1
|
Mashak KA, Agin K, Emaratkar E, Gholami Fesharaki M, Namdar H. The effect of wet cupping on reactive airway dysfunction syndrome (RADS) caused by early exposure to chlorine gas: A randomized clinical trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2025; 15:997-1015. [PMID: 40292262 PMCID: PMC12033015 DOI: 10.22038/ajp.2024.25107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/24/2024] [Indexed: 04/30/2025]
Abstract
Objective In the absence of targeted antidotes for chlorine gas poisoning, a common yet concerning problem, this study investigates the effect of Wet Cupping Therapy (WCT, or "Hijamat") on the recovery process in chlorine-induced reactive airway dysfunction syndrome (RADS) patients. Materials and Methods This randomized controlled trial enrolled 24 patients experiencing acute inhalation of chlorine poisoning in Tehran, Iran (2020-2021). Patients were randomly divided into control (n=12, receiving conventional treatment) and intervention (n=12, receiving conventional treatment plus WCT) groups. Signs and symptoms were assessed pre-intervention, and in the first hour, first week, and first month post-intervention. Results Medical records of 24 patients, including 3(12.5%) men and 21(87.5%) women, with a mean age of 42.92 years old, were evaluated. Baseline characteristics were similar between the groups. WCT significantly improved symptoms (dyspnea, cough, chest tightness, etc.) within the first hour (p=0.003) compared to the controls, with no future significant changes during the first week and first-month post-WCT. Comparison between the groups revealed substantial differences in the following variables: dyspnea scale (p=0.009), respiratory rate (p=0.026), cough (p=0.001), breath shortness (p=0.006), chest tightness (p=0.002), chest pain (p=0.010), substernal burning (p=0.015), throat sore (p=0.005) and hoarseness (p=0.027). Peak flow meter readings, reflecting lung function, were also significantly higher in the WCT group at all time-points (p<0.007). Conclusion WCT may offer a rapid and sustained improvement in pulmonary and respiratory symptoms following acute chlorine inhalation injury.
Collapse
Affiliation(s)
- Khatereh Akbari Mashak
- Department of Traditional Persian Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Khosro Agin
- Department of the Pulmonary Medicine, Loghman Hakim Hospital, Faculty of Medical, Shahid Beheshti University, Tehran, Iran
| | - Elham Emaratkar
- Department of Traditional Persian Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | | | - Hasan Namdar
- Department of Traditional Persian Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
- Traditional Persian Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
Baljinnyam T, Niimi Y, Salsbury JR, Fukuda S, Ouellette CM, Andersen CR, Hirasawa Y, Prough DA, Garner CE, Salzman AL, Enkhbaatar P. Dose and gender dependence of chlorine inhalation in a conscious ovine model. Sci Rep 2023; 13:22367. [PMID: 38102196 PMCID: PMC10724231 DOI: 10.1038/s41598-023-48720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Characterization of the pathophysiology of ARDS following chlorine gas inhalation in clinically relevant translational large animal models is essential, as the opportunity for clinical trials in this type of trauma is extremely limited. To investigate Cl2 concentration and gender-dependent ARDS severity. Sheep (n = 54) were exposed to air or Cl2 premixed in air at a concentration of 50, 100, 200, and 300 ppm for 30 min under anesthesia/analgesia and monitored for an additional 48 h in a conscious state. Cardiopulmonary variables and survival endpoints were compared between male and female sheep. Overall there were no significant differences in the responses of female and male sheep except pulmonary oxygenation tended to be better in the male sheep (300 ppm group), and the pulmonary arterial pressure was lower (200 ppm group). The onset of mild ARDS (200 < PaO2/FiO2 ≤ 300) was observed at 36 h post exposure in the 50 ppm group, whereas the 100 ppm group developed mild and moderate (100 ≤ PaO2/FiO2 ≤ 200) ARDS by 12 and 36 h after injury, respectively. The 200 ppm and 300 ppm groups developed moderate ARDS within 6 and 3 h after injury, respectively. The 300 ppm group progressed to severe (PaO2/FiO2 ≤ 100) ARDS at 18 h after injury. Increases in pPeak and pPlateau were noted in all injured animals. Compared to sham, inhalation of 200 ppm and 300 ppm Cl2 significantly increased lung extravascular water content. The thoracic cavity fluid accumulation dose-dependently increased with the severity of trauma as compared to sham. At necropsy, the lungs were red, heavy, solidified, and fluid filled; the injury severity grew with increasing Cl2 concentration. The severity of ARDS and mortality rate directly correlated to inhaled Cl2 concentrations. No significant sex-dependent differences were found in measured endpoint variables.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yosuke Niimi
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - John R Salsbury
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Satoshi Fukuda
