1
|
Wells C, Pogribna M, Sharmah A, Paredes A, Word B, Patri AK, Lyn-Cook B, Hammons G. Exposure to a Titanium Dioxide Product Alters DNA Methylation in Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2037. [PMID: 39728572 DOI: 10.3390/nano14242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
The safety of titanium dioxide (TiO2), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO2 has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO2 product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Gene promoter methylation was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNA methyltransferases, MBD2, and URHF1 was quantified by qRT-PCR. A decrease in global DNA methylation was observed in both cell lines. Across the cell lines, seven genes (BNIP3, DNAJC15, GADD45G, GDF15, INSIG1, SCARA3, and TP53) were identified in which promoters were methylated. Changes in promoter methylation were associated with gene expression. Results also revealed aberrant expression of regulatory genes, DNA methyltransferases, MBD2, and UHRF1. Findings from the study clearly demonstrate the impact of TiO2 exposure on DNA methylation in two cell types, supporting the potential involvement of this epigenetic mechanism in its biological responses. Hence, epigenetic studies are critical for complete assessment of potential risk from exposure.
Collapse
Affiliation(s)
- Carlos Wells
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Marta Pogribna
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Arjun Sharmah
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Angel Paredes
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Beverly Word
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Anil K Patri
- Division of Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - George Hammons
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA
| |
Collapse
|
2
|
Kirkland D, Burzlaff A, Czich A, Doak SH, Fowler P, Pfuhler S, Stankowski LF. Updated assessment of the genotoxic potential of titanium dioxide based on reviews of in vitro comet, mode of action and cellular uptake studies, and recent publications. Regul Toxicol Pharmacol 2024; 154:105734. [PMID: 39491583 DOI: 10.1016/j.yrtph.2024.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
In 2021 the European Food Safety Authority (EFSA) concluded that "A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out.". A detailed review of the genotoxicity of titanium dioxide (TiO2) was subsequently published by Kirkland et al. (2022) using a comprehensive weight of evidence (WoE) approach in which test systems and endpoints were allocated different levels of relevance. At that time only 34 publications met the reliability and quality criteria for being most relevant in the evaluation of genotoxicity, and based on these it was concluded that the existing evidence did not support a direct DNA damaging mechanism for TiO2. Recently a number of regulatory opinions have been published, in which papers were cited that described in vitro DNA damage (mainly comet), mode of action, and cellular uptake studies that were not discussed in Kirkland et al. (2022). Furthermore, a number of additional papers have been published recently or have been identified from the regulatory opinions as a result of using extended search criteria. A total of 70 publications not previously reviewed in Kirkland et al. (2022) have been reviewed here, and again show that the published data on the genotoxicity of TiO2 are inconsistent, often of poor quality, and in some cases difficult to interpret. The cellular uptake studies show some evidence of cytoplasmic uptake, particularly in cells treated in vitro, but there is no convincing evidence of nuclear uptake. In terms of genotoxicity, the conclusions of Kirkland et al. (2022) that existing evidence does not support a direct DNA damaging mechanism for titanium dioxide (including nano forms), and that the main mechanism leading to TiO2 genotoxicity is most likely indirect damage to DNA through generation of reactive oxygen species (ROS), are still valid.
Collapse
Affiliation(s)
| | - Arne Burzlaff
- EBRC Consulting GmbH, Kirchhorster Str. 27, 30659, Hannover, Germany
| | | | - Shareen H Doak
- Swansea University Medical School, Swansea, SA2 8PP, Wales, UK
| | - Paul Fowler
- FSTox Consulting Ltd., Northamptonshire, UK.
| | - Stefan Pfuhler
- Global Product Stewardship, Procter & Gamble, Mason, OH, 45040, USA
| | | |
Collapse
|
3
|
Wolf S, Sriram K, Camassa LMA, Pathak D, Bing HL, Mohr B, Zienolddiny-Narui S, Samulin Erdem J. Systematic review of mechanistic evidence for TiO 2 nanoparticle-induced lung carcinogenicity. Nanotoxicology 2024; 18:437-463. [PMID: 39101876 DOI: 10.1080/17435390.2024.2384408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.
