1
|
Choudhury SR, Byrum SD, Blossom SJ. Trichloroethylene metabolite modulates DNA methylation-dependent gene expression in Th1-polarized CD4+ T cells from autoimmune-prone mice. Toxicol Sci 2024; 199:289-300. [PMID: 38518092 PMCID: PMC11131021 DOI: 10.1093/toxsci/kfae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant associated with CD4+ T-cell activation and autoimmune disease. Prior studies showed that exposure to TCE in the drinking water of autoimmune-prone mice expanded effector/memory CD4+ T cells with an interferon-γ (IFN-γ)-secreting Th1-like phenotype. However, very little is known how TCE exposure skews CD4+ T cells towards this pro-inflammatory Th1 subset. As observed previously, TCE exposure was associated with hypermethylation of regions of the genome related to transcriptional repression in purified effector/memory CD4 T cells. We hypothesized that TCE modulates transcriptional and/or epigenetic programming of CD4+ T cells as they differentiate from a naive to effector phenotype. In the current study, purified naive CD4 T cells from both male and female autoimmune-prone MRL/MpJ mice were activated ex vivo and polarized towards a Th1 subset for 4 days in the presence or absence of the oxidative metabolite of TCE, trichloroacetaldehyde hydrate (TCAH) in vitro. An RNA-seq assessment and reduced representation bisulfite sequencing for DNA methylation were conducted on Th1 cells or activated, non-polarized cells. The results demonstrated TCAH's ability to regulate key genes involved in the immune response and autoimmunity, including Ifng, by altering the level of DNA methylation at the gene promoter. Intriguing sex differences were observed and for the most part, the effects were more robust in females compared to males. In conclusion, TCE via TCAH epigenetically regulates gene expression in CD4+ T cells. These results may have implications for mechanistic understanding or future therapeutics for autoimmunity.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Division of Hematology/Oncology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
- Arkansas Children’s Research Institute, Department of Pediatrics, Little Rock, Arkansas 72202, USA
| | - Stephanie D Byrum
- Arkansas Children’s Research Institute, Department of Pediatrics, Little Rock, Arkansas 72202, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Sarah J Blossom
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
2
|
Li D, Li BX, Zhang Y, Li X, Li JY, Zhang XY, Ye XW, Zhang C. SAM protects against alveolar septal cell apoptosis in autoimmune emphysema rats. Eur J Med Res 2023; 28:460. [PMID: 37880804 PMCID: PMC10601109 DOI: 10.1186/s40001-023-01396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Hypomethylation of the perforin gene promoter in CD4 + T cells, inflammation and oxidative stress, might be involved in alveolar septal cell apoptosis associated with emphysema in rats. This study aimed to investigate the effects of S-adenosylmethionine (SAM) on this kind of apoptosis in rats with autoimmune emphysema. METHODS Twenty-four rats were randomly divided into three groups: a normal control group, a model group, and a SAM group. Pathological changes in lung tissues were observed, and the mean linear intercept (MLI) and mean alveolar number (MAN) were measured. The levels of anti-endothelial cell antibodies (AECA) in serum, alveolar septal cell apoptosis, perforin gene promotor methylation in CD4 + T cells in the spleen, and the levels of cytokines, malondialdehyde (MDA), and glutathione (GSH) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in bronchoalveolar lavage fluid (BALF) were investigated. RESULTS The MLI, apoptosis index (AI) of alveolar septal cells, levels of AECA in serum, and levels of tumour necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9) and MDA in BALF were increased, while the MAN, methylation levels, and the activities of GSH, SOD and GSH-Px in BALF were decreased in the model group compared with those in the normal control group and the SAM group (all P < 0.05). The levels of interleukin-8 (IL-8) in BALF were greater in the model group than in the normal control group (P < 0.05). CONCLUSIONS SAM protects against alveolar septal cell apoptosis, airway inflammation and oxidative stress in rats with autoimmune emphysema possibly by partly reversing the hypomethylation of the perforin gene promoter in CD4 + T cells.