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Casey M Ouellette
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Clark R Andersen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Research Center, Houston, TX, USA
| | - Yasutaka Hirasawa
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Donald A Prough
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - C Edwin Garner
- Radikal Therapeutics, Beverly, MA, USA
- Mammoth Preclinical Consulting, Placitas, NM, USA
| | | | - Perenlei Enkhbaatar
- Translational Intensive Care Unit, Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Chatterjee T, Lewis TL, Arora I, Gryshyna AE, Underwood L, Masjoan Juncos JX, Aggarwal S. Sex-Based Disparities in Leukocyte Migration and Activation in Response to Inhalation Lung Injury: Role of SDF-1/CXCR4 Signaling. Cells 2023; 12:1719. [PMID: 37443753 PMCID: PMC10340292 DOI: 10.3390/cells12131719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to determine whether sex-related differences exist in immune response to inhalation lung injury. C57BL/6 mice were exposed to Cl2 gas (500 ppm for 15, 20, or 30 min). Results showed that male mice have higher rates of mortality and lung injury than females. The binding of the chemokine ligand C-X-C motif chemokine 12 (CXCL12), also called stromal-derived-factor-1 (SDF-1), to the C-X-C chemokine receptor type 4 (CXCR4) on lung cells promotes the migration of leukocytes from circulation to lungs. Therefore, the hypothesis was that elevated SDF-1/CXCR4 signaling mediates exaggerated immune response in males. Plasma, blood leukocytes, and lung cells were collected from mice post-Cl2 exposure. Plasma levels of SDF-1 and peripheral levels of CXCR4 in lung cells were higher in male vs. female mice post-Cl2 exposure. Myeloperoxidase (MPO) and elastase activity was significantly increased in leukocytes of male mice exposed to Cl2. Lung cells were then ex vivo treated with SDF-1 (100 ng/mL) in the presence or absence of the CXCR4 inhibitor, AMD3100 (100 nM). SDF-1 significantly increased migration, MPO, and elastase activity in cells obtained from male vs. female mice post-Cl2 exposure. AMD3100 attenuated these effects, suggesting that differential SDF-1/CXCR4 signaling may be responsible for sex-based disparities in the immune response to inhalation lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA; (T.C.); (T.L.L.); (I.A.); (A.E.G.); (L.U.); (J.X.M.J.)
| |
Collapse
|
4
|
Liu MM, Liu JZ, Zhao CQ, Guo P, Wang Z, Wu H, Yu W, Liu R, Hai CX, Zhang XD. Protective effects of pentoxifylline against chlorine-induced acute lung injury in rats. BMC Pharmacol Toxicol 2023; 24:12. [PMID: 36850013 PMCID: PMC9969370 DOI: 10.1186/s40360-023-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
OBJECTIVE Chlorine is a chemical threat agent that can be harmful to humans. Inhalation of high levels of chlorine can lead to acute lung injury (ALI). Currently, there is no satisfactory treatment, and effective antidote is urgently needed. Pentoxifylline (PTX), a methylxanthine derivative and nonspecific phosphodiesterase inhibitor, is widely used for the treatment of vascular disorders. The present study was aimed to investigate the inhibitory effects of PTX on chlorine-induced ALI in rats. METHODS Adult male Sprague-Dawley rats were exposed to 400 ppm Cl2 for 5 min. The histopathological examination was carried out and intracellular reactive oxygen species (ROS) levels were measured by the confocal laser scanning system. Subsequently, to evaluate the effect of PTX, a dose of 100 mg/kg was administered. The activities of superoxide dismutase (SOD) and the contents of malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG) and lactate dehydrogenase (LDH) were determined by using commercial kits according to the manufacturer's instructions. Western blot assay was used to detect the protein expressions of SOD1, SOD2, catalase (CAT), hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), occludin, E-cadherin, bcl-xl, LC 3, Beclin 1, PTEN-induced putative kinase 1 (PINK 1) and Parkin. RESULTS The histopathological examination demonstrated that chlorine could destroy the lung structure with hemorrhage, alveolar collapse, and inflammatory infiltration. ROS accumulation was significantly higher in the lungs of rats suffering from inhaling chlorine (P<0.05). PTX markedly reduced concentrations of MAD and GSSG, while increased GSH (P<0.05). The protein expression levels of SOD1 and CAT also decreased (P<0.05). Furthermore, the activity of LDH in rats treated with PTX was significantly decreased compared to those of non-treated group (P<0.05). Additionally, the results also showed that PTX exerted an inhibition effect on protein expressions of HIF-1α, VEGF and occludin, and increased the level of E-cadherin (P<0.05). While the up-regulation of Beclin 1, LC 3II/I, Bcl-xl, and Parkin both in the lung tissues and mitochondria, were found in PTX treated rats (P<0.05). The other protein levels were decreased when treated with PTX (P<0.05). CONCLUSION PTX could ameliorate chlorine-induced lung injury via inhibition effects on oxidative stress, hypoxia and autophagy, thus suggesting that PTX could serve as a potential therapeutic approach for ALI.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Health Service, Logistics College of Chinese People's Armed Police Force, Tianjin, 300309, China. .,Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jiang-Zheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen-Qian Zhao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Guo
