the cardiotoxic effects of parenteral nutrition in rabbits. J Pediatr Surg 2020; 55:465-474. [PMID: 31109733 DOI: 10.1016/j.jpedsurg.2019.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Parenteral nutrition (PN) is used for the intravenous delivery of nutrients to patients who cannot take food orally. However, it is not clear whether PN also negatively impacts cardiac tissue. The present empirical study investigated the cardiac effects of PN in rabbits. METHODS The effects of PN were examined in three groups of rabbits: animals in the PN + fasting group (n = 14) had been fully fasted before receiving a full PN dose via an intravenous central catheter; the PN + oral feeding group (n = 14) received half of the daily calorie requirement as a half dose of PN via an intravenous central catheter; the third group consisted of controls (n = 14) with full enteral feeding and full enteral fluid intake with no PN and no central venous catheter. At the end of the 10-day study period, the rabbits were subjected to echocardiographic examination and euthanized. Blood and tissue samples were obtained from all groups. DNA was isolated from nucleated blood cells. Tissue samples were examined by both light and electron microscopy, relative telomere length was determined from DNA, and blood samples were analyzed biochemically. RESULTS At the end of the study, there were no statistically significant differences in weight change between the three groups. Echocardiography revealed minimally impaired diastolic function in the PN + fasting group compared to the other groups. Biochemical and histopathological analyses, relative telomere length determination, and electron micrographs showed significant cardiac damage in the PN + fasting group but not in the PN + oral feeding group or the control group. The blood biochemical analyses showed hyperglycemia and a low insulin level in the PN + fasting group but not in the other two groups. CONCLUSIONS A combination of PN and fasting may damage the cardiac muscle cells of rabbits via a mechanism involving hyperglycemia and oxidative stress. Additional enteral feeding may protect against the destructive effects of PN on cardiac tissue.
Collapse
Affiliation(s)
- Kubilay Gürünlüoğlu
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya
| | - Mehmet Gül
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya; Department of Histology and Embryolog, İnönü University, Faculty of Medicine, Malatya
| | - Alper Koçbıyık
- Istanbul Kanuni Sultan Suleyman Education and Research Hospital, Pathology Laboratory, Istanbul, Turkey
| | - Ahmet Koç
- Department of Medical Genetics, İnönü University, Faculty of Medicine, Malatya
| | - Nuray Üremiş
- Department of Medical Biochemistry, İnönü University, Faculty of Medicine, Malatya
| | - Semra Gürünlüoğlu
- Malatya, Education and Research Hospital, Pathology Laboratory, Malatya, Turkey
| | - Harika Gözükara Bağ
- Department of Biostatistics and Medical Informatics, İnönü University, Faculty of Medicine, Malatya
| | - Yücel Karaca
- Department of Cardiology, İnönü University, Faculty of Medicine, Malatya
| | - Aytaç Taşçi
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya
| | - Semir Gül
- Istanbul Kanuni Sultan Suleyman Education and Research Hospital, Pathology Laboratory, Istanbul, Turkey
| | | | - Kübra Durmuş
- Department of Medical Genetics, İnönü University, Faculty of Medicine, Malatya
| | - Mehmet Demircan
- Department of Pediatric Surgery, İnönü University, Faculty of Medicine, Malatya.