Collapse
Affiliation(s)
- Dan Li
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Ben-Xue Li
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, Guizhou, China
- Panzhou People's Hospital, Panzhou, Guizhou, China
| | - Ye Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xia Li
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jia-Yi Li
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xiang-Yan Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, Guizhou, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xian-Wei Ye
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, Guizhou, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Cheng Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, Guizhou, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Wang H, Banerjee N, Wang G, Firoze Khan M. Autophagy dysregulation in trichloroethene-mediated inflammation and autoimmune response. Toxicology 2023; 487:153468. [PMID: 36849104 PMCID: PMC9998359 DOI: 10.1016/j.tox.2023.153468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 02/27/2023]
Abstract
Trichloroethene (TCE), an organic solvent extensively used for degreasing metals, can cause inflammatory autoimmune disorders [i.e., systemic lupus erythematosus (SLE) and autoimmune hepatitis] from both environmental and occupational exposure. Autophagy has emerged as a pivotal pathogenic factor in various autoimmune diseases. However, role of autophagy dysregulation in TCE-mediated autoimmunity is largely unknown. Here, we investigate whether autophagy dysregulation contributes to pathogenesis of TCE-mediated autoimmune responses. Using our established mouse model, we observed TCE-treated mice had elevated MDA-protein adducts, microtubule-associated protein light chain 3 conversion (LC3-II/LC3-I), beclin-1, phosphorylation of AMP-activated protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) phosphorylation in the livers of MRL+ /+ mice. Suppression of oxidative stress with antioxidant N-acetylcysteine (NAC) effectively blocked TCE-mediated induction of autophagy markers. On the other hand, pharmacological autophagy induction with rapamycin significantly reduced TCE-mediated hepatic inflammation (NLRP3, ASC, Caspase1 and IL1-β mRNA levels), systemic cytokines (IL-12 and IL-17) and autoimmune responses (ANA and anti-dsDNA levels). Taken together, these results suggest that autophagy plays a protective role against TCE-mediated hepatic inflammation and autoimmunity in MRL+ /+ mice. These novel findings on the regulation of autophagy could help in designing therapeutic strategies for chemical exposure-mediated autoimmune responses.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nivedita Banerjee
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
4
|
Blossom SJ, Cabanlong CV, Vyas KK. Developmental trichloroethylene exposure enhances predictive markers of autoimmunity in a sex-specific manner in disease-resistant female mice. Toxicol Appl Pharmacol 2022; 454:116233. [PMID: 36096280 DOI: 10.1016/j.taap.2022.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
Trichloroethylene (TCE) is a widely used industrial chemical and common environmental pollutant. Exposure to TCE promotes CD4+ T cell-driven autoimmunity including autoimmune hepatitis (AIH) in both humans and female autoimmune-prone mice. Because the developing immune system is more sensitive during development, we predicted that non- autoimmune-prone, C57/Bl6 (B6) mice would exhibit some autoimmune-related changes using the Developmental Origins of Health and Disease (DOHaD) model of exposure. Both male and female mice were exposed to vehicle or an environmentally relevant dose of 5 μg/ml TCE (0.9 mg/kg/day) beginning at 2 weeks pre-conception and ending at weaning. CD4+ T cells were assessed for phenotypic markers by flow cytometry. An assessment of cytokines elicited ex vivo after 4d polarization from naïve to CD4+ T helper subsets (i.e., Th1, Th17, and T reg) was conducted. mRNA expression of liver genes associated with inflammation, regeneration/repair associated with AIH disease progression in autoimmune-prone mice were evaluated by qRT-PCR. The results demonstrated TCE's ability to induce autoimmune- related biomarkers in B6 mice to an even greater degree in females compared to males when exposed during development.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| | - Christian V Cabanlong
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Kanan K Vyas
- Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, AR, USA
| |
Collapse
|
5
|
