1
|
Yang J, Cai J, Chen Z, Tan M, Zheng H, Gao J, Lin H, Zhu G, Cao W. Effect of steaming on the selenium form, structure, and bioavailability of selenopolysaccharides from Chlamys nobilis. Food Chem 2025; 478:143715. [PMID: 40056616 DOI: 10.1016/j.foodchem.2025.143715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/10/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
To investigate the effect of steam processing on the form, structure and biological properties of selenopolysaccharides in the Chlamys nobilis, we conducted purification and compositional analysis of both raw and steamed samples. The results showed that the raw (SS-3) and steamed (SZ-3) groups had the highest selenium content in the purified fraction. Comparison of the structural characterization shows that selenium can exist in both O-Se-O and Se-O-C chemical bonds, but the absorption strength of the chemical bonds decreased after steam treatment, and steaming can convert β-type pyranose to α-type in selenopolysaccharides. In vitro simulation of gastrointestinal digestion, SZ-3 fractions showed a higher bioaccessibility compared to SS-3 fractions, and also the cellular transport and uptake rates of selenium SZ-3 > SS-3 > sodium selenite were significant in the Caco-2 cell model. In conclusion, steaming can alter the structure and selenium content of selenopolysaccharides without affecting their bioavailability.
Collapse
Affiliation(s)
- Junyang Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Junting Cai
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineer-ing Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Process-ing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Mingtang Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineer-ing Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Process-ing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineer-ing Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Process-ing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineer-ing Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Process-ing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineer-ing Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Process-ing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Guoping Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineer-ing Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Process-ing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineer-ing Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Process-ing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Sousa A, Kämpfer AAM, Schins RPF, Carvalho F, Fernandes E, Freitas M. Protective effects of quercetin on intestinal barrier and cellular viability against silver nanoparticle exposure: insights from an intestinal co-culture model. Nanotoxicology 2025; 19:141-155. [PMID: 39895265 DOI: 10.1080/17435390.2025.2450372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
The intestinal epithelium plays a pivotal role as a vital barrier between the external environment and the human body, regulating nutrient absorption and preventing the entry of harmful substances. The human oral exposure to silver nanoparticles (AgNP) raises concerns about their potential toxicity, especially at the intestinal level. The objective of this work was to investigate the potential pro-inflammatory effects of polyvinylpyrrolidone (PVP)-AgNP of two different sizes, 5 and 50 nm, at the intestinal level, while also assessing the protective ability of quercetin against these effects. To address this, an intestinal co-culture model comprising C2BBe1 cells and THP-1 derived macrophages was established, and the effects of 5 or 50 nm PVP-AgNP were studied, alone or in combination with quercetin, over two-time points, 4 and 24 hours. PVP-AgNP, of both sizes, disrupted the barrier integrity within 4 hours of exposure. However, a notable intensification in pro-inflammatory effects was evident only after 24 hours of exposure, especially with smaller PVP-AgNP (5 nm). This resulted in heightened cellular death, increased levels of reactive species, activation of nuclear factor kappa B (NF-кB), and production of interleukin (IL)-8. Quercetin demonstrates the ability to maintain barrier integrity and mitigate oxidative stress, thereby offering protection against the detrimental effects induced by AgNP at the intestinal level.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Angela A M Kämpfer
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Sousa A, Carvalho F, Fernandes E, Freitas M. Quercetin protective potential against nanoparticle-induced adverse effects. Nanotoxicology 2025; 19:28-49. [PMID: 39815656 DOI: 10.1080/17435390.2024.2446554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
The rapid development of nanotechnology has resulted in the widespread use of nanoparticles (NPs) in various sectors due to their unique properties and diverse applications. However, the increased exposure of humans to NPs raises concerns about their potential negative impact on human health and the environment. The pathways through which NPs exert adverse effects, including inflammation and oxidative stress, are primarily influenced by their size, shape, surface charge, and chemistry, underscoring the critical need to comprehend and alleviate their potential detrimental impacts. In this context, the natural flavonoid quercetin is a promising candidate for counteracting the toxicity induced by NPs due to its anti-inflammatory and antioxidant properties. This review provides an overview of the existing literature on quercetin's protective effects against NPs-induced toxicity, highlighting its therapeutic benefits and mechanisms of action, focusing on its ability to alleviate oxidative stress, inflammation, and cellular damage caused by various types of NPs. Insights from both in vitro and in vivo studies demonstrate the effectiveness of quercetin in preserving cellular function, modulating apoptotic pathways, and maintaining tissue integrity in the presence of NPs. The potential of quercetin as a natural therapeutic agent against NPs-induced toxicity provides valuable insights for safer use of NPs in various daily applications.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Sousa A, Amaro A, Costa VM, Azevedo R, Oliveira S, Viana S, Reis F, Almeida A, Matafome P, Dias-Pereira P, Carvalho F, Fernandes E, Freitas M. Exploring quercetin's protective potential against the pro-inflammatory effects of silver nanoparticles in C57BL/6J mice. Food Chem Toxicol 2025; 195:115081. [PMID: 39510241 DOI: 10.1016/j.fct.2024.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The increasing prevalence of silver nanoparticles (AgNP) in various applications has sparked concerns about their potential adverse effects on human health. Hence, it is crucial to devise strategies to minimize their detrimental effects. Quercetin, a naturally occurring flavonoid present in human diet is known for its broad biological effects, including anti-inflammatory properties. Considering this, quercetin could serve as a promising strategy to protect the body against the harmful effects of AgNP. Thus, this study aimed to evaluate the potential protective role of quercetin against the deleterious effects induced by 5 nm polyvinylpyrrolidone (PVP)-AgNP in C57BL/6J mice. Using a novel administration technology (HaPILLness), mice were given a daily oral dose of AgNP at 1 mg/kg body weight (bw) or 10 mg/kg bw for 14 days, combined with daily IP injections of quercetin at 1 mg/kg bw. Our findings demonstrate that quercetin effectively attenuated the AgNP-induced intestinal inflammatory response, as demonstrated by reduced histological vascular and cellular alterations, along with a notable decrease in cytokine production, attributed to the inhibition of the nuclear factor (NF)-кB inflammatory pathway. Quercetin's protective effects extended to the liver and lungs, by reversing changes in the inflammatory and antioxidant markers cluster of differentiation (CD)4, superoxide dismutase 1 (SOD1) and catalase.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Andreia Amaro
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal
| | - Vera Marisa Costa
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Rui Azevedo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Sara Oliveira
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal; Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), 3046-854, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal
| | - Agostinho Almeida
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paulo Matafome
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531, Coimbra, Portugal; Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), 3046-854, Coimbra, Portugal
| | - Patrícia Dias-Pereira
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Associated Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Wang C, Zhou Z, He Y, Li J, Cao Y. Influences of TiO 2 nanoparticle and fipronil co-exposure on metabolite profiles in mouse intestines. J Appl Toxicol 2024; 44:1793-1803. [PMID: 39075329 DOI: 10.1002/jat.4680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Food contaminates, such as insecticide, may influence the toxicity of nanoparticles (NPs) to intestine. The present study investigated the combined toxicity of TiO2 NPs and fipronil to male mouse intestine. Juvenile mice (8 weeks) were orally exposed to 5.74 mg/kg TiO2 NPs, 2.5 mg/kg fipronil, or both, once a day, for 5 days. We found that both TiO2 NPs and fipronil induced some pathological changes in intestines, accompanying with defective autophagy, but these effects were not obviously enhanced after TiO2 NP and fipronil co-exposure. Fipronil promoted Ti accumulation but induced minimal impact on other trace elements in TiO2 NP-exposed intestines. Metabolomics data revealed that the exposure altered metabolite profiles in mouse intestines, and two KEGG pathways, namely, ascorbate and aldarate metabolism (mmu00053) and glutathione metabolism (mmu00480), were only statistically significantly changed after TiO2 NP and fipronil co-exposure. Five metabolites, including 2-deoxy-D-erythro-pentofuranose 5-phosphate, 5alpha-cholestanol, beta-D-glucopyranuronic acid, elaidic acid, and isopentadecanoic acid, and maltotriose, were more significantly up-regulated after the co-exposure, whereas trisaccharide and xylonolactone were only significantly down-regulated by the co-exposure. We concluded that fipronil had minimal impact to enhance the toxicity of TiO2 NPs to mouse intestines but altered metabolite profiles.