| |
Collapse
|
23
|
Krasanakis T, Nikolouzakis TK, Sgantzos M, Mariolis-Sapsakos T, Souglakos J, Spandidos DA, Tsitsimpikou C, Tsatsakis A, Tsiaoussis J. Role of anabolic agents in colorectal carcinogenesis: Myths and realities (Review). Oncol Rep 2019; 42:2228-2244. [PMID: 31578582 PMCID: PMC6826302 DOI: 10.3892/or.2019.7351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the four leading causes of cancer‑related mortality worldwide. Even though over the past few decades the global scientific community has made tremendous efforts to understand this entity, many questions remain to be raised on this issue and even more to be answered. Epidemiological findings have unveiled numerous environmental and genetic risk factors, each one contributing to a certain degree to the final account of new CRC cases. Moreover, different trends have been revealed regarding the age of onset of CRC between the two sexes. That, in addition to newly introduced therapeutic approaches for various diseases based on androgens, anti‑androgens and anabolic hormones has raised some concerns regarding their possible carcinogenic effects or their synergistic potential with other substances/risk factors, predisposing the individual to CRC. Notably, despite the intense research on experimental settings and population studies, the conclusions regarding the majority of anabolic substances are ambiguous. Some of these indicate the carcinogenic properties of testosterone, dihydrotestosterone (DHT), growth hormone and insulin‑like growth factor (IGF) and others, demonstrating their neutral nature or even their protective one, as in the case of vitamin D. Thus, the synergistic nature of anabolic substances with other CRC risk factors (such as type 2 diabetes mellitus, metabolic syndrome and smoking) has emerged, suggesting a more holistic approach.
Collapse
Affiliation(s)
- Theodore Krasanakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | | | - Markos Sgantzos
- Faculty of Medicine, Department of Anatomy, Faculty of Medicine, University of Thessaly, 41221 Larissa, Greece
| | - Theodore Mariolis-Sapsakos
- National and Kapodistrian University of Athens, Agioi Anargyroi General and Oncologic Hospital of Kifisia, 14564 Athens, Greece
| | - John Souglakos
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
24
|
A Mechanistic and Pathophysiological Approach for Stroke Associated with Drugs of Abuse. J Clin Med 2019; 8:jcm8091295. [PMID: 31450861 PMCID: PMC6780697 DOI: 10.3390/jcm8091295] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
Drugs of abuse are associated with stroke, especially in young individuals. The major classes of drugs linked to stroke are cocaine, amphetamines, heroin, morphine, cannabis, and new synthetic cannabinoids, along with androgenic anabolic steroids (AASs). Both ischemic and hemorrhagic stroke have been reported due to drug abuse. Several common mechanisms have been identified, such as arrhythmias and cardioembolism, hypoxia, vascular toxicity, vascular spasm and effects on the thrombotic mechanism, as causes for ischemic stroke. For hemorrhagic stroke, acute hypertension, aneurysm formation/rupture and angiitis-like changes have been implicated. In AAS abuse, the effect of blood pressure is rather substance specific, whereas increased erythropoiesis usually leads to thromboembolism. Transient vasospasm, caused by synthetic cannabinoids, could lead to ischemic stroke. Opiates often cause infective endocarditis, resulting in ischemic stroke and hypereosinophilia accompanied by pyogenic arthritis, provoking hemorrhagic stroke. Genetic variants are linked to increased risk for stroke in cocaine abuse. The fact that case reports on cannabis-induced stroke usually refer to the young population is very alarming.
Collapse
|
25
|
Seara FAC, Arantes PC, Domingos AE, Barbosa RAQ, Olivares EL, Sudo RT, Campos de Carvalho AC, Nascimento JHM. Cardiac electrical and contractile disorders promoted by anabolic steroid overdose are associated with late autonomic imbalance and impaired Ca 2+ handling. Steroids 2019; 148:1-10. [PMID: 31028764 DOI: 10.1016/j.steroids.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
AIM Investigate cardiac electrical and mechanical dysfunctions elicited by chronic anabolic steroid (AS) overdose. METHODS Male Wistar rats were treated with nandrolone decanoate (DECA) or vehicle (CTL) for 8 weeks. Electrocardiography and heart rate variability were assessed at weeks 2, 4, and 8. Cardiac reactivity to isoproterenol was investigated in isolated rat hearts. Action potential duration (APD) was measured from left ventricular (LV) muscle strips. L-type Ca2+ current (ICaL), and transient outward potassium current (Ito) were recorded by whole-cell patch-clamp in LV cardiomyocytes. Sarcoplasmic reticulum (SR) Ca2+ mobilization and Ca2+-induced contractile response sensitivity were evaluated in skinned cardiac fibers. Muscarinic type 2 receptor (M2R), β1-adrenergic receptor (β1AR), sarcoplasmic Ca2+ ATPase (SERCA-2a), type 2 ryanodine receptor (RyR2), L-type Ca2+ channel (CACNA1), Kv4.2 (KCND2), and Kv4.3 (KCND3) mRNA expression levels were measured by quantitative RT-PCR. RESULTS Compared with CTL group, DECA group exhibited decreased high frequency band power density (HF) and increased low frequency power density (LF), Cardiac M2R mRNA level was decreased. QTc interval at 2nd, 4th, and 8th week as well as APD30 and APD90 were increased by DECA. Ito density was decreased, while ICaL density was increased by DECA. SR Ca2+ loading and release were decreased by DECA, while contractile sensitivity to Ca2+ was increased versus CTL group. CONCLUSION DECA overdose induced cardiac rhythmic and mechanical abnormalities that can be associated with autonomic imbalance, up-regulated ICaL and down-regulated Ito, abnormal SR Ca2+ mobilization, and increased contractile sensitivity to Ca2+.