Liu JJ, Liu L, Mu HH, Li JY, Xu L, Wu YY, Li BX, Zhang Y, Zhang XY, Ye XW, Zhang C. Transfer of Invitro CD4 + T Cells with Hypomethylation of Perforin Promoter into Rats' Abdomens Causes Autoimmune Emphysema. COPD 2022; 19:255-261. [PMID: 35604834 DOI: 10.1080/15412555.2022.2072720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our previous study suggested that hypomethylation of perforin promoter of CD4 + T cells might be involved in the pathogenesis of autoimmune emphysema of rats. Whether transfer of this kind of cells hypomethylated in vitro into naive immunocompetent rats also results in emphysema is unknown yet. To test the hypothesis above, thirty Sprague Dawley (SD) rats were randomly divided into three groups: a model group (n = 10), a normal control group (n = 10) and a sham operation group (n = 10). In the model group, spleen-derived CD4 + T cells of normal rats were treated with 5-azacytidine (5-Aza), complete Freund's adjuvant and Phosphate Buffered Saline (PBS), then transferred into naive immunocompetent rats. The normal control group was injected with CD4 + T lymphocytes from spleens of normal rats and the same amount of adjuvant and PBS as above. In sham operation group, normal rats were injected intraperitoneally with complete Freund's adjuvant and PBS. Histopathological evaluations (mean linear Intercept (MLI) and mean alveolar numbers (MAN)), anti-endothelial cell antibodies (AECA) in serum and bronchoalveolar lavage fluid (BALF), lung vascular endothelial growth factor (VEGF)), the apoptotic index (AI) of alveolar septal cells and the methylation levels of perforin promoter of CD4 + T cells were investigated. The levels of the methylation above and MAN were lower in the model group than in the control and the sham operation group, while the AECA in serum and BALF, VEGF, MLI and the AI were greater (all p < 0.05). The methylation levels of perforin promoter were positively correlated with the MAN (r = 0.747, p < 0.05) and negatively correlated with AI, AECA, MLI, and VEGF (r was -0.789, -0.746, -0.743, -0.660, respectively, all p < 0.05). This study suggests that transfer of invitro CD4 + T cells with hypomethylation of perforin promoter into rats causes autoimmune emphysema, possibly by increasing expression of VEGF and promoting alveolar septal cell apoptosis.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.,Department of Respiratory Medicine, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, Sichuan, China
| | - Lin Liu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Hong-Hong Mu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jia-Yi Li
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Lin Xu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yao-Yao Wu
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Ben-Xue Li
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Ye Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xiang-Yan Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xian-Wei Ye
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Cheng Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Cheng L, Rao Q, Zhang Q, Song W, Guan S, Jiang Z, Wu T, Zhao Z, Song W. The immunotoxicity of decabromodiphenyl ether (BDE-209) on broiler chicks by transcriptome profiling analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113284. [PMID: 35149409 DOI: 10.1016/j.ecoenv.2022.113284] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Decabromodiphenyl ether (BDE-209) has drawn significant attention due to its suppression of immune functions in animals and even humans. In order to explore the mechanism through which BDE-209 affects the immune system, broiler chicks were fed a diet containing various concentrations of BDE-209 (0, 0.004, 0.04, 0.4, and 4 g/kg) for 42 days. Histopathological observations of immune organs found damaged and necrotic lymphocytes in the spleen and bursa, and losses of lymphoid cells in thymic gland. The activities of catalase, glutathione, glutathione peroxidase, and superoxide dismutase in both the spleen and serum were affected by BDE-209. Obvious bioaccumulation effect was found in spleen tissues (high to 1339 ± 181.9 μg/kg). Furthermore, transcriptome sequencing analyses of the spleen identified 424 upregulated and 301 downregulated DEGs, and the cytokine-cytokine receptor interaction signal pathway was most significantly enriched based on the Kyoto Encyclopedia of Genes and Genomes database. Quantitative real-time PCR affirmed the decreased expressions of interleukin IL18, IL18R1, IL18RAP, IL21, as well as interferon gamma IFNG and tumor necrosis factor superfamily members TNFSF8, indicating significant interference to immunomodulation function and possible disease progression in inflammatory effects resulting from BDE-209 exposure. The immunotoxicity of BDE-209 may cause the suppression of immune and physiological functions of spleen cells, leading to inflammation and apoptosis and ultimately spleen atrophy.