Collapse
Affiliation(s)
- Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhengzheng Zhou
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yayu He
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Bakhshi A, Naghib SM, Rabiee N. Antibacterial and Antiviral Nanofibrous Membranes. ACS SYMPOSIUM SERIES 2024:47-88. [DOI: 10.1021/bk-2024-1472.ch002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran,16846-13114, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran,16846-13114, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
7
|
Wang C, Huang C, Cao Y. Epigallocatechin gallate alleviated the in vivo toxicity of ZnO nanoparticles to mouse intestine. J Appl Toxicol 2024; 44:686-698. [PMID: 38095138 DOI: 10.1002/jat.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 04/16/2024]
Abstract
To evaluate the oral toxicity of nanoparticles (NPs), it is necessary to consider the interactions between NPs and nutrient molecules. Recently, we reported that epigallocatechin gallate (EGCG), a healthy component in green tea, alleviated the toxicity of ZnO NPs to 3D Caco-2 spheroids in vitro. The present study investigated the combined effects of EGCG and ZnO NPs to mice in vivo. Mice were administrated with 35 or 105 mg/kg bodyweight ZnO NPs with or without the presence of 80 mg/kg bodyweight EGCG via gastric route, once a day, for 21 days, and the influences of EGCG on the toxicity of ZnO NPs to intestine were investigated. We found that EGCG altered the colloidal properties of ZnO NPs both in water and artificial intestine juice. As expected, ZnO NPs induced toxicological effects, such as decreased bodyweight, higher Chiu's scores, and ultrastructural changes in intestine, whereas EGCG alleviated these effects. Combined exposure to EGCG and ZnO NPs also changed trace element levels in mouse intestine. For example, the levels of Ti, Co, and Ni were only significantly elevated after co-exposure to EGCG and ZnO NPs, and Fe levels were only significantly decreased by ZnO NPs. Western blot analysis suggested that tight junction (TJ) and endoplasmic reticulum (ER) proteins were elevated by ZnO NPs, but EGCG inhibited this trend. Combined, these data suggested that gastric exposure to ZnO NPs induced intestinal damage, trace element imbalance, and TJ/ER protein expression in mouse intestine, whereas EGCG alleviated these effects of ZnO NPs.
Collapse
Affiliation(s)
- Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
8
|
Rohatgi N, Ganapathy D, Sathishkumar P. Eradication of Pseudomonas aeruginosa biofilm using quercetin-mediated copper oxide nanoparticles incorporated in the electrospun polycaprolactone nanofibrous scaffold. Microb Pathog 2023; 185:106453. [PMID: 37977482 DOI: 10.1016/j.micpath.2023.106453] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that form biofilms in chronic wounds and is difficult to treat with standard treatment methods. In the present study, flavonoid quercetin-mediated CuONPs (Que-CuONPs) were successfully synthesized and incorporated in the electrospun polycaprolactone (Que-CuONPs-PCL) nanofibrous membrane to eradicate the burn wound infection causing P. aeruginosa biofilm. The fabricated scaffold Que-CuONPs-PCL was characterized using HR-SEM, EDX, XRD, and FTIR. The synthesized Que-CuONPs appeared as spherical in shape with the average size of 36 nm. The crystallite size of the synthesized CuONPs was calculated as 23 nm. Antibacterial activity results shows that the ZOI and MIC of Que-CuONPs against P. aeruginosa was found to be 20 mm and 5 μg/mL, respectively. Antibiofilm assay results indicate the pre-formed P. aeruginosa biofilm was completely eradicated by Que-CuONPs at 8-MIC. The Que-CuONPs-PCL nanofibrous scaffolds exhibits less cytotoxic effects on mouse fibroblast (L929) cells. Finally, this study highlights the fabricated Que-CuONPs-PCL nanofibrous scaffolds exhibits an excellent antibiofilm effect against P. aeruginosa biofilm with a great biocompatibility.
Collapse
Affiliation(s)
- Navni Rohatgi
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Dhanraj Ganapathy
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
9
|
Encapsulation of lycopene into electrospun nanofibers from whey protein isolate-Tricholoma lobayense polysaccharide complex stabilized emulsions: Structural characterization, storage stability, in vitro release, and cellular evaluation. Int J Biol Macromol 2023; 238:123993. [PMID: 36907295 DOI: 10.1016/j.ijbiomac.2023.123993] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
In this study, lycopene-loaded nanofibers were successfully fabricated by electrospinning of oil-in-water (O/W) emulsions stabilized by whey protein isolate-polysaccharide TLH-3 (WPI-TLH-3) complexes. The lycopene encapsulated in the emulsion-based nanofibers exhibited enhanced photostability and thermostability, and achieved improved targeted small intestine-specific release. The release of lycopene from the nanofibers followed Fickian diffusion mechanism in simulated gastric fluid (SGF) and first-order model in simulated intestinal fluid (SIF) with the enhanced release rates. The bioaccessibility and cellular uptake efficiency of lycopene in micelles by Caco-2 cells after in vitro digestion were significantly improved. The intestinal membrane permeability and transmembrane transport efficiency of lycopene in micelles across Caco-2 cells monolayer were greatly elevated, thus promoting the effective absorption and intracellular antioxidant activity of lycopene. This work opens a potential approach for electrospinning of emulsions stabilized by protein-polysaccharide complexes as a novel delivery system for liposoluble nutrients with enhanced bioavailability in functional food industries.
Collapse
|
10
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Cao Y. Nutrient molecule corona: An update for nanomaterial-food component interactions. Toxicology 2022; 476:153253. [PMID: 35811011 DOI: 10.1016/j.tox.2022.153253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
The adsorption of biological molecules to nanomaterials (NMs) will significantly impact NMs' behavior in complex microenvironments. Previously we proposed the need to consider the interactions between food components and NMs for the evaluation of oral toxicity of NMs. This review updated this concept as nutrient molecule corona, that the adsorption of nutrient molecules alters the uptake of nutrient molecules and/or NMs, as well as the signaling pathways to induce a combined toxicity due to the biologically active nature of nutrient molecules. Even with the presence of protein corona, nutrient molecules may still bind to NMs to change the identities of NMs in vivo. Furthermore, this review proposed the binding of excessive nutrient molecules to NMs to induce a combined toxicity under pathological conditions such as metabolic diseases. The structures of nutrient molecules and physicochemical properties of NMs determine nutrient molecule corona formation, and these aspects should be considered to limit the unwanted effects brought by nutrient molecule corona. In conclusion, similar to other biological molecule corona, the formation of nutrient molecule corona due to the presence of food components or excessive nutrient molecules in pathophysiological microenvironments will alter the behaviors of NMs.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Application of Fucoidan in Caco-2 Model Establishment. Pharmaceuticals (Basel) 2022; 15:ph15040418. [PMID: 35455415 PMCID: PMC9024647 DOI: 10.3390/ph15040418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
The Caco-2 model is a common cell model for material intestinal absorption in vitro, which usually takes 21 days to establish. Although some studies have shown that adding puromycin (PM) can shorten the model establishment period to 7 days, this still requires a long modeling time. Therefore, exploring a shorter modeling method can reduce the experimental costs and promote the development and application of the model. Fucoidan is an acidic polysaccharide with various biological activities. Our study showed that the transepithelial electrical resistance (TEER) value could reach 600 Ω·cm2 on the fourth day after the addition of fucoidan and puromycin, which met the applicable standards of the model (>500 Ω). Moreover, the alkaline phosphatase (AKP) activity, fluorescein sodium transmittance, and cell morphology of this model all met the requirements of model establishment. Fucoidan did not affect the absorption of macromolecular proteins and drugs. The results indicate that fucoidan can be applied to establish the Caco-2 model and can shorten the model establishment period to 5 days.
Collapse
|
13
|
Sousa A, Bradshaw TD, Ribeiro D, Fernandes E, Freitas M. Pro-inflammatory effects of silver nanoparticles in the intestine. Arch Toxicol 2022; 96:1551-1571. [PMID: 35296919 DOI: 10.1007/s00204-022-03270-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
Nanotechnology is a promising technology of the twenty-first century, being a rapidly evolving field of research and industrial innovation widely applied in our everyday life. Silver nanoparticles (AgNP) are considered the most commercialized nanosystems worldwide, being applied in diverse sectors, from medicine to the food industry. Considering their unique physical, chemical and biological properties, AgNP have gained access into our daily life, with an exponential use in food industry, leading to an increased inevitable human oral exposure. With the growing use of AgNP, several concerns have been raised, in recent years, about their potential hazards to human health, more precisely their pro-inflammatory effects within the gastrointestinal system. Therefore a review of the literature has been undertaken to understand the pro-inflammatory potential of AgNP, after human oral exposure, in the intestine. Despite the paucity of information reported in the literature about this issue, existing studies indicate that AgNP exert a pro-inflammatory action, through generation of oxidative stress, accompanied by mitochondrial dysfunction, interference with transcription factors and production of cytokines. However, further studies are needed to elucidate the mechanistic pathways and molecular targets involved in the intestinal pro-inflammatory effects of AgNP.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Tracey D Bradshaw
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042, Angra do Heroísmo, Açores, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| |
Collapse
|
14
|
Cao W, Gu M, Wang S, Huang C, Xie Y, Cao Y. Effects of epigallocatechin gallate on the stability, dissolution and toxicology of ZnO nanoparticles. Food Chem 2022; 371:131383. [PMID: 34808776 DOI: 10.1016/j.foodchem.2021.131383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 01/17/2023]
Abstract
Previously we reported the cytoprotective effects of polyphenols rich in hydroxyl groups against ZnO nanoparticles (NPs). This study used RNA-sequencing to evaluate the toxicity of ZnO NPs and epigallocatechin gallate (EGCG) to 3D Caco-2 spheroids. EGCG altered the colloidal stability of ZnO NPs, shown as the changes of atomic force microscopic height, solubility in cell culture medium, and hydrodynamic sizes. EGCG almost completely reversed ZnO NP-induced cytotoxicity, and consistently, alleviated ZnO NP-induced gene ontology (GO) terms and genes related with apoptosis. EGCG also modestly decreased intracellular Zn ions and changed GO terms and genes related with endocytosis/exocytosis in ZnO NP-exposed spheroids. Meanwhile, EGCG changed ZnO NP-induced alteration of GO terms and genes related with the functions of mitochondria, endoplasmic reticulum and lysosomes. We concluded that EGCG alleviated the cytotoxicity of ZnO NPs to 3D Caco-2 spheroids by altering NPs' colloidal properties and the pathways related with internalization and organelle dysfunction.