Collapse
Affiliation(s)
- Susann Wolf
- National Institute of Occupational Health, Oslo, Norway
| | - Krishnan Sriram
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Dhruba Pathak
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Helene L Bing
- National Institute of Occupational Health, Oslo, Norway
| | | | | | | |
Collapse
|
4
|
Valente A, Vieira L, Silva MJ, Ventura C. The Effect of Nanomaterials on DNA Methylation: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1880. [PMID: 37368308 DOI: 10.3390/nano13121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
DNA methylation is an epigenetic mechanism that involves the addition of a methyl group to a cytosine residue in CpG dinucleotides, which are particularly abundant in gene promoter regions. Several studies have highlighted the role that modifications of DNA methylation may have on the adverse health effects caused by exposure to environmental toxicants. One group of xenobiotics that is increasingly present in our daily lives are nanomaterials, whose unique physicochemical properties make them interesting for a large number of industrial and biomedical applications. Their widespread use has raised concerns about human exposure, and several toxicological studies have been performed, although the studies focusing on nanomaterials' effect on DNA methylation are still limited. The aim of this review is to investigate the possible impact of nanomaterials on DNA methylation. From the 70 studies found eligible for data analysis, the majority were in vitro, with about half using cell models related to the lungs. Among the in vivo studies, several animal models were used, but most were mice models. Only two studies were performed on human exposed populations. Global DNA methylation analyses was the most frequently applied approach. Although no trend towards hypo- or hyper-methylation could be observed, the importance of this epigenetic mechanism in the molecular response to nanomaterials is evident. Furthermore, methylation analysis of target genes and, particularly, the application of comprehensive DNA methylation analysis techniques, such as genome-wide sequencing, allowed identifying differentially methylated genes after nanomaterial exposure and affected molecular pathways, contributing to the understanding of their possible adverse health effects.
Collapse
Affiliation(s)
- Ana Valente
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Luís Vieira
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
5
|
Singh D, Gurjar BR. Recent innovation and impacts of nano-based technologies for wastewater treatment on humans: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:357. [PMID: 36732372 DOI: 10.1007/s10661-022-10790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
Sustainable wastewater management requires environment-friendly, efficient, and cost-effective methods of water treatment. The ever-growing list of emerging contaminants in municipal wastewater requires advanced, efficient, and cost-effective techniques for its treatment to combat the increasing water demand. The nano-based technologies hold great potential in improving water treatment efficiency and augmenting the water supply. However, the environmental effects of these technologies are still questionable among the public and scientific community. The present review discusses risks to human health due to the use of nano-based technology for the removal of emerging contaminants in water. The discussion will be about the impacts of these technologies on humans. Recommendations about safe and environmentally friendly options for nano-based technology for water treatment have been included. Safest options of nano-based technologies for water treatment and steps to minimize the risk associated with them have also been incorporated in this article. Since all biological systems are different, separate risk analyses should be performed at the environmentally relevant concentration for different durations. There is little/no information on the quantitative impact on humans and requires more understanding. The quantitative measurement of the cellular uptake of nanoparticles is usually difficult. We hope this article will serve its purpose for water researchers, medical researchers, environmentalists, policymakers, and the government.
Collapse
Affiliation(s)
- Divya Singh
- Department of Civil Engineering, IIT Roorkee, Roorkee, India.
| | | |
Collapse
|
6
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
7
|
Martin N, Wassmur B, Baun A, Lammel T. Availability and effects of n-TiO 2 and PCB77 in fish in vitro models of the intestinal barrier and liver under single- and/or co-exposure scenarios. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106343. [PMID: 36327689 DOI: 10.1016/j.aquatox.2022.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) and polychlorinated biphenyls (PCBs) can be present in the food of fish, leading to intestinal exposure uptake, and accumulation in inner organs. This study examined combination effects of n-TiO2 and PCB77 in vitro models of the fish intestinal epithelium and liver, i.e., RTgut-GC cell cultures grown in ThinCerts™ and RTL-W1 cell cultures grown in standard tissue culture plates. Mass spectrometry and microscopy techniques were used to obtain information on nanoparticle translocation across the intestinal barrier model. In addition, the substances' effect on intestinal barrier permeability, cell viability, expression of dioxin - and antioxidant response element -controlled genes, and induction of cytochrome P450 1a (Cyp1a)-dependent ethoxyresorufin-O-deethylase (EROD) activity were assessed. TiO2 nanoparticles were taken up by RTgut-GC cells and detected in the bottom compartment of the intestinal epithelial barrier model. It was not possible to conclude definitively if n-TiO2 translocation occurred via transcytosis or paracellular migration but observations of nanoparticles in the lateral space between adjacent epithelial cells were rare. PCB77 (1 and 10 µM, 24 h) did not affect barrier permeability, i.e., n-TiO2 translocation is probably not facilitated in case of co-exposure. Furthermore, previous and simultaneous exposure to n-TiO2 (1 and 10 mg/L, 24 h) did not have any influence on PCB77-induced Cyp1a mRNA and enzyme activity levels in RTL-W1 cells. Furthermore, there were no significant differences in expression of antioxidant response element-controlled genes comparing control, single substance, and mixture treatments, not even following long-term exposure (0.01-1 mg/L n-TiO2 + 1 nM PCB77, 4 weeks). While an underestimation of the effects of n-TiO2 and PCB77 cannot be fully excluded as concentration losses due to sorption to cell culture plastics were not measured, the results suggest that the test substances probably have a low potential to exhibit combination effects on the assessed endpoints when co-existing in fish tissues.