Collapse
Affiliation(s)
- Lin Cheng
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qinxiong Rao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qicai Zhang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Wei Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Shuhui Guan
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Zhilin Jiang
- College of Agriculture and Forestry, Puer University, Yunnan 665000, China
| | - Tian Wu
- College of Agriculture and Forestry, Puer University, Yunnan 665000, China
| | - Zhihui Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China.
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China.
| |
Collapse
|
7
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Blossom SJ, Gokulan K, Arnold M, Khare S. Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice. Front Pharmacol 2020; 11:569008. [PMID: 33250767 PMCID: PMC7673404 DOI: 10.3389/fphar.2020.569008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Trichloroethylene (TCE) is a common environmental toxicant linked with hypersensitivity and autoimmune responses in humans and animal models. While autoimmune diseases are more common in females, mechanisms behind this disparity are not clear. Recent evidence suggests that autoimmunity may be increasing in males, and occupational studies have shown that TCE-mediated hypersensitivity responses occur just as often in males. Previous experimental studies in autoimmune-prone MRL+/+ mice have focused on responses in females. However, it is important to include both males and females in order to better understand sex-disparity in autoimmune disease. In addition, because of an alarming increase in autoimmunity in adolescents, developmental and/or early life exposures to immune-enhancing environmental pollutants should also be considered. Using MRL+/+ mice, we hypothesized that TCE would alter markers related to autoimmunity to a greater degree in female mice relative to male mice, and that TCE would enhance these effects. Mice were continuously exposed to either TCE or vehicle beginning at gestation, continuing during lactation, and directly in the drinking water. Both male and female offspring were evaluated at 7 weeks of age. Sex-specific effects were evident. Female mice were more likely than males to show enhanced CD4+ T cell cytokine responses (e.g., IL-4 and IFN-γ). Although none of the animals developed pathological or serological signs of autoimmune hepatitis-like disease, TCE-exposed female mice were more likely than males in either group to express higher levels of biomarkers in the liver related to regeneration/repair and proliferation. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure and were more prominent in females as compared to males. Thus, our expectations were correct in that young adult female mice developmentally exposed to TCE were more likely to exhibit alterations in immunological and gut/liver endpoints compared to male mice.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Matthew Arnold
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
9
|
De Miranda BR, Greenamyre JT. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:543-554. [PMID: 31996877 PMCID: PMC7941732 DOI: 10.1039/c9em00578a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Organic solvents are common chemicals used in industry throughout the world, however, there is evidence for adverse health effects from exposure to these compounds. Trichloroethylene (TCE) is a halogenated solvent that has been used as a degreasing agent since the early 20th century. Due to its widespread use, TCE remains one of the most significant environmental contaminants in the US, and extensive research suggests TCE is a causative factor in a number of diseases, including cancer, fetal cardiac development, and neurotoxicity. TCE has also been implicated as a possible risk factor in the development of the most common neurodegenerative movement disorder, Parkinson's disease (PD). However, there is variable concordance across multiple occupational epidemiological studies assessing TCE (or solvent) exposure and risk for PD. In addition, there remains a degree of uncertainty about how TCE elicits toxicity to the dopaminergic system. To this end, we review the specific neurotoxic mechanisms of TCE in the context of selective vulnerability of dopaminergic neurons. In addition, we consider the complexity of combined risk factors that ultimately contribute to neurodegeneration and discuss the limitations of single-factor exposure assessments.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST-7045, Pittsburgh, 15260, Pennsylvania, USA.