Collapse
Affiliation(s)
- Wandi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Manyu Gu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuyi Wang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China.
| |
Collapse
|
15
|
Moradi M, Razavi R, Omer AK, Farhangfar A, McClements DJ. Interactions between nanoparticle-based food additives and other food ingredients: A review of current knowledge. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Rufino AT, Ramalho A, Sousa A, de Oliveira JMPF, Freitas P, Gómez MAG, Piñeiro-Redondo Y, Rivas J, Carvalho F, Fernandes E, Freitas M. Protective Role of Flavonoids against Intestinal Pro-Inflammatory Effects of Silver Nanoparticles. Molecules 2021; 26:6610. [PMID: 34771019 PMCID: PMC8588041 DOI: 10.3390/molecules26216610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticles (AgNP) have been increasingly incorporated into food-related and hygiene products for their unique antimicrobial and preservative properties. The consequent oral exposure may then result in unpredicted harmful effects in the gastrointestinal tract (GIT), which should be considered in the risk assessment and risk management of these materials. In the present study, the toxic effects of polyethyleneimine (PEI)-coated AgNP (4 and 19 nm) were evaluated in GIT-relevant cells (Caco-2 cell line as a model of human intestinal cells, and neutrophils as a model of the intestinal inflammatory response). This study also evaluated the putative protective action of dietary flavonoids against such harmful effects. The obtained results showed that AgNP of 4 and 19 nm effectively induced Caco-2 cell death by apoptosis with concomitant production of nitric oxide, irrespective of the size. It was also observed that AgNP induced human neutrophil oxidative burst. Interestingly, some flavonoids, namely quercetin and quercetagetin, prevented the deleterious effects of AgNP in both cell types. Overall, the data of the present study provide a first insight into the promising protective role of flavonoids against the potentially toxic effects of AgNP at the intestinal level.
Collapse
Affiliation(s)
- Ana T. Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Ana Ramalho
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - José Miguel P. Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Paulo Freitas
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;
| | - Manuel A. Gonzalez Gómez
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - Yolanda Piñeiro-Redondo
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - José Rivas
- Nanotechnology and Magnetism Lab—NANOMAG, Department of Applied Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.G.G.); (Y.P.-R.); (J.R.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.T.R.); (A.R.); (A.S.); (J.M.P.F.d.O.)
| |
Collapse
|
17
|
Mancuso C, Re F, Rivolta I, Elli L, Gnodi E, Beaulieu JF, Barisani D. Dietary Nanoparticles Interact with Gluten Peptides and Alter the Intestinal Homeostasis Increasing the Risk of Celiac Disease. Int J Mol Sci 2021; 22:6102. [PMID: 34198897 PMCID: PMC8201331 DOI: 10.3390/ijms22116102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
The introduction of metallic nanoparticles (mNPs) into the diet is a matter of concern for human health. In particular, their effect on the gastrointestinal tract may potentially lead to the increased passage of gluten peptides and the activation of the immune response. In consequence, dietary mNPs could play a role in the increasing worldwide celiac disease (CeD) incidence. We evaluated the potential synergistic effects that peptic-tryptic-digested gliadin (PT) and the most-used food mNPs may induce on the intestinal mucosa. PT interaction with mNPs and their consequent aggregation was detected by transmission electron microscopy (TEM) analyses and UV-Vis spectra. In vitro experiments on Caco-2 cells proved the synergistic cytotoxic effect of PT and mNPs, as well as alterations in the monolayer integrity and tight junction proteins. Exposure of duodenal biopsies to gliadin plus mNPs triggered cytokine production, but only in CeD biopsies. These results suggest that mNPs used in the food sector may alter intestinal homeostasis, thus representing an additional environmental risk factor for the development of CeD.
Collapse
Affiliation(s)
- Clara Mancuso
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
| | - Luca Elli
- Centre for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (F.R.); (I.R.); (E.G.)
| |
Collapse
|
18
|
Li F, Wei Y, Zhao J, Yu G, Huang L, Li Q. Transport mechanism and subcellular localization of a polysaccharide from Cucurbia Moschata across Caco-2 cells model. Int J Biol Macromol 2021; 182:1003-1014. [PMID: 33892025 DOI: 10.1016/j.ijbiomac.2021.04.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
Pumpkin polysaccharides with various bioactivities are mainly taken orally, thus detailed knowledge of the intestinal transport of which are essential for understanding its bioactivities. The Caco-2 cells monolayer model (mimic intestinal epithelium) was successfully constructed and Cucurbia moschata polysaccharides (PPc-F) were successfully conjugated with fluorescein isothiocyanate (FITC) to evaluate the transcellular transport mechanism and subcellular localization of PPc. The transport process of PPc-F was energy-dependent, and a moderately-absorbed biological macromolecule according to the apparent permeability coefficients (Papp) value. The endocytosis process of PPc-F in Caco-2 cells included the clathrin- and caveolae (or lipid draft)-medicated routes. And the translocation process was related to endoplasmic reticulum (ER), golgi apparatus (GA), tubulin and the acidification of endosomes. As for the intracellular location of PPc-F, it was mainly accumulated in ER. The study provided an understanding of the transmembrane transport of PPc-F, and could help studying the mechanisms of its effects.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Guoyong Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
19
|
Cao Y, Li S, Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol Mech Methods 2021; 31:1-17. [PMID: 32972312 DOI: 10.1080/15376516.2020.1828521] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Exposure to nanoparticles (NPs) is plausible in real life due to ambient particulate exposure or development of nanotechnologies, hence the evaluation of NP toxicity as well as mechanism-based studies are necessary. The in vitro models allow rapid testing of NP toxicity, but it is required that the developed in vitro models are reliable to reflect the toxicity of NPs. In this review, we discussed the principles to model better in vitro models to predict the toxicity of NPs based on our own experiences and works of literature. We suggested that in vitro nanotoxicological studies should consider (1) using normal cells because the commonly used cancer cell lines might not reflect the toxicity of NPs to normal tissues; (2) the possible influence of biological molecules to reflect the toxicity of NPs in a biological microenvironment; (3) the influence of pathophysiological conditions to mimic the responses of NPs under different in vivo conditions; and (4) developing advanced tissue-based models to reflect the responses of tissues/organs to NPs. It is our hope that this review may provide useful information for the future design of in vitro nanotoxicological studies.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Jiamao Chen
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| |
Collapse
|
20
|
Wang J, Zhang J, Li S, Huang C, Xie Y, Cao Y. Anthocyanins decrease the internalization of TiO 2 nanoparticles into 3D Caco-2 spheroids. Food Chem 2020; 331:127360. [PMID: 32585548 DOI: 10.1016/j.foodchem.2020.127360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
The influence of food components on nanoparticle (NP) internalization indicates a need to investigate the behaviors of NPs in a complex system. This study measured the changes of TiO2 NP colloidal stability and quenching of anthocyanin fluorescence to indicate NP-anthocyanin interactions, and cytotoxicity, oxidative stress, expression of ABC transporters and intracellular Ti concentrations in 3D Caco-2 spheroids co-exposed to NPs and anthocyanins to indicate the influence of anthocyanins on NP bio-effects. The anthocyanins were observed to have minimal impacts on colloidal properties of TiO2 NPs. Meanwhile, NP-anthocyanin co-exposure did not induce cytotoxicity or oxidative stress. The fluorescence quenching study indicated the binding of anthocyanins onto TiO2 NPs, and the binding affinity was inversely correlated with NP internalization into 3D Caco-2 spheroids. This may be partially related with the up-regulation of ABC transporters. Our results may provide novel insights into understanding the interactions of NPs and anthocyanins with human intestinal cells.