Collapse
Affiliation(s)
- Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.
| | - Paulo C Arantes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ainá E Domingos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Emerson L Olivares
- Department of Physiological Sciences, Institute of Biology and Health Sciences, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, RJ, Brazil
| | - Roberto T Sudo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Antonio C Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Jose H M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
26
|
Seara FAC, Barbosa RAQ, Santos MVN, Domingos AE, Monnerat G, Carvalho AB, Olivares EL, Mill JG, Nascimento JHM, Campos de Carvalho AC. Paradoxical effect of testosterone supplementation therapy on cardiac ischemia/reperfusion injury in aged rats. J Steroid Biochem Mol Biol 2019; 191:105335. [PMID: 30930218 DOI: 10.1016/j.jsbmb.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Aging is followed by numerous physiological limitations that reduce health span, particularly cardiovascular and metabolic disorders. Testosterone supplementation therapy (TST) has been widely used in the treatment of aging dysfunctions in either adult or aged patients, although recent evidence have suggested that the incidence of myocardial infarction might be increased in elderly patients. So far, though, the effects of TST in the progression of cardiac ischemia/reperfusion (IR) injury in aged hearts remain unclear. Male aged (23-24 months old) and adult (6 months old) Wistar rats were treated with placebo (Old + Placebo n = 5 / Adult + Placebo n = 5) or TST (Old + TST n = 7 / Adult + TST n = 5) for 30 days. After euthanasia, artificially-perfused isolated rat hearts were submitted to IR. Cardiac expression levels of genes encoding α and β myosin heavy chain (MHC), ryanodine receptor (RyR), brain-natriuretic peptide (BNP), sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), glucose-regulated protein 78 kDa (GRP78), eukaryotic initiation factor 2α (eIF2α), C/EBP-homologous protein (CHOP), caspase 3 and B cell lymphoma 2 (Bcl-2) were accessed by qRT-PCR. Protein levels of CHOP, p-Akt, and p-glycogen synthase kinase 3β (p-GSK-3β) were measured by Western Blot. Compared to placebo-treated aged rats, Old + TST group exhibited increased heart weight and up-regulation of αMHC mRNA expression levels, whereas βMHC mRNA expression (p < 0.05). During reperfusion, left ventricular developed pressure, dP/dt+, dP/dt-, and cardiac contractile function index were increased in Old + TST rat hearts (p < 0.05), whereas infarct size was increased (p < 0.05) in comparison with Old + Placebo group. p-Akt levels of Old + TST rat hearts were decreased when compared to Old + Placebo group. Conversely, TST did not promote significant effects in adult rat hearts. Taken together, these findings suggest that myocardial stunning and infarct size of aged hearts were distinctly affected by TST.
Collapse
Affiliation(s)
- Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil.