| | | |
Collapse
|
10
|
Methylation of Inflammatory Cells in Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:63-72. [PMID: 32949390 DOI: 10.1007/978-981-15-4494-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Byrum SD, Washam CL, Patterson JD, Vyas KK, Gilbert KM, Blossom SJ. Continuous Developmental and Early Life Trichloroethylene Exposure Promoted DNA Methylation Alterations in Polycomb Protein Binding Sites in Effector/Memory CD4 + T Cells. Front Immunol 2019; 10:2016. [PMID: 31555266 PMCID: PMC6724578 DOI: 10.3389/fimmu.2019.02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Trichloroethylene (TCE) is an industrial solvent and drinking water pollutant associated with CD4+ T cell-mediated autoimmunity. In our mouse model, discontinuation of TCE exposure during adulthood after developmental exposure did not prevent immunotoxicity. To determine whether persistent effects were linked to epigenetic changes we conducted whole genome reduced representation bisulfite sequencing (RRBS) to evaluate methylation of CpG sites in autosomal chromosomes in activated effector/memory CD4+ T cells. Female MRL+/+ mice were exposed to vehicle control or TCE in the drinking water from gestation until ~37 weeks of age [postnatal day (PND) 259]. In a subset of mice, TCE exposure was discontinued at ~22 weeks of age (PND 154). At PND 259, RRBS assessment revealed more global methylation changes in the continuous exposure group vs. the discontinuous exposure group. A majority of the differentially methylated CpG regions (DMRs) across promoters, islands, and regulatory elements were hypermethylated (~90%). However, continuous developmental TCE exposure altered the methylation of 274 CpG sites in promoters and CpG islands. In contrast, only 4 CpG island regions were differentially methylated (hypermethylated) in the discontinuous group. Interestingly, 2 of these 4 sites were also hypermethylated in the continuous exposure group, and both of these island regions are associated with lysine 27 on histone H3 (H3K27) involved in polycomb complex-dependent transcriptional repression via H3K27 tri-methylation. CpG sites were overlapped with the Open Regulatory Annotation database. Unlike the discontinuous group, continuous TCE treatment resulted in 129 DMRs including 12 unique transcription factors and regulatory elements; 80% of which were enriched for one or more polycomb group (PcG) protein binding regions (i.e., SUZ12, EZH2, JARID2, and MTF2). Pathway analysis of the DMRs indicated that TCE primarily altered the methylation of genes associated with regulation of cellular metabolism and cell signaling. The results demonstrated that continuous developmental exposure to TCE differentially methylated binding sites of PcG proteins in effector/memory CD4+ cells. There were minimal yet potentially biologically significant effects that occurred when exposure was discontinued. These results point toward a novel mechanism by which chronic developmental TCE exposure may alter terminally differentiated CD4+ T cell function in adulthood.
Collapse
Affiliation(s)
- Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Patterson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kanan K Vyas
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kathleen M Gilbert
- Department of Microbiology and Immunology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sarah J Blossom
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
12
|
Burke CG, Myers JR, Boule LA, Post CM, Brookes PS, Lawrence BP. Early life exposures shape the CD4 + T cell transcriptome, influencing proliferation, differentiation, and mitochondrial dynamics later in life. Sci Rep 2019; 9:11489. [PMID: 31391494 PMCID: PMC6686001 DOI: 10.1038/s41598-019-47866-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Early life environmental exposures drive lasting changes to the function of the immune system and can contribute to disease later in life. One of the ways environmental factors act is through cellular receptors. The aryl hydrocarbon receptor (AHR) is expressed by immune cells and binds numerous xenobiotics. Early life exposure to chemicals that bind the AHR impairs CD4+ T cell responses to influenza A virus (IAV) infection in adulthood. However, the cellular mechanisms that underlie these durable changes remain poorly defined. Transcriptomic profiling of sorted CD4+ T cells identified changes in genes involved in proliferation, differentiation, and metabolic pathways were associated with triggering AHR during development. Functional bioassays confirmed that CD4+ T cells from infected developmentally exposed offspring exhibit reduced proliferation, differentiation, and cellular metabolism. Thus, developmental AHR activation shapes T cell responsive capacity later in life by affecting integrated cellular pathways, which collectively alter responses later in life. Given that coordinated shifts in T cell metabolism are essential for T cell responses to numerous challenges, and that humans are constantly exposed to many different types of AHR ligands, this has far-reaching implications for how AHR signaling, particularly during development, durably influences T cell mediated immune responses across the lifespan.
Collapse
Affiliation(s)
- Catherine G Burke
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14624, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14624, USA
| | - Lisbeth A Boule
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14624, USA
| | - Christina M Post
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14624, USA
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14624, USA
| | - B Paige Lawrence
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14624, USA.