Collapse
Affiliation(s)
- Junkang Wang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jiaqi Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
21
|
Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis TP, Zhao Y, Ke PC, Chen C. Implications of the Human Gut-Brain and Gut-Cancer Axes for Future Nanomedicine. ACS NANO 2020; 14:14391-14416. [PMID: 33138351 DOI: 10.1021/acsnano.0c07258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent clinical and pathological evidence have implicated the gut microbiota as a nexus for modulating the homeostasis of the human body, impacting conditions from cancer and dementia to obesity and social behavior. The connections between microbiota and human diseases offer numerous opportunities in medicine, most of which have limited or no therapeutic solutions available. In light of this paradigm-setting trend in science, this review aims to provide a comprehensive and timely summary of the mechanistic pathways governing the gut microbiota and their implications for nanomedicines targeting cancer and neurodegenerative diseases. Specifically, we discuss in parallel the beneficial and pathogenic relationship of the gut microbiota along the gut-brain and gut-cancer axes, elaborate on the impact of dysbiosis and the gastrointestinal corona on the efficacy of nanomedicines, and highlight a molecular mimicry that manipulates the universal cross-β backbone of bacterial amyloid to accelerate neurological disorders. This review further offers a forward-looking section on the rational design of cancer and dementia nanomedicines exploiting the gut-brain and gut-cancer axes.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Nikolaos Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
22
|
De Vos S, Waegeneers N, Verleysen E, Smeets K, Mast J. Physico-chemical characterisation of the fraction of silver (nano)particles in pristine food additive E174 and in E174-containing confectionery. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1831-1846. [PMID: 32946346 DOI: 10.1080/19440049.2020.1809719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Silver (E174) is authorised as a food additive in the EU. The unknown particle size distribution of E174 is a specific concern for the E174 risk assessment. This study characterised the fraction of silver (nano)particles in 10 commercially available pristine E174 food additives and 10 E174-containing products by transmission electron microscopy (TEM) and single-particle inductively coupled plasma-mass spectrometry (spICP-MS). TEM analysis showed that all samples contained micrometre-sized flakes and also a fraction of (nano)particles. Energy-dispersive X-ray spectroscopy (EDX) and electron diffraction confirmed that the (nano)particles and micrometre-sized flakes consisted of silver. A higher amount of (nano)particles was observed in the products than in the food additives. In addition, the surface of the micrometre-sized flakes was rougher in products. The median of the minimum external dimension, assessed as minimal Feret diameter, of the fraction of (nano)particles determined by quantitative TEM analysis was 11 ± 4 nm and 18 ± 7 nm (overall mean ± standard deviation), for food additives and products, respectively. Similar size distributions were obtained by spICP-MS and TEM, considering the limit of detection of spICP-MS. The median of the equivalent spherical diameter of the fraction of (nano)particles determined by spICP-MS was 19 ± 4 nm and 21 ± 2 nm (overall mean ± standard deviation), for food additives and products, respectively. In all samples, independent of the choice of technique, the nano-sized particles represented more than 97% (by number) of the silver particles, even though the largest mass of silver was present as flakes.
Collapse
Affiliation(s)
- Sandra De Vos
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| | - Nadia Waegeneers
- Service Trace Elements and Nanomaterials, Sciensano , Tervuren, Belgium
| | - Eveline Verleysen
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Hasselt University , Hasselt, Belgium
| | - Jan Mast
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| |
Collapse
|
23
|
Dong Y, Lei J, Zhang B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult Sci 2020; 99:4892-4903. [PMID: 32988526 PMCID: PMC7598137 DOI: 10.1016/j.psj.2020.06.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/04/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
This study was conducted to evaluate the effects of quercetin on the antioxidant ability, intestinal barrier functions, and cecal microbiota in broiler chickens fed with oxidized soya oil. Four hundred eighty male Arbor Acres broilers were randomly assigned to 5 treatments, each involving 8 cages (12 birds per cage). The treatment groups were as follows: the control group, birds fed with basal diets containing oxidized oil, and birds fed with basal diets containing oxidized oil and supplemented with 200 ppm of quercetin, 400 ppm of quercetin, and 800 ppm of quercetin. The results showed that dietary supplementation with quercetin at a dose of 400 ppm or 800 ppm alleviated the increased serum malondialdehyde (MDA) level induced by oxidized oil on day 11 (P = 0.005) and reversed the increased MDA level in the mucosa on day 11 (P = 0.021). Quercetin significantly upregulated the transcription of nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream genes such as catalase (P < 0.001), superoxide dismutase 1 (P < 0.001), glutathione peroxidase 2 (P = 0.018), heme oxygenase-1 (HO-1) (P = 0.0), and thioredoxin (P = 0.002) and reversed the mRNA expression of HO-1 (P = 0.007) in the ileal mucosa. Tight junction protein 1 was only downregulated by oxidized oil (P = 0.013). In addition, quercetin (800 ppm) alleviated the decreased mRNA expression of mucin 2 (MUC2), which contributed to the intestinal chemical barrier (P = 0.039). The supplemental dose of 400 ppm of quercetin was able to promote Lactobacillus in the cecum, which enhanced the gastrointestinal tract health. In summary, these results indicated that quercetin ameliorated the oxidized oil–induced oxidative stress by upregulating the transcription of Nrf2 and its downstream genes to restore redox balance and reinforced the intestinal barrier via higher expression and secretion of MUC2 and facilitating the growth of Lactobacillus in the cecum. Therefore, quercetin could be a potential feed additive that can be applied in poultry production for amelioration of oxidative stress caused by oxidized oil and preventing the potential invasion of exogenous pathogens.
Collapse
Affiliation(s)
- Yuanyang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
The Impact of Engineered Silver Nanomaterials on the Immune System. NANOMATERIALS 2020; 10:nano10050967. [PMID: 32443602 PMCID: PMC7712063 DOI: 10.3390/nano10050967] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Over the last decades there has been a tremendous volume of research efforts focused on engineering silver-based (nano)materials. The interest in silver has been mostly driven by the element capacity to kill pathogenic bacteria. In this context, the main area of application has been medical devices that are at significant risk of becoming colonized by bacteria and subsequently infected. However, silver nanomaterials have been incorporated in a number of other commercial products which may or may not benefit from antibacterial protection. The rapid expansion of such products raises important questions about a possible adverse influence on human health. This review focuses on examining currently available literature and summarizing the current state of knowledge of the impact of silver (nano)materials on the immune system. The review also looks at various surface modification strategies used to generate silver-based nanomaterials and the immunomodulatory potential of these materials. It also highlights the immune response triggered by various silver-coated implantable devices and provides guidance and perspective towards engineering silver nanomaterials for modulating immunological consequences.
Collapse
|
25
|
Cui X, Bao L, Wang X, Chen C. The Nano-Intestine Interaction: Understanding the Location-Oriented Effects of Engineered Nanomaterials in the Intestine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907665. [PMID: 32347646 DOI: 10.1002/smll.201907665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanomaterials (ENMs) are used in food additives, food packages, and therapeutic purposes owing to their useful properties, Therefore, human beings are orally exposed to exogenous nanomaterials frequently, which means the intestine is one of the primary targets of nanomaterials. Consequently, it is of great importance to understand the interaction between nanomaterials and the intestine. When nanomaterials enter into gut lumen, they inevitably interact with various components and thereby display different effects on the intestine based on their locations; these are known as location-oriented effects (LOE). The intestinal LOE confer a new biological-effect profile for nanomaterials, which is dependent on the involvement of the following biological processes: nano-mucus interaction, nano-intestinal epithelial cells (IECs) interaction, nano-immune interaction, and nano-microbiota interaction. A deep understanding of NM-induced LOE will facilitate the design of safer NMs and the development of more efficient nanomedicine for intestine-related diseases. Herein, recent progress in this field is reviewed in order to better understand the LOE of nanomaterials. The distant effects of nanomaterials coupling with microbiota are also highlighted. Investigation of the interaction of nanomaterials with the intestine will stimulate other new research areas beyond intestinal nanotoxicity.
Collapse
Affiliation(s)
- Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| |
Collapse
|
26
|
Simões LS, Martins JT, Pinheiro AC, Vicente AA, Ramos OL. β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies. Food Res Int 2020; 131:108979. [DOI: 10.1016/j.foodres.2020.108979] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/25/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
|
27
|
Laloux L, Kastrati D, Cambier S, Gutleb AC, Schneider YJ. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907687. [PMID: 32187880 DOI: 10.1002/smll.201907687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are used in the agri-food sector, which can lead to their ingestion. Their interaction with food and their passage through the gastrointestinal tract can alter their properties and influence their fate upon ingestion. Therefore, this study aims at developing an in vitro method to follow the fate of AgNPs in the gastrointestinal tract. After incorporation of AgNPs into a standardized food matrix, a precolonic digestion is simulated and AgNPs are characterized by different techniques. The presence of food influences the AgNPs properties by forming a corona around nanoparticles. Even if the salivary step does not impact significantly the AgNPs, the pH decrease and the digestive enzymes induce the agglomeration of AgNPs during the gastric phase, while the addition of intestinal fluids disintegrates these clusters. AgNPs can thus reach the intestinal cells under nanometric form, although the presence of food and gastrointestinal fluids modifies their properties compared to pristine AgNPs. They can form a corona around the nanoparticles and act as colloidal stabilizer, which can impact the interaction of AgNPs with intestinal epithelium. This study demonstrates the importance of taking the fate of AgNPs in the gastrointestinal tract into account to perform an accurate risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Laurie Laloux
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Donika Kastrati
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Yves-Jacques Schneider
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| |
Collapse
|
28
|
Vinayak M, Maurya AK. Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development. Anticancer Agents Med Chem 2020; 19:1560-1576. [PMID: 31284873 DOI: 10.2174/1871520619666190705150214] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022]
Abstract
The spread of metastatic cancer cell is the main cause of death worldwide. Cellular and molecular basis of the action of phytochemicals in the modulation of metastatic cancer highlights the importance of fruits and vegetables. Quercetin is a natural bioflavonoid present in fruits, vegetables, seeds, berries, and tea. The cancer-preventive activity of quercetin is well documented due to its anti-inflammatory, anti-proliferative and anti-angiogenic activities. However, poor water solubility and delivery, chemical instability, short half-life, and low-bioavailability of quercetin limit its clinical application in cancer chemoprevention. A better understanding of the molecular mechanism of controlled and regulated drug delivery is essential for the development of novel and effective therapies. To overcome the limitations of accessibility by quercetin, it can be delivered as nanoconjugated quercetin. Nanoconjugated quercetin has attracted much attention due to its controlled drug release, long retention in tumor, enhanced anticancer potential, and promising clinical application. The pharmacological effect of quercetin conjugated nanoparticles typically depends on drug carriers used such as liposomes, silver nanoparticles, silica nanoparticles, PLGA (Poly lactic-co-glycolic acid), PLA (poly(D,L-lactic acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, etc. In this review, we described various delivery systems of nanoconjugated quercetin like liposomes, silver nanoparticles, PLGA (Poly lactic-co-glycolic acid), and polymeric micelles including DOX conjugated micelles, metal conjugated micelles, nucleic acid conjugated micelles, and antibody-conjugated micelles on in vitro and in vivo tumor models; as well as validated their potential as promising onco-therapeutic agents in light of recent updates.