- Department of Health Service, Logistics College of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Zhao Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Chun-Xu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-di Zhang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Miller L, Hébert CD, Grimes SD, Toomey JS, Oh JY, Rose JJ, Patel RP. Safety and toxicology assessment of sodium nitrite administered by intramuscular injection. Toxicol Appl Pharmacol 2021; 429:115702. [PMID: 34464673 PMCID: PMC8459319 DOI: 10.1016/j.taap.2021.115702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Intramuscular (IM) injection of nitrite (1-10 mg/kg) confers survival benefit and protects against lung injury after exposure to chlorine gas in preclinical models. Herein, we evaluated safety/toxicity parameters after single, and repeated (once daily for 7 days) IM injection of nitrite in male and female Sprague Dawley rats and Beagle dogs. The repeat dose studies were performed in compliance with the Federal Drug Administration's (FDA) Good Laboratory Practices Code of Federal Regulations (21 CFR Part 58). Parameters evaluated consisted of survival, clinical observations, body weights, clinical pathology, plasma drug levels, methemoglobin and macroscopic and microscopic pathology. In rats and dogs, single doses of ≥100 mg/kg and 60 mg/kg resulted in death and moribundity, while repeated administration of ≤30 or ≤ 10 mg/kg/day, respectively, was well tolerated. Therefore, the maximum tolerated dose following repeated administration in rats and dogs were determined to be 30 mg/kg/day and 10 mg/kg/day, respectively. Effects at doses below the maximum tolerated dose (MTD) were limited to emesis (in dogs only) and methemoglobinemia (in both species) with clinical signs (e.g. blue discoloration of lips) being dose-dependent, transient and reversible. These signs were not considered adverse, therefore the No Observed Adverse Effect Level (NOAEL) for both rats and dogs was 10 mg/kg/day in males (highest dose tested for dogs), and 3 mg/kg/day in females. Toxicokinetic assessment of plasma nitrite showed no difference between male and females, with Cmax occurring between 5 mins and 0.5 h (rats) or 0.25 h (dogs). In summary, IM nitrite was well tolerated in rats and dogs at doses previously shown to confer protection against chlorine gas toxicity.
Collapse
Affiliation(s)
- Lutfiya Miller
- Intertek Health Sciences, Inc., Pharmaceuticals & Healthcare, Mississauga, ON, Canada
| | | | | | - James S Toomey
- Southern Research, Birmingham, AL, United States of America
| | - Joo-Yeun Oh
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason J Rose
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Addis DR, Aggarwal S, Lazrak A, Jilling T, Matalon S. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology (Bethesda) 2021; 36:272-291. [PMID: 34431415 DOI: 10.1152/physiol.00004.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, Division of Cardiothoracic Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama.,Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pediatrics, Division of Neonatology, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, Alabama.,Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Lazrak A, Song W, Zhou T, Aggarwal S, Jilling T, Garantziotis S, Matalon S. Hyaluronan and halogen-induced airway hyperresponsiveness and lung injury. Ann N Y Acad Sci 2020; 1479:29-43. [PMID: 32578230 PMCID: PMC7680259 DOI: 10.1111/nyas.14415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Chlorine (Cl2 ) and bromine (Br2 ) are produced in large quantities throughout the world and used in the industry and the sanitation of water. These halogens can pose a significant threat to public health when released into the atmosphere during transportation and industrial accidents, or as acts of terrorism. In this review, we discuss the evidence showing that the activity of Cl2 and Br2 , and of products formed by their interaction with biomolecules, fragment high-molecular-weight hyaluronan (HMW-HA), a key component of the interstitial space and present in epithelial cells, to form proinflammatory, low-molecular-weight hyaluronan fragments that increase intracellular calcium (Ca2+ ) and activate RAS homolog family member A (RhoA) in airway smooth muscle and epithelial and microvascular cells. These changes result in airway hyperresponsiveness (AHR) to methacholine and increase epithelial and microvascular permeability. The increase in intracellular Ca2+ is the result of the activation of the calcium-sensing receptor by Cl2 , Br2 , and their by-products. Posthalogen administration of a commercially available form of HMW-HA to mice and to airway cells in vitro reverses the increase of Ca2+ and the activation of RhoA, and restores AHR to near-normal levels of airway function. These data have established the potential of HMW-HA to be a countermeasure against Cl2 and Br2 toxicity.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Weifeng Song