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14624, USA.
| |
Collapse
|
13
|
Hu J, Yu Y. Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review. CHEMOSPHERE 2019; 226:259-272. [PMID: 30933735 DOI: 10.1016/j.chemosphere.2019.03.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The epigenome may be an important interface between exposure to environmental contaminants and adverse outcome on human health. Many environmental pollutants deregulate gene expression and promote diseases by modulating the epigenome. Adverse epigenetic responses have been widely used for risk assessment of chemical substances. Various pollutants, including trace elements and persistent organic pollutants, have been detected frequently in the environment. Epigenetic toxicity of environmental matrices including water, air, soil, and food cannot be ignored. This review provides a comprehensive overview of epigenetic effects of pollutants and environmental matrices. We start with an overview of the mechanisms of epigenetic regulation and the effects of several types of environmental pollutants (trace elements, persistent organic pollutants, endocrine disrupting chemicals, and volatile organic pollutants) on epigenetic modulation. We then discuss the epigenetic responses to environmental water, air, and soil based on in vivo and in vitro assays. Finally, we discuss recommendations to promote the incorporation of epigenotoxicity into contamination screening and health risk assessment.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
14
|
Phillips RV, Rieswijk L, Hubbard AE, Vermeulen R, Zhang J, Hu W, Li L, Bassig BA, Wong JYY, Reiss B, Huang Y, Wen C, Purdue M, Tang X, Zhang L, Smith MT, Rothman N, Lan Q. Human exposure to trichloroethylene is associated with increased variability of blood DNA methylation that is enriched in genes and pathways related to autoimmune disease and cancer. Epigenetics 2019; 14:1112-1124. [PMID: 31241004 DOI: 10.1080/15592294.2019.1633866] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human exposure to trichloroethylene (TCE) is linked to kidney cancer, autoimmune diseases, and probably non-Hodgkin lymphoma. Additionally, TCE exposed mice and cell cultures show altered DNA methylation. To evaluate associations between TCE exposure and DNA methylation in humans, we conducted an epigenome-wide association study (EWAS) in TCE exposed workers using the HumanMethylation450 BeadChip. Across individual CpG probes, genomic regions, and globally (i.e., the 450K methylome), we investigated differences in mean DNA methylation and differences in variability of DNA methylation between 73 control (< 0.005 ppm TCE), 30 lower exposed (< 10 ppm TCE), and 37 higher exposed ( ≥ 10 ppm TCE) subjects' white blood cells. We found that TCE exposure increased methylation variation globally (Kruskal-Wallis p-value = 3.75e-3) and in 25 CpG sites at a genome-wide significance level (Bonferroni p-value < 0.05). We identified a 609 basepair region in the TRIM68 gene promoter that exhibited hypomethylation with increased exposure to TCE (FWER = 1.20e-2). Also, genes that matched to differentially variable CpGs were enriched in the 'focal adhesion' biological pathway (p-value = 2.80e-2). All in all, human exposure to TCE was associated with epigenetic alterations in genes involved in cell-matrix adhesions and interferon subtype expression, which are important in the development of autoimmune diseases; and in genes related to cancer development. These results suggest that DNA methylation may play a role in the pathogenesis of TCE exposure-related diseases and that TCE exposure may contribute to epigenetic drift.