Collapse
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Akhilendra K Maurya
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
29
|
Study on Absorption Mechanism and Tissue Distribution of Fucoidan. Molecules 2020; 25:molecules25051087. [PMID: 32121122 PMCID: PMC7179197 DOI: 10.3390/molecules25051087] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Fucoidan exhibits several pharmacological activities and is characterized by high safety and the absence of toxic side effects. However, the absorption of fucoidan is not well-characterized. In the present study, fucoidan were labeled with fluorescein isothiocyanate (FITC) and their ability to traverse a monolayer of Caco-2 cells was examined. The apparent permeability coefficients (Papp × 10−6) of FITC-labeled fucoidan (FITC-fucoidan) were 26.23, 20.15, 17.93, 16.11 cm/sec, respectively, at the concentration of 10 μg/mL at 0.5, 1, 1.5 and 2 h. The absorption of FITC-fucoidan was suppressed by inhibitors of clathrin-mediated endocytosis, chlorpromazine, NH4Cl, and Dynasore; the inhibition rates were 84.24%, 74.61%, and 63.94%, respectively. This finding suggested that clathrin-mediated endocytosis was involved in fucoidan transport. Finally, tissue distribution of FITC-fucoidan was studied in vivo after injection of 50 mg/kg body weight into the tail vein of mice. The results showed that FITC-fucoidan targeted kidney and liver, reaching concentrations of 1092.31 and 284.27 μg/g respectively after 0.5 h. In summary, the present work identified the mechanism of absorption of fucoidan and documented its tissue distribution, providing a theoretical basis for the future development of fucoidan applications.
Collapse
|
30
|
Transport Mechanisms of Polymannuronic Acid and Polyguluronic Acid Across Caco-2 Cell Monolayers. Pharmaceutics 2020; 12:pharmaceutics12020167. [PMID: 32079270 PMCID: PMC7076430 DOI: 10.3390/pharmaceutics12020167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Detailed knowledge of the intestinal transport of polymannuronic acid (PM) and polyguluronic acid (PG) is critical for understanding their biological activities. To investigate the transport in the gastrointestinal tract, PM and PG were chemically modified with tyramine and conjugated with fluorescein isothiocyanate (FITC) to synthesize FITC-PM (F-PM) and FITC-PG (F-PG) successfully. The transport mechanisms of F-PM and F-PG across the intestinal epithelial cell monolayers (Caco-2 cell monolayers) were then investigated. The results demonstrated that the transport of F-PM and F-PG into epithelial cells was time- and energy-dependent, which was mediated by the macropinocytosis pathway and the clathrin- and caveolae (or lipid raft)-mediated endocytic pathway. The transport process of F-PM and F-PG in Caco-2 cells depended on the acidification of endosomes and involved lysosomes. Tubulin mediated the transport of F-PM, but not of F-PG. Moreover, the absorption enhancer chitosan (CS) promoted the transport of F-PM and F-PG, increasing the apparent permeability coefficient (Papp) by 1.9-fold and 2.6-fold, respectively, by reversibly opening the tight junction (TJ). In summary, this study provided a comprehensive understanding of the transport of PM and PG in the small intestinal epithelial cells, which will provide a theoretical basis for the development of PM and PG with good intestinal absorption.
Collapse
|
31
|
Polet M, Laloux L, Cambier S, Ziebel J, Gutleb AC, Schneider YJ. Soluble silver ions from silver nanoparticles induce a polarised secretion of interleukin-8 in differentiated Caco-2 cells. Toxicol Lett 2020; 325:14-24. [PMID: 32062016 DOI: 10.1016/j.toxlet.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Because of their antimicrobial properties, silver nanoparticles are increasingly incorporated in food-related and hygiene products, which thereby could lead to their ingestion. Although their cytotoxicity mediated by oxidative stress has been largely studied, their effects on inflammation remain controversial. Moreover, the involvement of silver ions (originating from Ag0 oxidation) in their mode of action is still unclear. In this context, the present study aims at assessing the impact of silver nanoparticles on the secretion of the pro-inflammatory chemokine interleukin-8 by Caco-2 cells forming an in vitro model of the intestinal mucosal barrier. Silver nanoparticles induced a vectorized secretion of interleukin-8 towards the apical compartment, which is found in the medium 21 h after the incubation. This secretion seems mediated by Nrf2 signalling pathway that orchestrates cellular defense against oxidative stress. The soluble silver fraction of silver nanoparticles suspensions led to a similar amount of secreted interleukin-8 than silver nanoparticles, suggesting an involvement of silver ions in this interleukin-8 secretion.
Collapse
Affiliation(s)
- Madeleine Polet
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Laurie Laloux
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Johanna Ziebel
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Yves-Jacques Schneider
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium.
| |
Collapse
|
32
|
Milinčić DD, Popović DA, Lević SM, Kostić AŽ, Tešić ŽL, Nedović VA, Pešić MB. Application of Polyphenol-Loaded Nanoparticles in Food Industry. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1629. [PMID: 31744091 PMCID: PMC6915646 DOI: 10.3390/nano9111629] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022]
Abstract
Nanotechnology is an emerging field of science, and nanotechnological concepts have been intensively studied for potential applications in the food industry. Nanoparticles (with dimensions ranging from one to several hundred nanometers) have specific characteristics and better functionality, thanks to their size and other physicochemical properties. Polyphenols are recognized as active compounds that have several putative beneficial properties, including antioxidant, antimicrobial, and anticancer activity. However, the use of polyphenols as functional food ingredients faces numerous challenges, such as their poor stability, solubility, and bioavailability. These difficulties could be solved relatively easily by the application of encapsulation. The objective of this review is to present the most recent accomplishments in the usage of polyphenol-loaded nanoparticles in food science. Nanoparticles loaded with polyphenols and their applications as active ingredients for improving physicochemical and functional properties of food, or as components of active packaging materials, were critically reviewed. Potential adverse effects of polyphenol-loaded nanomaterials are also discussed.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Dušanka A. Popović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Steva M. Lević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Aleksandar Ž. Kostić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Živoslav Lj. Tešić
- Faculty of Chemistry, University of Belgrade, Studentski Trg, 12-16, 11158 Belgrade, Serbia;
| | - Viktor A. Nedović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Mirjana B. Pešić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| |
Collapse
|
33
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov Today 2019; 25:209-222. [PMID: 31707120 DOI: 10.1016/j.drudis.2019.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
Quercetin is reported to have numerous pharmacological actions, including antidiabetic, anti-inflammatory and anticancer activities. The main mechanism responsible for its pharmacological activities is its ability to quench reactive oxygen species (ROS) and, hence, decrease the oxidative stress responsible for the development of various diseases. Despite its proven therapeutic potential, the clinical use of quercetin remains limited because of its low aqueous solubility, bioavailability, and substantial first-pass metabolism. To overcome this, several novel formulations have been reported. In this review, we focus on the applications of quercetin extract as well as its novel formulations for treating different disorders. We also examine its proposed mechanism of action of quercetin.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
34
|
Florkiewicz W, Malina D, Pluta K, Rudnicka K, Gajewski A, Olejnik E, Tyliszczak B, Sobczak-Kupiec A. Assessment of cytotoxicity and immune compatibility of phytochemicals-mediated biosynthesised silver nanoparticles using Cynara scolymus. IET Nanobiotechnol 2019; 13:726-735. [PMID: 31573542 DOI: 10.1049/iet-nbt.2018.5357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The study was focused on the phytochemicals-mediated biosynthesis of silver nanoparticles using leaf extracts and infusions from Cynara scolymus. To identify the antioxidant activity and total phenolic content, the 1,1-diphenyl-1-picrylhydrazyl and Folin-Ciocalteau methods were applied, respectively. The formation and stability of the reduced silver ions were monitored by UV-vis spectrophotometer. The particle sizes of the silver nanoparticles were characterised using the dynamic light scattering technique and scanning electron microscope. The phase composition of the obtained silver nanoparticles was characterised by X-ray diffraction. The silver nanoparticles suspension, artichoke infusion, and silver ions were separately tested towards potential cytotoxicity and pro-inflammatory effect using mouse fibroblasts and human monocytes cell line, respectively. The total phenolic content and antioxidant activity of ethanol extract and infusion were found significantly higher as compared to aqueous extract and infusion. The UV-visible spectrophotometric analysis revealed the presence of the characteristic absorption band of the Ag nanoparticles. Moreover, it was found that with the increasing volume of plant extract, the average size of particles was increased. Biocompatibility results evidently showed that silver nanoparticles do not induce monocyte activation, however in order to avoid their cytotoxicity suspension at a concentration <2 ppm should be applied.