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Ting Zhou
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Stavros Garantziotis
- Matrix Biology Group, Immunity, Inflammation, and Disease Laboratory, NIH/NIEHS, RTP, NC
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
- Pulmonary Injury and Repair Center, Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| |
Collapse
|
8
|
Addis DR, Molyvdas A, Ambalavanan N, Matalon S, Jilling T. Halogen exposure injury in the developing lung. Ann N Y Acad Sci 2020; 1480:30-43. [PMID: 32738176 DOI: 10.1111/nyas.14445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
Owing to a high-volume industrial usage of the halogens chlorine (Cl2 ) and bromine (Br2 ), they are stored and transported in abundance, creating a risk for accidental or malicious release to human populations. Despite extensive efforts to understand the mechanisms of toxicity upon halogen exposure and to develop specific treatments that could be used to treat exposed individuals or large populations, until recently, there has been little to no effort to determine whether there are specific features and or the mechanisms of halogen exposure injury in newborns or children. We established a model of neonatal halogen exposure and published our initial findings. In this review, we aim to contrast and compare the findings in neonatal mice exposed to Br2 with the findings published on adult mice exposed to Br2 and the neonatal murine models of bronchopulmonary dysplasia. Despite remarkable similarities across these models in overall alveolar architecture, there are distinct functional and apparent mechanistic differences that are characteristic of each model. Understanding the mechanistic and functional features that are characteristic of the injury process in neonatal mice exposed to halogens will allow us to develop countermeasures that are appropriate for, and effective in, this unique population.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,UAB Comprehensive Cardiovascular Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Adam Molyvdas
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
9
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [PMID: 32576603 DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In contrast to nitric oxide, which has well established and important roles in the regulation of blood flow and thrombosis, neurotransmission, the normal functioning of the genitourinary system, and the inflammation response and host defense, its oxidized metabolites nitrite and nitrate have, until recently, been considered to be relatively inactive. However, this view has been radically revised over the past decade and more. Much evidence has now accumulated demonstrating that nitrite serves as a storage form of nitric oxide, releasing nitric oxide preferentially under acidic and/or hypoxic conditions but also occurring under physiologic conditions: a phenomenon that is catalyzed by a number of distinct mammalian nitrite reductases. Importantly, preclinical studies demonstrate that reduction of nitrite to nitric oxide results in a number of beneficial effects, including vasodilatation of blood vessels and lowering of blood pressure, as well as cytoprotective effects that limit the extent of damage caused by an ischemia/reperfusion insult, with this latter issue having been translated more recently to the clinical setting. In addition, research has demonstrated that the other main metabolite of the oxidation of nitric oxide (i.e., nitrate) can also be sequentially reduced through processing in vivo to nitrite and then nitrite to nitric oxide to exert a range of beneficial effects-most notably lowering of blood pressure, a phenomenon that has also been confirmed recently to be an effective method for blood pressure lowering in patients with hypertension. This review will provide a detailed description of the pathways involved in the bioactivation of both nitrate and nitrite in vivo, their functional effects in preclinical models, and their mechanisms of action, as well as a discussion of translational exploration of this pathway in diverse disease states characterized by deficiencies in bioavailable nitric oxide. SIGNIFICANCE STATEMENT: The past 15 years has seen a major revision in our understanding of the pathways for nitric oxide synthesis in the body with the discovery of the noncanonical pathway for nitric oxide generation known as the nitrate-nitrite-nitric oxide pathway. This review describes the molecular components of this pathway, its role in physiology, potential therapeutics of targeting this pathway, and their impact in experimental models, as well as the clinical translation (past and future) and potential side effects.