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcus V N Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ainá E Domingos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo Monnerat
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana B Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson L Olivares
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropedica, RJ, Brazil
| | - José G Mill
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Jose H M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio C Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Mavrogeni SI, Tsarouhas K, Spandidos DA, Kanaka-Gantenbein C, Bacopoulou F. Sudden cardiac death in football players: Towards a new pre-participation algorithm. Exp Ther Med 2019; 17:1143-1148. [PMID: 30679986 PMCID: PMC6327574 DOI: 10.3892/etm.2018.7041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 11/06/2022] Open
Abstract
Athletic pre-participation screening is essential for minimizing the risk for sudden cardiac death (SCD) in athletes participating in either competitive or leisure sporting activities. The primary causes of SCD in young athletes (<35 years of age) include hypertrophic cardiomyopathy, congenital anomalies of the coronary artery and arrhythmogenic right ventricular cardiomyopathy. Other abnormalities, such as malignant arrhythmia due to blunt trauma to the chest (commotio cordis), myocarditis, valvular disease, aortic rupture (in Marfan syndrome) and ion channelopathies (catecholaminergic polymorphic ventricular tachycardia, Brugada syndrome, long or short QT syndrome), also contribute to a lesser degree to SCD. Currently, clinical assessment, electrocardiogram (ECG) and echocardiography are the cornerstones of the pre-participation athletic evaluation. However, their low sensitivity raises queries as regards the need for the application of more sophisticated modalities, such as cardiovascular magnetic resonance (CMR). CMR offers precise biventricular assessment and is greatly reproducible without the inherent limitations of echocardiography; i.e., low quality of images due to the lack of appropriate acoustic window or operator's experience. Furthermore, myocardium replacement fibrosis, indicative of patients' increased risk for future cardiac events, can be effectively detected by late gadolinium enhanced (LGE) images, acquired 15 min post-contrast injection. Finally, diffuse myocardial fibrosis not identified by LGE, can also be detected by pre-contrast (native) T1, post-contrast T1 mapping and extracellular volume images, which provide detailed information about the underlying pathophysiologic background. Therefore, CMR is recommended in all football players with a positive family or personal history of syncope or SCD, abnormal/doubtful ECG or echocardiogram.
Collapse
Affiliation(s)
- Sophie I Mavrogeni
- Onassis Cardiac Surgery Center, 17674 Athens, Greece.,Exercise Physiology and Sports Medicine Clinic, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Konstantinos Tsarouhas
- Exercise Physiology and Sports Medicine Clinic, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.,Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Demetrios A Spandidos
- Department of Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Christina Kanaka-Gantenbein
- Exercise Physiology and Sports Medicine Clinic, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.,First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Flora Bacopoulou
- Exercise Physiology and Sports Medicine Clinic, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| |
Collapse
|
29
|
Sretenovic J, Ajdzanovic V, Zivkovic V, Srejovic I, Corbic M, Milosevic V, Jakovljevic V, Milosavljevic Z. Nandrolone decanoate and physical activity affect quadriceps in peripubertal rats. Acta Histochem 2018; 120:429-437. [PMID: 29759662 DOI: 10.1016/j.acthis.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Anabolic androgenic steroids (AASs) are synthetic analogs of testosterone often used by athletes to increase the skeletal muscle mass. Our goal was to examine the effects of physical activity and physical activity combined with supraphysiological doses of nandrolone on functional morphology of the quadriceps muscle. The study included 32 peripubertal Wistar rats, divided into 4 groups: control (T-N-), nandrolone (T-N+), physical activity (T+N-) and physical activity plus nandrolone (T+N+) groups. The T+N- and T+N+ group swam for 4 weeks, 1 h/day, 5 days/week. The T-N+ and T+N+ groups received nandolone decanoate (20 mg/kg b.w.) once per week, subcutaneously. Subsequently, the rats were sacrificed and muscle specimens were prepared for the processing. Tissue sections were histochemically and immunohistochemically stained, while the image analysis was used for quantification. Longitudinal diameter of quadriceps muscle cells was increased for 21% in T-N+, for 57% in T+N- and for 64% in T+N+ group while cross section muscle cell area was increased in T-N+ for 19%, in T+N- for 47% and in T+N+ group for 59%, compared to the control. Collagen fibers covered area was increased in T-N+ group for 36%, in T+N- for 109% and in T+N+ group for 159%, compared to the control. Erythrocyte depots were decreased in T-N+ group and increased in T+N- and T+N+ group, in comparison with T-N-. VEGF depots were increased in all treated groups. Chronic administration of supraphysiological doses of AASs alone or in combination with physical activity induces hypertrophy and significant changes in the quadriceps muscle tissue structure.