Collapse
Affiliation(s)
- Wioletta Florkiewicz
- Institute of Inorganic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Dagmara Malina
- Institute of Inorganic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland.
| | - Klaudia Pluta
- Institute of Inorganic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, University of Lodz, Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Infectious Biology, University of Lodz, Lodz, Poland
| | - Ewa Olejnik
- Faculty of Foundry Engineering, Department of Engineering of Cast Alloys and Composites, AGH University of Science and Technology, Cracow, Poland
| | - Bożena Tyliszczak
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Cracow, Poland
| | - Agnieszka Sobczak-Kupiec
- Institute of Inorganic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
35
|
Wu C, Luo Y, Liu L, Xie Y, Cao Y. Toxicity of combined exposure of ZnO nanoparticles (NPs) and myricetin to Caco-2 cells: changes of NP colloidal aspects, NP internalization and the apoptosis-endoplasmic reticulum stress pathway. Toxicol Res (Camb) 2019; 8:613-620. [PMID: 31588339 PMCID: PMC6762008 DOI: 10.1039/c9tx00127a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Phytochemicals as typical food components may significantly influence the toxicity of nanoparticles (NPs) in intestinal cells, indicating a need to evaluate the toxicological effects of NPs in a complex situation. Previous studies suggested that the anti-oxidative properties of phytochemicals were important to elicit cytoprotective effects against NP exposure. However, we recently found that the changes of signaling pathways may be more important for cytoprotective effects of phytochemicals. In this study, we investigated the influence of myricetin (MY) on the cytotoxicity of ZnO NPs in Caco-2 cells and the possible mechanism. MY at 50 μM showed minimal impact on the solubility and colloidal aspects of ZnO NPs, but protected Caco-2 cells from NP exposure as it increased the EC50 value. For comparison, dihydromyricetin (DMY; chemical analog of MY) increased the EC50 value to a much lesser extent. Exposure to ZnO NPs significantly induced intracellular Zn ions, whereas MY or DMY did not significantly influence the internalization of NPs. However, ZnO NPs significantly promoted the ratio of caspase-3/pro-caspase-3, which was inhibited by the presence of MY. Exposure to ZnO NPs did not significantly promote the biomarkers of endoplasmic reticulum (ER) stress, but co-exposure to ZnO NPs and MY significantly lowered the levels of a panel of ER stress biomarkers. In conclusion, these results suggested that MY could protect Caco-2 cells from ZnO NP exposure, which may not be related to the changes of colloidal stability or internalization of NPs but could be alternatively related to the reduction of ER stress leading to lower cleaved caspase-3.
Collapse
Affiliation(s)
- Chaohua Wu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education , Laboratory of Biochemistry , College of Chemistry , Xiangtan University , Xiangtan 411105 , P.R. China .
| | - Yunfeng Luo
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education , Laboratory of Biochemistry , College of Chemistry , Xiangtan University , Xiangtan 411105 , P.R. China .
| | - Liangliang Liu
- Institute of Bast Fiber Crops , Chinese Academy of Agricultural Sciences , Changsha 410205 , P.R. China .
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education , Laboratory of Biochemistry , College of Chemistry , Xiangtan University , Xiangtan 411105 , P.R. China .
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education , Laboratory of Biochemistry , College of Chemistry , Xiangtan University , Xiangtan 411105 , P.R. China .
| |
Collapse
|
36
|
Liang Y, Xie M, Li J, Liu L, Cao Y. Influence of 3-Hydroxyflavone on Colloidal Stability and Internationalization of Ag Nanomaterials Into THP-1 Macrophages. Dose Response 2019; 17:1559325819865713. [PMID: 31384242 PMCID: PMC6657132 DOI: 10.1177/1559325819865713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022] Open
Abstract
Polyphenols as typical food components can influence the colloidal properties and internalization of nanomaterials (NMs) into mammalian cells. Recently, we found that 3-hydroxyflavone (H3) promoted intracellular Zn ions in ZnO nanoparticle (NP) exposed Caco-2 and HepG2 cells. However, it is unclear if H3 could affect the internalization of metal-based NMs with different morphologies. This study investigated the influence of H3 on colloidal aspects of Ag NPs and Ag nanoflakes (NFs) as well as the internalization of Ag NMs into THP-1 macrophages. 3-Hydroxyflavone at 50 μM promoted the solubility and altered hydrodynamic size, polydispersity index, and ζ potential of Ag NPs and Ag NFs, which indicated that H3 could affect the colloidal stability of Ag NMs. Only H3 but not Ag NMs significantly decreased mitochondrial activities of THP-1 macrophages. The internalization of Ag NMs was markedly increased due to the presence of H3. 3-Hydroxyflavone also exhibited antioxidative properties as it reduced intracellular reactive oxygen species and promoted the activities of ABC transporters as it reduced retention of Calcein in Ag NM-exposed THP-1 macrophages. We concluded that H3 promoted the internalization of Ag NMs into macrophages probably by altering the colloidal stability of Ag NMs and consequently NM-macrophage interactions.
Collapse
Affiliation(s)
- Yongqi Liang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Min Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, People’s Republic of China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, People’s Republic of China
| |
Collapse
|
37
|
Jiang L, Li Z, Xie Y, Liu L, Cao Y. Cyanidin chloride modestly protects Caco-2 cells from ZnO nanoparticle exposure probably through the induction of autophagy. Food Chem Toxicol 2019; 127:251-259. [PMID: 30922967 DOI: 10.1016/j.fct.2019.03.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/23/2019] [Accepted: 03/24/2019] [Indexed: 01/19/2023]
Abstract
Recent studies suggest that phytochemicals, as part of the food matrix, might alter the toxicity of nanoparticles (NPs); however, relatively few studies have investigated the impact of anthocyanidins on the toxicity of NPs to cells lining the gastrointestinal tract. Therefore, this study used cyanidin chloride (CC) as the model for anthocyanidins and investigated the effects of CC on the toxicity of ZnO or Ag NPs to Caco-2 cells. Exposure to ZnO but not Ag NPs significantly induced cytotoxicity. The presence of CC, but not its analog quercetin (Qu), modestly protected Caco-2 cells from ZnO NP exposure. However, the intracellular superoxide, Zn ions, or release of interleukin-8 after ZnO NP exposure were not significantly affected by the presence of CC. Rather, CC promoted the expression of autophagic genes ATG5, ATG7, and BECN1 as well as the ratio of LC3-II/I after exposure to ZnO NPs. Meanwhile, the presence of autophagic inhibitors (chloroquine, NH4Cl, bafilomycin A1) significantly promoted the cytotoxicity of ZnO NPs and inhibited the cytoprotective effects of CC. In conclusion, these data suggest that CC could modestly protect Caco-2 cells from ZnO NP exposure, probably through the induction of autophagy.
Collapse
Affiliation(s)
- Leying Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, PR China; Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhen Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, PR China; Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
38
|
Mancuso C, Barisani D. Food additives can act as triggering factors in celiac disease: Current knowledge based on a critical review of the literature. World J Clin Cases 2019; 7:917-927. [PMID: 31119137 PMCID: PMC6509268 DOI: 10.12998/wjcc.v7.i8.917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 02/05/2023] Open
Abstract
Celiac disease (CeD) is an autoimmune disorder, mainly affecting the small intestine, triggered by the ingestion of gluten with the diet in subjects with a specific genetic status. The passage of gluten peptides through the intestinal barrier, the uptake by antigen presenting cells and their presentation to T cells represent essential steps in the pathogenesis of the disease. CeD prevalence varies in different populations, but a tendency to increase has been observed in various studies in recent years. A higher amount of gluten in modern grains could explain this increased frequency, but also food processing could play a role in this phenomenon. In particular, the common use of preservatives such as nanoparticles could intervene in the pathogenesis of CeD, due to their possible effect on the integrity of the intestinal barrier, immune response or microbiota. In fact, these alterations have been reported after exposure to metal nanoparticles, which are commonly used as preservatives or to improve food texture, consistency and color. This review will focus on the interactions between several food additives and the intestine, taking into account data obtained in vitro and in vivo, and analyzing their effect in respect to the development of CeD in genetically predisposed individuals.