Collapse
Affiliation(s)
- V Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - R S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - D A Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - K Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - C Primus
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - G Massimo
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - J M Fukuto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - A Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| |
Collapse
|
10
|
Reactive species generated by heme impair alveolar epithelial sodium channel function in acute respiratory distress syndrome. Redox Biol 2020; 36:101592. [PMID: 32506040 PMCID: PMC7276446 DOI: 10.1016/j.redox.2020.101592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
We previously reported that the highly reactive cell-free heme (CFH) is increased in the plasma of patients with chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time that CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl2, with plasmalogens) are increased in the plasma of patients exposed to Cl2 gas. Ex vivo incubation of red blood cells (RBC) with halogenated lipids caused oxidative damage to RBC cytoskeletal protein spectrin, resulting in hemolysis and release of CFH. Patch clamp and short circuit current measurements revealed that CFH inhibited the activity of amiloride-sensitive epithelial Na+ channel (ENaC) and cation sodium (Na+) channels in mouse alveolar cells and trans-epithelial Na+ transport across human airway cells with EC50 of 125 nM and 500 nM, respectively. Molecular modeling identified 22 putative heme-docking sites on ENaC (energy of binding range: 86-1563 kJ/mol) with at least 2 sites within its narrow transmembrane pore, potentially capable of blocking Na+ transport across the channel. A single intramuscular injection of the heme-scavenging protein, hemopexin (4 μg/kg body weight), one hour post halogen gas exposure, decreased plasma CFH and improved lung ENaC activity in mice. In conclusion, results suggested that CFH mediated inhibition of ENaC activity may be responsible for pulmonary edema post inhalation injury.
Collapse
|
11
|
Choking agents and chlorine gas – History, pathophysiology, clinical effects and treatment. Toxicol Lett 2020; 320:73-79. [DOI: 10.1016/j.toxlet.2019.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
|
12
|
Lindsay CD, Timperley CM. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum Exp Toxicol 2019; 39:14-36. [PMID: 31578097 DOI: 10.1177/0960327119877460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a sensor for irritant chemicals, has ancient lineage, and is distributed across animal species including humans, where it features in many organs. Its activation by a diverse panel of electrophilic molecules (TRPA1 agonists) through electrostatic binding and/or covalent attachment to the protein causes the sensation of pain. This article reviews the species differences between TRPA1 channels and their responses, to assess the suitability of different animals to model the effects of TRPA1-activating electrophiles in humans, referring to common TRPA1 activators (exogenous and endogenous) and possible mechanisms of action relating to their toxicology. It concludes that close matching of in vitro and in vivo models will help optimise the identification of relevant biochemical and physiological responses to benchmark the efficacy of potential therapeutic drugs, including TRPA1 antagonists, to counter the toxic effects of those electrophiles capable of harming humans. The analysis of the species issue provided should aid the development of medical treatments to counter poisoning by such chemicals.
Collapse
Affiliation(s)
- C D Lindsay
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| | - C M Timperley
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| |
Collapse
|
13
|
Achanta S, Jordt SE. Toxic effects of chlorine gas and potential treatments: a literature review. Toxicol Mech Methods 2019; 31:244-256. [PMID: 31532270 DOI: 10.1080/15376516.2019.1669244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chlorine gas is one of the highly produced chemicals in the USA and around the world. Chlorine gas has several uses in water purification, sanitation, and industrial applications; however, it is a toxic inhalation hazard agent. Inhalation of chlorine gas, based on the concentration and duration of the exposure, causes a spectrum of symptoms, including but not limited to lacrimation, rhinorrhea, bronchospasm, cough, dyspnea, acute lung injury, death, and survivors develop signs of pulmonary fibrosis and reactive airway disease. Despite the use of chlorine gas as a chemical warfare agent since World War I and its known potential as an industrial hazard, there is no specific antidote. The resurgence of the use of chlorine gas as a chemical warfare agent in recent years has brought speculation of its use as weapons of mass destruction. Therefore, developing antidotes for chlorine gas-induced lung injuries remains the need of the hour. While some of the pre-clinical studies have made substantial progress in the understanding of chlorine gas-induced pulmonary pathophysiology and identifying potential medical countermeasure(s), yet none of the drug candidates are approved by the U.S. Food and Drug Administration (FDA). In this review, we summarized pathophysiology of chlorine gas-induced pulmonary injuries, pre-clinical animal models, development of a pipeline of potential medical countermeasures under FDA animal rule, and future directions for the development of antidotes for chlorine gas-induced lung injuries.