Collapse
Affiliation(s)
- Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Ajdzanovic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milena Corbic
- Clinic of Neurology, KRH Klinikum Agnes Karll Laatzen, Hannover, Germany
| | - Verica Milosevic
- Department of Cytology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Zoran Milosavljevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
30
|
Ozcagli E, Kara M, Kotil T, Fragkiadaki P, Tzatzarakis MN, Tsitsimpikou C, Stivaktakis PD, Tsoukalas D, Spandidos DA, Tsatsakis AM, Alpertunga B. Stanozolol administration combined with exercise leads to decreased telomerase activity possibly associated with liver aging. Int J Mol Med 2018; 42:405-413. [PMID: 29717770 PMCID: PMC5979936 DOI: 10.3892/ijmm.2018.3644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022] Open
Abstract
Anabolic agents are doping substances which are commonly used in sports. Stanozolol, a 17α‑alkylated derivative of testosterone, has a widespread use among athletes and bodybuilders. Several medical and behavioral adverse effects are associated with anabolic androgenic steroids (AAS) abuse, while the liver remains the most well recognized target organ. In the present study, the hepatic effects of stanozolol administration in rats at high doses resembling those used for doping purposes were investigated, in the presence or absence of exercise. Stanozolol and its metabolites, 16‑β‑hydroxystanozolol and 3'‑hydroxystanozolol, were detected in rat livers using liquid chromatography‑mass spectrometry (LC‑MS). Telomerase activity, which is involved in cellular aging and tumorigenesis, was detected by examining telomerase reverse transcriptase (TERT) and phosphatase and tensin homolog (PTEN) expression levels in the livers of stanozolol‑treated rats. Stanozolol induced telomerase activity at the molecular level in the liver tissue of rats and exercise reversed this induction, reflecting possible premature liver tissue aging. PTEN gene expression in the rat livers was practically unaffected either by exercise or by stanozolol administration.
Collapse
Affiliation(s)
- Eren Ozcagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy and
| | - Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy and
| | - Tugba Kotil
- Department of Histology and Embryology, Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Persefoni Fragkiadaki
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion
| | - Manolis N. Tzatzarakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion
| | | | | | - Dimitrios Tsoukalas
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristides M. Tsatsakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion
| | - Buket Alpertunga
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy and
| |
Collapse
|
31
|
Georgiadis N, Tsarouhas K, Tsitsimpikou C, Vardavas A, Rezaee R, Germanakis I, Tsatsakis A, Stagos D, Kouretas D. Pesticides and cardiotoxicity. Where do we stand? Toxicol Appl Pharmacol 2018; 353:1-14. [PMID: 29885332 DOI: 10.1016/j.taap.2018.06.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases are among the most significant causes of mortality in humans. Pesticides toxicity and risk for human health are controlled at a European level through a well-developed regulatory network, but cardiotoxicity is not described as a separate hazard class. Specific classification criteria should be developed within the frame of Regulation (EC) No 1272/2008 in order to classify chemicals as cardiotoxic, if applicable to avoid long-term cardiovascular complications. The aim of this study was to review the cardiac pathology and function impairment due to exposure to pesticides (i.e. organophosphates, organothiophisphates, organochlorines, carbamates, pyrethroids, dipyridyl herbicides, triazoles, triazines) based on both animal and human data. The majority of human data on cardiotoxicity of pesticides come from poisoning cases and epidemiological data. Several cardiovascular complications have been reported in animal models including electrocardiogram abnormalities, myocardial infarction, impaired systolic and diastolic performance, functional remodeling and histopathological findings, such as haemorrhage, vacuolisation, signs of apoptosis and degeneration.