Collapse
Affiliation(s)
- Clara Mancuso
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Donatella Barisani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
39
|
Saez-Tenorio M, Domenech J, García-Rodríguez A, Velázquez A, Hernández A, Marcos R, Cortés C. Assessing the relevance of exposure time in differentiated Caco-2/HT29 cocultures. Effects of silver nanoparticles. Food Chem Toxicol 2018; 123:258-267. [PMID: 30403969 DOI: 10.1016/j.fct.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 12/24/2022]
Abstract
In vitro models of the intestinal barrier are being increasingly used to evaluate nanoparticles (NPs) exposure risk. Nevertheless, most of these studies have focused on short-term exposures lasting no more than 24 h of duration, which could underestimate the toxic effects of a given compound under a more realistic setting. Since the assessment of longer exposure time-points is crucial to evaluate the risk of cumulative exposure to NPs, we have analyzed the effects of AgNPs at different exposure time-points between 6 h and 4 days on the barrier model system constituted by Caco-2/HT29 cells. Our results indicate that i) the system is stable during this time frame; ii) AgNPs affect the barrier's integrity only at the highest concentration tested (100 μg/mL), and only after 96 h of exposure; iii) cellular uptake of AgNPs showed a time-dependent and concentration-dependent increase; iv) translocation through the barrier was only observed at the highest concentration and only after 96 h of exposure; v) the expression of genes involved in the barrier's structure differs depending on the exposure time analyzed. All these results reinforce our proposal of expanding exposure times beyond 24 h when performing assays for hazard assessment of NPs using in vitro models of the intestinal barrier.
Collapse
Affiliation(s)
- Miriam Saez-Tenorio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josefa Domenech
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba García-Rodríguez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonia Velázquez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Constanza Cortés
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
40
|
Wang Z, Zhang H, Shen Y, Zhao X, Wang X, Wang J, Fan K, Zhan X. Characterization of a novel polysaccharide from Ganoderma lucidum and its absorption mechanism in Caco-2 cells and mice model. Int J Biol Macromol 2018; 118:320-326. [DOI: 10.1016/j.ijbiomac.2018.06.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
|
41
|
Luo Y, Wu C, Liu L, Gong Y, Peng S, Xie Y, Cao Y. 3-Hydroxyflavone enhances the toxicity of ZnO nanoparticles in vitro. J Appl Toxicol 2018; 38:1206-1214. [PMID: 29691881 DOI: 10.1002/jat.3633] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2024]
Abstract
It is recently shown that flavonoids might reduce the toxicity of nanoparticles (NPs) due to their antioxidative properties. In this study, the influence of 3-hydroxyflavone (H3) on the toxicity of ZnO NPs was investigated. H3 increased hydrodynamic size, polydispersity index and absolute value of the zeta potential of ZnO NPs, which indicated that H3 could influence the colloidal aspects of NPs. Surprisingly, H3 markedly decreased the initial concentration of ZnO NPs required to induce cytotoxicity to Caco-2, HepG2, THP-1 and human umbilical vein endothelial cells, which suggested that H3 could promote the toxicity of ZnO NPs to both cancerous and normal cells. For comparison, 6-hydroxyflavone did not show this effect. H3 remarkably increased cellular Zn elements and intracellular Zn ions in HepG2 cells following ZnO NP exposure, and co-exposure to H3 and NPs induced a relatively higher intracellular reactive oxygen species. Exposure to ZnO NPs at 3 hours induced the expression of endoplasmic reticulum stress markers DDIT3 and XBP-1 s, which was suppressed by H3. The expression of apoptotic genes BAX and CASP3 was significantly induced by ZnO NP exposure after 3 and 5 hours, respectively, and H3 further significantly promoted CASP3 expression at 5 hours. In combination, the results from this study suggested that H3 affected colloidal stability of ZnO NPs, promoted the interactions between NPs and cells, and altered the NP-induced endoplasmic reticulum stress-apoptosis signaling pathway, which finally enhanced the cytotoxicity of ZnO NPs.
Collapse
Affiliation(s)
- Yunfeng Luo
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chaohua Wu
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Shengming Peng
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| |
Collapse
|
42
|
Li Y, Zhang C, Liu L, Gong Y, Xie Y, Cao Y. The effects of baicalein or baicalin on the colloidal stability of ZnO nanoparticles (NPs) and toxicity of NPs to Caco-2 cells. Toxicol Mech Methods 2018; 28:167-176. [PMID: 28868948 DOI: 10.1080/15376516.2017.1376023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Recent study suggested that the presence of phytochemicals in food could interact with nanoparticles (NPs) and consequently reduce the toxicity of NPs, which has been attributed to the antioxidant properties of phytochemicals. In this study, we investigated the interactions between ZnO NPs and two flavonoids baicalein (Ba) or baicalin (Bn) as well as the influence of the interactions on the toxicity of ZnO NPs to Caco-2 cells. The antioxidant properties of Ba and Bn were confirmed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays, with Ba being stronger. However, the presence of Ba or Bn did not significantly affect cytotoxicity, intracellular superoxide or release of inflammatory cytokines of Caco-2 cells after ZnO NP exposure. When Ba was present, the cellular viability of Caco-2 cells after exposure to ZnO NPs was slightly increased, associated with a modest decrease of intracellular Zn ions, but these effects were not statistically different. Ba was more effective than Bn at changing the hydrodynamic sizes, Zeta potential and UV-Vis spectra of ZnO NPs, which indicated that Ba might increase the colloidal stability of NPs. Taken together, the results of the present study indicated that the anti-oxidative phytochemical Ba might only modestly protected Caco-2 cells from the exposure to ZnO NPs associated with an insignificant reduction of the accumulation of intracellular Zn ions. These results also indicated that when assessing the combined effects of NPs and phytochemicals to cells lining gastrointestinal tract, it might be necessary to evaluate the changes of colloidal stability of NPs altered by phytochemicals.
Collapse
Affiliation(s)
- Yining Li
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
| | - Cao Zhang
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
| | - Liangliang Liu
- b Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha , PR China
| | - Yu Gong
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
| | - Yixi Xie
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
| | - Yi Cao
- a Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry , Xiangtan University , Xiangtan , PR China
- b Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha , PR China
| |
Collapse
|
43
|
Zhang C, Li Y, Liu L, Gong Y, Xie Y, Cao Y. Chemical Structures of Polyphenols That Critically Influence the Toxicity of ZnO Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1714-1722. [PMID: 29383937 DOI: 10.1021/acs.jafc.8b00368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent studies suggested that phytochemicals as natural antioxidants in food could alleviate nanoparticle (NP) toxicity. This study investigated the combined toxicity of ZnO NPs and a panel of polyphenols. Surprisingly, polyphenols with both high and almost no radical scavenging activities could elicit cytoprotective effects against NP exposure in Caco-2 cells, which were primarily influenced by the positions of the hydroxyl group. Polyphenols with different chemical structures variously influenced the hydrodynamic size, zeta potential, and solubility of ZnO NPs as well as NP-induced intracellular superoxide and Zn ions, which could all contribute to the combined effects. Responses of human endothelial cells appeared to be different from the responses of Caco-2 cells, which may indicate cell-type dependent responses to combined exposure of NPs and phytochemicals. In conclusion, the data from this study suggested a pivotal role of chemical structures of phytochemicals in determining their capacity to affect ZnO NP toxicity.
Collapse
Affiliation(s)
- Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, P.R. China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, P.R. China
| |
Collapse
|
44
|
Ben Barka Z, Grintzalis K, Polet M, Heude C, Sommer U, Ben Miled H, Ben Rhouma K, Mohsen S, Tebourbi O, Schneider YJ. A combination of NMR and liquid chromatography to characterize the protective effects of Rhus tripartita extracts on ethanol-induced toxicity and inflammation on intestinal cells. J Pharm Biomed Anal 2018; 150:347-354. [PMID: 29287261 DOI: 10.1016/j.jpba.2017.12.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/03/2023]
Abstract
Consumption of ethanol may have severe effects on human organs and tissues and lead to acute and chronic inflammation of internal organs. The present study aims at investigating the potential protective effects of three different extracts prepared from the leaves, root, and stem of the sumac, Rhus tripartita, against ethanol-induced toxicity and inflammation using intestinal cells as a cell culture system, in vitro model of the intestinal mucosa. The results showed an induction of cytotoxicity by ethanol, which was partially reversed by co-administration of the plant extracts. As part of investigating the cellular response and the mechanism of toxicity, the role of reduced thiols and glutathione-S-transferases were assessed. In addition, intestinal cells were artificially imposed to an inflammation state and the anti-inflammatory effect of the extracts was estimated by determination of interleukin-8. Finally, a detailed characterization of the contents of the three plant extracts by high resolution Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry revealed significant differences in their chemical compositions.