Collapse
Affiliation(s)
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
14
|
Aggarwal S, Jilling T, Doran S, Ahmad I, Eagen JE, Gu S, Gillespie M, Albert CJ, Ford D, Oh JY, Patel RP, Matalon S. Phosgene inhalation causes hemolysis and acute lung injury. Toxicol Lett 2019; 312:204-213. [PMID: 31047999 DOI: 10.1016/j.toxlet.2019.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Phosgene (Carbonyl Chloride, COCl2) remains an important chemical intermediate in many industrial processes such as combustion of chlorinated hydrocarbons and synthesis of solvents (degreasers, cleaners). It is a sweet smelling gas, and therefore does not prompt escape by the victim upon exposure. Supplemental oxygen and ventilation are the only available management strategies. This study was aimed to delineate the pathogenesis and identify novel biomarkers of acute lung injury post exposure to COCl2 gas. Adult male and female C57BL/6 mice (20-25 g), exposed to COCl2 gas (10 or 20 ppm) for 10 min in environmental chambers, had a dose dependent reduction in PaO2 and an increase in PaCO2, 1 day post exposure. However, mortality increased only in mice exposed to 20 ppm of COCl2 for 10 min. Correspondingly, these mice (20 ppm) also had severe acute lung injury as indicated by an increase in lung wet to dry weight ratio, extravasation of plasma proteins and neutrophils into the bronchoalveolar lavage fluid, and an increase in total lung resistance. The increase in acute lung injury parameters in COCl2 (20 ppm, 10 min) exposed mice correlated with simultaneous increase in oxidation of red blood cells (RBC) membrane, RBC fragility, and plasma levels of cell-free heme. In addition, these mice had decreased plasmalogen levels (plasmenylethanolamine) and elevated levels of their breakdown product, polyunsaturated lysophosphatidylethanolamine, in the circulation suggesting damage to cellular plasma membranes. This study highlights the importance of free heme in the pathogenesis of COCl2 lung injury and identifies plasma membrane breakdown product as potential biomarkers of COCl2 toxicity.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Department of Pediatrics, Division of Neonatology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Stephen Doran
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Jeannette E Eagen
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Stephen Gu
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Mark Gillespie
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; Department of Pharmacology, Mobile, AL, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Carolyn J Albert
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; Department of Biochemistry and Molecular Biology, St. Louis, MO, 63104, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - David Ford
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; Department of Biochemistry and Molecular Biology, St. Louis, MO, 63104, United States
| | - Joo-Yeun Oh
- Department of Pathology, Division of Cellular and Molecular Pathology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Rakesh P Patel
- Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Department of Pathology, Division of Cellular and Molecular Pathology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States.
| |
Collapse
|
15
|
Huynh Tuong A, Despréaux T, Loeb T, Salomon J, Mégarbane B, Descatha A. Emergency management of chlorine gas exposure - a systematic review. Clin Toxicol (Phila) 2019; 57:77-98. [PMID: 30672349 DOI: 10.1080/15563650.2018.1519193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Chlorine exposure can lead to pulmonary obstruction, reactive airway dysfunction syndrome, acute respiratory distress syndrome and, rarely, death. OBJECTIVE We performed a systematic review of published animal and human data regarding the management of chlorine exposure. METHODS Three databases were searched from 2007 to 2017 using the following keywords "("chlorine gas" OR "chlorine-induced" OR" chlorine-exposed") AND ("therapy" OR "treatment" OR "post-exposure")". Forty-five relevant papers were found: 22 animal studies, 6 reviews, 19 case reports and 1 human randomized controlled study. General management: Once the casualty has been removed from the source of exposure and adequately decontaminated, chlorine-exposed patients should receive supportive care. Humidified oxygen: If dyspnea and hypoxemia are present, humidified oxygen should be administered. Inhaled bronchodilators: The use of nebulized or inhaled bronchodilators to counteract bronchoconstriction is standard therapy, and the combination of ipratropium bromide with beta2-agonists effectively reversed bronchoconstriction, airway irritation and increased airway resistance in experimental studies. Inhaled sodium bicarbonate: In a randomized controlled trial, humidified oxygen, intravenous prednisolone and inhaled salbutamol were compared with nebulized sodium bicarbonate. The only additional benefit of sodium bicarbonate was to increase the forced expiratory volume in one second, 2 and 4 h after administration. Corticosteroids: Dexamethasone 100 mg/kg intraperitoneally (IP) reduced lung edema when given within 1 h of chlorine inhalation and when administered