Collapse
Affiliation(s)
- Nikolaos Georgiadis
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy; Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Konstantinos Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Mezourlo, Larissa 41110, Greece
| | | | - Alexandros Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71003 Crete, Greece
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ioannis Germanakis
- Paediatric Cardiology Unit, Department of Paediatrics, University Hospital Voutes, Heraklion, 71409 Crete, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71003 Crete, Greece
| | - Dimitrios Stagos
- Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece.
| |
Collapse
|
32
|
Tsarouhas K, Kioukia-Fougia N, Papalexis P, Tsatsakis A, Kouretas D, Bacopoulou F, Tsitsimpikou C. Use of nutritional supplements contaminated with banned doping substances by recreational adolescent athletes in Athens, Greece. Food Chem Toxicol 2018; 115:447-450. [PMID: 29621580 DOI: 10.1016/j.fct.2018.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
Abstract
Although the use of nutritional supplements by adult athletes has been extensively studied, information on supplements consumption by adolescent athletes is still limited. The present study reports on the use of nutritional supplements contaminated with banned doping substances among 170 recreational adolescent athletes from eleven, randomly selected, gym centres, in Athens, Greece. Nutritional supplements consumption was reported by almost 60% of the study population, with proteins/amino acids and vitamins being the most popular. Nine per cent of the users were found to consume nutritional supplements contaminated with anabolic steroids, prohormones, selective androgen receptor modulators (SARMs) and aromatase inhibitors, all pharmacological substances with endocrine modulating properties not stated on the label. None of these individuals had previously consulted a physician or a nutritionist. A representative sample (ca 15%) of the protein/aminoacids and creatine preparations used by the study population were also tested and found free from doping substances. The majority (63%) of adolescents purchased products from the internet. In conclusion, exercising adolescents can have easy access to contaminated nutritional supplements and "black market" products, which could constitute a risk for public health. Low level of awareness and low involvement of medical care professionals among recreational adolescent athletes is also observed.
Collapse
Affiliation(s)
- Konstantinos Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Mezourlo, Larissa 41110, Greece
| | - Nassia Kioukia-Fougia
- Doping Control Laboratory of Athens, OAKA "Sp.Louis", Kiffisias 37, Maroussi 15223, Greece
| | - Petros Papalexis
- Spiliopoulio General Hospital "Agia Eleni", 21st Dim. Soutsou Str., Ampelokipi, Athens 11521, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens 11527, Greece
| | | |
Collapse
|
33
|
Tsarouhas K, Tsitsimpikou C, Papantoni X, Lazaridou D, Koutouzis M, Mazzaris S, Rezaee R, Mamoulakis C, Georgoulias P, Nepka C, Rentoukas E, Kyriakides Z, Tsatsakis A, Spandidos DA, Kouretas D. Oxidative stress and kidney injury in trans-radial catheterization. Biomed Rep 2018; 8:417-425. [PMID: 29732146 PMCID: PMC5920711 DOI: 10.3892/br.2018.1071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is linked to coronary artery disease and is a major mechanism in contrast-induced nephropathy. Trans-radial approach in coronary angiography (CA) with minimized peri-procedural bleeding is expected to reduce acute kidney injury incidence. In the present study, oxidative stress patterns observed in radial CA and their associations with early manifestations of kidney injury are described. A total of 20 stable coronary disease patients submitted to CA and 17 sex-matched patients undergoing computed tomography for myoskeletal reasons were enrolled. Reduced glutathione, catalase, thiobarbituric acid reactive species (TBARS) levels and total anti-oxidant status were measured at various time points postangiography. In ischemic patients baseline TBARS levels were 2-fold lower compared to controls, while carbonyls levels were 35% higher. Glutathione was almost 4-fold lower than the control group. Glutathione and lipid peroxidation in ischemic patients gradually increased after contrast medium administration and reached 180% (P<0.001) and 20% (P=0.021) after 4–6 h, respectively. Four patients presented early evidence of contrast-induced nephropathy postangiography, while no control patient developed acute kidney injury. In the multiple logistic regression analysis, only the creatinine levels at baseline influenced the frequency of early contrast-induced nephropathy development (β =0.36, 95% CI: 0.285–0.438, P=0.01). Glutathione low levels were dominant in the baseline values of ischemic patients who developed contrast-induced nephropathy. Glutathione levels rapidly increased while protein oxidation decreased at the expense of lipid peroxidation. In conclusion, early oxidative stress changes occur in trans-radial CA patients with a mild profile, sufficient to mobilize patient antioxidant defenses.