Collapse
Affiliation(s)
- Zaineb Ben Barka
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia, 7021 Jarzouna, Bizerte, Tunisia; Laboratory of Cellular, Nutritional and Toxicological Biochemistry (BCNT), Life Sciences Institute, Université catholique de Louvain (UCL), BE1348 Louvain-la-Neuve, Belgium
| | - Konstantinos Grintzalis
- Laboratory of Cellular, Nutritional and Toxicological Biochemistry (BCNT), Life Sciences Institute, Université catholique de Louvain (UCL), BE1348 Louvain-la-Neuve, Belgium
| | - Madeleine Polet
- Laboratory of Cellular, Nutritional and Toxicological Biochemistry (BCNT), Life Sciences Institute, Université catholique de Louvain (UCL), BE1348 Louvain-la-Neuve, Belgium
| | - Clement Heude
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Ulf Sommer
- NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Hanène Ben Miled
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia, 7021 Jarzouna, Bizerte, Tunisia
| | - Khémais Ben Rhouma
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia, 7021 Jarzouna, Bizerte, Tunisia
| | - Sakly Mohsen
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia, 7021 Jarzouna, Bizerte, Tunisia
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology, Faculty of Science of Bizerte, University of Carthage Tunisia, 7021 Jarzouna, Bizerte, Tunisia
| | - Yves-Jacques Schneider
- Laboratory of Cellular, Nutritional and Toxicological Biochemistry (BCNT), Life Sciences Institute, Université catholique de Louvain (UCL), BE1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
45
|
Bouwmeester H, van der Zande M, Jepson MA. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1481. [PMID: 28548289 PMCID: PMC5810149 DOI: 10.1002/wnan.1481] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/26/2022]
Abstract
Ingestion of engineered nanomaterials is inevitable due to their addition to food and prevalence in food packaging and domestic products such as toothpaste and sun cream. In the absence of robust dosimetry and particokinetic data, it is currently challenging to accurately assess the potential toxicity of food-borne nanomaterials. Herein, we review current understanding of gastrointestinal uptake mechanisms, consider some data on the potential for toxicity of the most commonly encountered classes of food-borne nanomaterials (including TiO2 , SiO2, ZnO, and Ag nanoparticles), and discuss the potential impact of the luminal environment on nanoparticle properties and toxicity. Much of our current understanding of gastrointestinal nanotoxicology is derived from increasingly sophisticated epithelial models that augment in vivo studies. In addition to considering the direct effects of food-borne nanomaterials on gastrointestinal tissues, including the potential role of chronic nanoparticle exposure in development of inflammatory diseases, we also discuss the potential for food-borne nanomaterials to disturb the normal balance of microbiota within the gastrointestinal tract. The latter possibility warrants close attention given the increasing awareness of the critical role of microbiota in human health and the known impact of some food-borne nanomaterials on bacterial viability. WIREs Nanomed Nanobiotechnol 2018, 10:e1481. doi: 10.1002/wnan.1481 This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Hans Bouwmeester
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
- RIKILT ‐ Wageningen University and ResearchWageningenThe Netherlands
| | | | | |
Collapse
|
46
|
Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact 2017; 278:40-47. [PMID: 28987328 DOI: 10.1016/j.cbi.2017.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/30/2023]
Abstract
The presence of food components may alter the colloidal aspects and toxicity of nanoparticles (NPs). In this study, the toxicity of ZnO NPs to Caco-2 and HepG2 cells was assessed, with the emphasis on the interactions between ZnO NPs and oleate (OA). The presence of OA increased UV-Vis spectra and hydrodynamic sizes, decreased Zeta potential, and markedly reduced the release of Zn ions from the dissolution of ZnO NPs, which combined indicated that OA could coat ZnO NPs and stabilize ZnO NPs. Exposure to ZnO NPs significantly induced cytotoxicity to Caco-2 and HepG2 cells, associated with increased intracellular Zn ions but not superoxide. When OA was added to the freshly prepared ZnO NP suspensions, the cytotoxicity, intracellular Zn ions and superoxide induced by ZnO NPs were not significantly affected. However, when ZnO NPs were aged for 24 h with the presence of OA, the cytotoxicity of ZnO NPs to Caco-2 and HepG2 cells was significantly reduced, associated with a reduction of intracellular Zn ions. The results from this study suggested that the presence of OA could increase colloidal stability of ZnO NPs and consequently reduce the toxicity of ZnO NPs after aging associated with reduced accumulation of intracellular Zn ions.
Collapse
Affiliation(s)
- Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Leying Jiang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
47
|
Flees J, Rajaei-Sharifabadi H, Greene E, Beer L, Hargis BM, Ellestad L, Porter T, Donoghue A, Bottje WG, Dridi S. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens. Front Physiol 2017; 8:919. [PMID: 29230177 PMCID: PMC5711822 DOI: 10.3389/fphys.2017.00919] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2) to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet) modulates these effects. Broilers (480 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C) and fed two diets (control vs. Noni) in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY). HS down regulated the hepatic expression of lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (LIPC), but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY levels under HS exposure. In conclusion, our findings indicate that HS induces hepatic lipogenesis in chickens and this effect is probably mediated via HSPs. The modulation of hepatic HSP expression suggest also that Noni might be involved in modulating the stress response in chicken liver.
Collapse
Affiliation(s)
- Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Billy M Hargis
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Laura Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tom Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Annie Donoghue
- USDA, Agricultural Research Service, Fayetteville, AR, United States
| | - Walter G Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
48
|
Pietroiusti A, Bergamaschi E, Campagna M, Campagnolo L, De Palma G, Iavicoli S, Leso V, Magrini A, Miragoli M, Pedata P, Palombi L, Iavicoli I. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group. Part Fibre Toxicol 2017; 14:47. [PMID: 29178961 PMCID: PMC5702111 DOI: 10.1186/s12989-017-0226-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is a fundamental gap of knowledge on the health effects caused by the interaction of engineered nanomaterials (ENM) with the gastro-intestinal tract (GIT). This is partly due to the incomplete knowledge of the complex physical and chemical transformations that ENM undergo in the GIT, and partly to the widespread belief that GIT health effects of ENM are much less relevant than pulmonary effects. However, recent experimental findings, considering the role of new players in gut physiology (e.g. the microbiota), shed light on several outcomes of the interaction ENM/GIT. Along with this new information, there is growing direct and indirect evidence that not only ingested ENM, but also inhaled ENM may impact on the GIT. This fact, which may have relevant implications in occupational setting, has never been taken into consideration. This review paper summarizes the opinions and findings of a multidisciplinary team of experts, focusing on two main aspects of the issue: 1) ENM interactions within the GIT and their possible consequences, and 2) relevance of gastro-intestinal effects of inhaled ENMs. Under point 1, we analyzed how luminal gut-constituents, including mucus, may influence the adherence of ENM to cell surfaces in a size-dependent manner, and how intestinal permeability may be affected by different physico-chemical characteristics of ENM. Cytotoxic, oxidative, genotoxic and inflammatory effects on different GIT cells, as well as effects on microbiota, are also discussed. Concerning point 2, recent studies highlight the relevance of gastro-intestinal handling of inhaled ENM, showing significant excretion with feces of inhaled ENM and supporting the hypothesis that GIT should be considered an important target of extrapulmonary effects of inhaled ENM. CONCLUSIONS In spite of recent insights on the relevance of the GIT as a target for toxic effects of nanoparticles, there is still a major gap in knowledge regarding the impact of the direct versus indirect oral exposure. This fact probably applies also to larger particles and dictates careful consideration in workers, who carry the highest risk of exposure to particulate matter.
Collapse
Affiliation(s)
- Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Enrico Bergamaschi
- Department of Sciences and Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Section of Public Health and Human Sciences, University of Brescia, Brescia, Italy
| | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Rome, Italy
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Pedata
- Department of Experimental Medicine- Section of Hygiene, Occupational Medicine and Forensic Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
49
|
Gong Y, Liu L, Li J, Cao Y. The presence of palmitate affected the colloidal stability of ZnO NPs but not the toxicity to Caco-2 cells. JOURNAL OF NANOPARTICLE RESEARCH 2017; 19:335. [DOI: 10.1007/s11051-017-4038-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
|
50
|
Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food Chem Toxicol 2017; 109:1-18. [PMID: 28830834 DOI: 10.1016/j.fct.2017.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 02/08/2023]
Abstract
Gut health is determined by an intact epithelial barrier and balanced gut microbiota, both involved in the regulation of immune responses in the gut. Disruption of this system contributes to the etiology of various non-communicable diseases, including intestinal, metabolic, and autoimmune disorders. Studies suggest that some direct food additives, but also some food contaminants, such as pesticide residues and substances migrating from food contact materials (FCMs), may adversely affect the gut barrier or gut microbiota. Here, we focus on gut-related effects of FCM-relevant substances (e.g. surfactants, N-ring containing substances, nanoparticles, and antimicrobials) and show that gut health is an underappreciated target in the toxicity assessment of FCMs. Understanding FCMs' impact on gut health requires more attention to ensure safety and prevent gut-related chronic diseases. Our review further points to the existence of large population subgroups with an increased intestinal permeability; this may lead to higher uptake of compounds of not only low (<1000 Da) but also high (>1000 Da) molecular weight. We discuss the potential toxicological relevance of high molecular weight compounds in the gut and suggest that the scientific justification for the application of a molecular weight-based cut-off in risk assessment of FCMs should be reevaluated.
Collapse
|