within 6 h significantly decreased (p < 0.01) the leukocyte count in the bronchoalveolar lavage (BAL). As corticosteroids were never given alone in clinical studies, it is impossible to assess whether they had an additional beneficial effect. Antioxidants: An ascorbic acid/deferoxamine combination (equivalent to 100 mg/kg and 15 mg/kg, respectively) was administered intramuscularly 1 h after chlorine exposure, then every 12 h up to 60 h, then as an aerosol, and produced a significant reduction (p < 0.05) in BAL leukocytes and a significant reduction (p < 0.007) in mortality at 72 h. The single clinical case reported was uninterpretable. Sodium nitrite: Sodium nitrite 10 mg/kg intramuscularly (IM), 30 min post-chlorine exposure in mice and rabbits significantly reduced (p < 0.01) the number of leukocytes and the protein concentration in BAL and completely reversed mortality in rabbits and decreased mortality by about 50% in mice. No clinical studies have reported the use of sodium nitrite. Dimethylthiourea: Dimethylthiourea 100 mg/kg IP significantly decreased (p < 0.05) lymphocytes and neutrophils in BAL fluid 24 h after chlorine exposure in experimental studies. No clinical studies have been undertaken. AEOL 10150: Administration of AEOL10150 5 mg/kg IP at 1 h and 9 h post-chlorine exposure reduced significantly the neutrophil (p < 0.001) and macrophage (p < 0.05) bronchoalveolar cell counts. Transient receptor potential vanilloid 4 (TRPV4): IM or IP TRPV4 reduced significantly (p < 0.001) bronchoalveolar neutrophil and macrophage counts to baseline at 24 h. No clinical studies have been performed. Reparixin and triptolide: In experimental studies, triptolide 100-1000 µg/kg IP 1 h post-exposure caused a significant decrease (p < 0.001) in bronchoalveolar neutrophils, whereas reparixin 15 mg/kg IP 1 h post-exposure produced no benefit. Rolipram: Nanoemulsion formulated rolipram administered intramuscularly returned airway resistance to baseline. Rolipram (40%)/poly(lactic-co-glycolic acid) (60%) 0.36 mg/mouse given intramuscularly 1 h post-exposure significantly reduced (p < 0.05) extravascular lung water by 20% at t + 6 h. Prophylactic antibiotics: Studies in patients have failed to demonstrate benefit. Sevoflurane: Sevoflurane has been used in one intubated patient in addition to beta2-agonists. Although the peak inspiratory pressure was decreased after 60 min, the role of sevofluorine is not known. CONCLUSIONS Various therapies seem promising based on animal studies or case reports. However, these recommendations are based on low-level quality data. A systematic list of outcomes to monitor and improve may help to design optimal therapeutic protocols to manage chlorine-exposed patients.
Collapse
Affiliation(s)
- Alice Huynh Tuong
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| | - Thomas Despréaux
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| | - Thomas Loeb
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France
| | - Jérôme Salomon
- d Versailles Saint Quentin-en-Yvelines University , Institut Pasteur, INSERM, UMR 1181 , Paris , France.,e Department of Acute Medicine , CHU PIFO, APHP, Poincaré Hospital , Garches , France
| | - Bruno Mégarbane
- f Department of Medical and Toxicological Critical Care Medicine , APHP, Lariboisière Hospital , Paris , France.,g Paris-Diderot University, INSERM UMR-S 1144 , Paris , France
| | - Alexis Descatha
- a AP-HP, EMS (Samu 92) Occupational Health Unit , Poincaré Hospital , Garches , France.,b Population-based Epidemiologic Cohorts Unit , INSERM, UMS011 , Villejuif , France.,c Aging and Chronic Diseases: Epidemiological and Public Health Approaches , INSERM, U1168 , Villejuif , France
| |
Collapse
|
16
|
Aggarwal S, Ahmad I, Lam A, Carlisle MA, Li C, Wells JM, Raju SV, Athar M, Rowe SM, Dransfield MT, Matalon S. Heme scavenging reduces pulmonary endoplasmic reticulum stress, fibrosis, and emphysema. JCI Insight 2018; 3:120694. [PMID: 30385726 DOI: 10.1172/jci.insight.120694] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis and emphysema are irreversible chronic events after inhalation injury. However, the mechanism(s) involved in their development remain poorly understood. Higher levels of plasma and lung heme have been recorded in acute lung injury associated with several insults. Here, we provide the molecular basis for heme-induced chronic lung injury. We found elevated plasma heme in chronic obstructive pulmonary disease (COPD) (GOLD stage 4) patients and also in a ferret model of COPD secondary to chronic cigarette smoke inhalation. Next, we developed a rodent model of chronic lung injury, where we exposed C57BL/6 mice to the halogen gas, bromine (Br2) (400 ppm, 30 minutes), and returned them to room air resulting in combined airway fibrosis and emphysematous phenotype, as indicated by high collagen deposition in the peribronchial spaces, increased lung hydroxyproline concentrations, and alveolar septal damage. These mice also had elevated pulmonary endoplasmic reticulum (ER) stress as seen in COPD patients; the pharmacological or genetic diminution of ER stress in mice attenuated Br2-induced lung changes. Finally, treating mice with the heme-scavenging protein, hemopexin, reduced plasma heme, ER stress, airway fibrosis, and emphysema. This is the first study to our knowledge to report elevated heme in COPD patients and establishes heme scavenging as a potential therapy after inhalation injury.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine.,Pulmonary Injury and Repair Center