Collapse
Affiliation(s)
- Rachael V Phillips
- School of Public Health, University of California at Berkeley , Berkeley , CA , USA
| | - Linda Rieswijk
- School of Public Health, University of California at Berkeley , Berkeley , CA , USA
| | - Alan E Hubbard
- School of Public Health, University of California at Berkeley , Berkeley , CA , USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, University of Utrecht , Utrecht , The Netherlands
| | - Jinming Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute , Rockville , MD , USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute , Rockville , MD , USA
| | - Laiyu Li
- Guangdong Poisoning Control Center , Guangzhou , China
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute , Rockville , MD , USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute , Rockville , MD , USA
| | - Boris Reiss
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona , Tucson , AZ , USA
| | | | - Cuiju Wen
- Guangdong Poisoning Control Center , Guangzhou , China
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute , Rockville , MD , USA
| | - Xiaojiang Tang
- Guangdong Medical Laboratory Animal Center , Guangdong , China
| | - Luoping Zhang
- School of Public Health, University of California at Berkeley , Berkeley , CA , USA
| | - Martyn T Smith
- School of Public Health, University of California at Berkeley , Berkeley , CA , USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute , Rockville , MD , USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute , Rockville , MD , USA
| |
Collapse
|
15
|
Blossom SJ, Fernandes L, Bai S, Khare S, Gokulan K, Yuan Y, Dewall M, Simmen FA, Gilbert KM. Opposing Actions of Developmental Trichloroethylene and High-Fat Diet Coexposure on Markers of Lipogenesis and Inflammation in Autoimmune-Prone Mice. Toxicol Sci 2018; 164:313-327. [PMID: 29669109 PMCID: PMC6016708 DOI: 10.1093/toxsci/kfy091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trichloroethylene (TCE) is a widespread environmental pollutant associated with immunotoxicity and autoimmune disease. Previous studies showed that mice exposed from gestation through early life demonstrated CD4+ T cell alterations and autoimmune hepatitis. Determining the role of one environmental risk factor for any disease is complicated by the presence of other stressors. Based on its known effects, we hypothesized that developmental overnutrition in the form of a moderately high-fat diet (HFD) consisting of 40% kcal fat would exacerbate the immunotoxicity and autoimmune-promoting effects of low-level (<10 μg/kg/day) TCE in autoimmune-prone MRL+/+ mice over either stressor alone. When female offspring were evaluated at 27 weeks of age we found that a continuous exposure beginning at 4 weeks preconception in the dams until 10 weeks of age in offspring that TCE and HFD promoted unique effects that were often antagonistic. For a number of adiposity endpoints, TCE significantly reversed the expected effects of HFD on expression of genes involved in fatty acid synthesis/insulin resistance, as well as mean pathology scores of steatosis. Although none of the animals developed pathological signs of autoimmune hepatitis, the mice generated unique patterns of antiliver antibodies detected by western blotting attributable to TCE exposure. A majority of cytokines in liver, gut, and splenic CD4+ T cells were significantly altered by TCE, but not HFD. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure rather than HFD. Thus, in contrast to our expectations this coexposure did not promote synergistic effects.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Lorenzo Fernandes
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Shasha Bai
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | | | | | - Frank A Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kathleen M Gilbert
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
16
|
Blossom SJ, Gilbert KM. Epigenetic underpinnings of developmental immunotoxicity and autoimmune disease. CURRENT OPINION IN TOXICOLOGY 2017; 10:23-30. [PMID: 30613805 DOI: 10.1016/j.cotox.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The concordance rate for developing autoimmune disease in identical twins is around 50% demonstrating that gene and environmental interactions contribute to disease etiology. The environmental contribution to autoimmune disease is a wide-ranging concept including exposure to immunotoxic environmental chemicals. Because the immune system is immature during development suggests that adult-onset autoimmunity may originate when the immune system is particularly sensitive. Among the pollutants most closely associated with inflammation and/or autoimmunity include Bisphenol-A, mercury, TCDD, and trichloroethylene. These toxicants have been shown to impart epigenetic changes (e.g., DNA methylation) that may alter immune function and promote autoreactivity. Here we review these autoimmune-promoting toxicants and their relation to immune cell epigenetics both in terms of adult and developmental exposure.
Collapse
Affiliation(s)
- Sarah J Blossom
- University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Kathleen M Gilbert
- University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
17
|
Gilbert KM, Blossom SJ, Reisfeld B, Erickson SW, Vyas K, Maher M, Broadfoot B, West K, Bai S, Cooney CA, Bhattacharyya S. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4 + T cells. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx013. [PMID: 29129997 PMCID: PMC5676456 DOI: 10.1093/eep/dvx013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0-15% methylation), and 25% were hypermethylated (85-100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells.
Collapse
Affiliation(s)
- Kathleen M. Gilbert
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Sarah J. Blossom
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Brad Reisfeld
- Colorado State University, Fort Collins, CO 80523, USA
| | - Stephen W. Erickson
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Kanan Vyas
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Mary Maher
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Brannon Broadfoot
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Kirk West
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Shasha Bai
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Craig A. Cooney
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Sudeepa Bhattacharyya
- Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|