Collapse
Affiliation(s)
| | | | - Xrisoula Papantoni
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Dimitra Lazaridou
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Michael Koutouzis
- 2nd Department of Cardiology, Red Cross Hospital, 11526 Athens, Greece
| | - Savvas Mazzaris
- Department of Cardiology, Amalia Fleming General Hospital, 15127 Athens, Greece
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Charalambos Mamoulakis
- Department of Urology, Medical School, University of Crete, 70013 Heraklion, Crete, Greece
| | | | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Elias Rentoukas
- Department of Cardiology, Amalia Fleming General Hospital, 15127 Athens, Greece
| | - Zenon Kyriakides
- 2nd Department of Cardiology, Red Cross Hospital, 11526 Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 70013 Heraklion, Crete, Greece
| | - Demetrios A Spandidos
- Department of Virology, Medical School, University of Crete, 70013 Heraklion, Crete, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
34
|
Tofighi A, Ahmadi S, Seyyedi SM, Shirpoor A, Kheradmand F, Gharalari FH. Nandrolone administration with or without strenuous exercise promotes overexpression of nephrin and podocin genes and induces structural and functional alterations in the kidneys of rats. Toxicol Lett 2018; 282:147-153. [DOI: 10.1016/j.toxlet.2017.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022]
|
35
|
Pergolizzi B, Carriero V, Abbadessa G, Penna C, Berchialla P, De Francia S, Bracco E, Racca S. Subchronic nandrolone administration reduces cardiac oxidative markers during restraint stress by modulating protein expression patterns. Mol Cell Biochem 2017; 434:51-60. [DOI: 10.1007/s11010-017-3036-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/12/2017] [Indexed: 01/20/2023]
|
36
|
The effect of nandrolone treatment with and without enforced swimming on histological and biochemical changes in the heart and coronary artery of male rats. Anatol J Cardiol 2016; 17:176-183. [PMID: 27752030 PMCID: PMC5864976 DOI: 10.14744/anatoljcardiol.2016.7333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective: Chronic anabolic androgenic steroid (AAS) consumption increases incidence of cardiovascular abnormalities in athletes and mechanisms underlying those abnormalities continue to be investigated. This study examines whether nandrolone consumption induced cardiac and coronary artery wall abnormalities via oxidative stress. It was also designed to determine whether enforced swimming augmented possible cardiotoxic effects of nandrolone in rat heart. Methods: Twenty-four male Wistar rats were divided into 3 groups: control, nandrolone, and nandrolone with enforced swimming. Nandrolone group received 10 mg/kg body weight nandrolone 3 times a week for 6 weeks. Nandrolone group with enforced swimming received the same amount of nandrolone and was forced to swim with excess weight of 20% body weight. Results: After 6 weeks of treatment, results indicated proliferation of heart muscle and coronary smooth muscle cells and lipid peroxidation; significant rise in levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), nicotinamide adenine dinucleotide phosphate oxidase, homocysteine (Hcy), apolipoprotein B, low-density lipoprotein, and cholesterol, as well as severe fibrosis in heart tissue and around coronary arteries of nandrolone and nandrolone with enforced swimming groups compared with control group. Conclusion: These findings strongly support idea that nandrolone intake by sedentary rats and exercised rats induced heart abnormality mediated by oxidative stress, which was manifest in increased lipid peroxidation, Hcy, and 8-OHdG in heart tissue.
Collapse
|
37
|
Nephrotoxicity in rabbits after long-term nandrolone decanoate administration. Toxicol Lett 2016; 259:21-27. [DOI: 10.1016/j.toxlet.2016.06.1122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
|