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Adam Lam
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine.,Pulmonary Injury and Repair Center
| | - Matthew A Carlisle
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine.,Pulmonary Injury and Repair Center
| | | | - J Michael Wells
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Health Center, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - S Vamsee Raju
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Health Center, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Steven M Rowe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Health Center, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark T Dransfield
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine.,UAB Lung Health Center, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine.,Pulmonary Injury and Repair Center
| |
Collapse
|
17
|
Civilian exposure to chlorine gas: A systematic review. Toxicol Lett 2018; 293:249-252. [DOI: 10.1016/j.toxlet.2018.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
|
18
|
Wu G, Xu G, Chen DW, Gao WX, Xiong JQ, Shen HY, Gao YQ. Hypoxia Exacerbates Inflammatory Acute Lung Injury via the Toll-Like Receptor 4 Signaling Pathway. Front Immunol 2018; 9:1667. [PMID: 30083155 PMCID: PMC6064949 DOI: 10.3389/fimmu.2018.01667] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is characterized by non-cardiogenic diffuse alveolar damage and often leads to a lethal consequence, particularly when hypoxia coexists. The treatment of ALI remains a challenge: pulmonary inflammation and hypoxia both contribute to its onset and progression and no effective prevention approach is available. Here, we aimed to investigate the underlying mechanism of hypoxia interaction with inflammation in ALI and to evaluate hypoxia-inducible factor 1 alpha (HIF-1α)—the crucial modulator in hypoxia—as a potential therapeutic target against ALI. First, we developed a novel ALI rat model induced by a combined low-dose of lipopolysaccharides (LPS) with acute hypoxia. Second, we used gene microarray analysis to evaluate the inflammatory profiles of bronchi alveolar lavage fluid cells of ALI rats. Third, we employed an alveolar macrophage cell line, NR8383 as an in vitro system together with a toll-like receptor 4 (TLR4) antagonist TAK-242, to verify our in vivo findings from ALI animals. Finally, we tested the therapeutic effects of HIF-1α augmentation against inflammation and hypoxia in ALI. We demonstrated that (i) LPS upregulated inflammatory genes, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), in the alveolar macrophages of ALI rats, which were further enhanced when ALI combined with hypoxia; (ii) hypoxia exposure could further enhance the upregulation of alveolar macrophageal TLR4 that was noticed in LPS-induced inflammatory ALI, conversely, TLR4 antagonist TAK-242 could suppress the macrophageal expression of TLR4 and inflammatory cytokines, including TNF-α, IL-1β, and IL-6, suggesting that the TLR4 signaling pathway as a central link between inflammation and hypoxia in ALI; (iii) manipulation of HIF-1α in vitro could suppress TLR4 expression induced by combined LPS and hypoxia, via suppressing promoter activity of the TLR4 gene; (iv) preconditioning augmentation of HIF-1α in vivo by HIF hydroxylase inhibitor, DMOG excreted protection against inflammatory, and hypoxic processes in ALI. Together, we see that hypoxia can exacerbate inflammation in ALI via the activation of the TLR4 signaling pathway in alveolar macrophages and predispose impairment of the alveolar-capillary barrier in the development of ALI. Targeting HIF-1α can suppress TLR4 expression and macrophageal inflammation, suggesting the potential therapeutic and preventative value of HIF-1α/TLR4 crosstalk pathway in ALI.
Collapse
Affiliation(s)
- Gang Wu
- College of High Altitude Military Medicine, Institute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical University, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Xu
- College of High Altitude Military Medicine, Institute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical University, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - De-Wei Chen
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.,Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wen-Xiang Gao
- College of High Altitude Military Medicine, Institute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical University, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Jian-Qiong Xiong
- Intensive Care Unit, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hai-Ying Shen
- Robert Stone Dow Laboratories, Legacy Research Institute, Legacy Health, Portland, OR, United States
| | - Yu-Qi Gao
- College of High Altitude Military Medicine, Institute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical University, Chongqing, China.,Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| |
Collapse
|