Collapse
Affiliation(s)
- Nicolas Martin
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden
| | - Anders Baun
- Department of Environmental and Resource Engineering, Technical University of Denmark, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Tobias Lammel
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden.
| |
Collapse
|
8
|
A review on the epigenetics modifications to nanomaterials in humans and animals: novel epigenetic regulator. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In the nanotechnology era, nanotechnology applications have been intensifying their prospects to embrace all the vigorous sectors persuading human health and animal. The safety and concerns regarding the widespread use of engineered nanomaterials (NMA) and their potential effect on human health still require further clarification. Literature elucidated that NMA exhibited significant adverse effects on various molecular and cellular alterations. Epigenetics is a complex process resulting in the interactions between an organism’s environment and genome. The epigenetic modifications, including histone modification and DNA methylation, chromatin structure and DNA accessibility alteration, regulate gene expression patterns. Disturbances of epigenetic markers induced by NMA might promote the sensitivity of humans and animals to several diseases. Also, this paper focus on the epigenetic regulators of some dietary nutrients that have been confirmed to stimulate the epigenome and, more exactly, DNA histone modifications and non-histone proteins modulation by acetylation, and phosphorylation inhibition, which counteracts oxidative stress generations. The present review epitomizes the recent evidence of the potential effects of NMA on histone modifications, in addition to in vivo and in vitro cytosine DNA methylation and its toxicity. Furthermore, the part of epigenetic fluctuations as possible translational biomarkers for uncovering untoward properties of NMA is deliberated.
Collapse
|
9
|
Sun Q, Li T, Yu Y, Li Y, Sun Z, Duan J. The critical role of epigenetic mechanisms involved in nanotoxicology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1789. [PMID: 35289073 DOI: 10.1002/wnan.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Over the past decades, nanomaterials (NMs) have been widely applied in the cosmetic, food, engineering, and medical fields. Along with the prevalence of NMs, the toxicological characteristics exhibited by these materials on health and the environment have gradually attracted attentions. A growing number of evidences have indicated that epigenetics holds an essential role in the onset and development of various diseases. NMs could cause epigenetic alterations such as DNA methylation, noncoding RNA (ncRNA) expression, and histone modifications. NMs might alternate either global DNA methylation or the methylation of specific genes to affect the biological function. Abnormal upregulation or downregulation of ncRNAs might also be a potential mechanism for the toxic effects caused by NMs. In parallel, the phosphorylation, acetylation, and methylation of histones also take an important part in the process of NMs-induced toxicity. As the adverse effects of NMs continue to be explored, mechanisms such as chromosomal remodeling, genomic imprinting, and m6 A modification are also gradually coming into the limelight. Since the epigenetic alterations often occur in the early development of diseases, thus the relevant studies not only provide insight into the pathogenesis of diseases, but also screen for the prospective biomarkers for early diagnosis and prevention. This review summarizes the epigenetic alterations elicited by NMs, hoping to provide a clue for nanotoxicity studies and security evaluation of NMs. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
11
|
Epigenetic Mechanisms in Understanding Nanomaterial-Induced Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:195-223. [DOI: 10.1007/978-3-030-88071-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Suitability of the In Vitro Cytokinesis-Block Micronucleus Test for Genotoxicity Assessment of TiO 2 Nanoparticles on SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22168558. [PMID: 34445265 PMCID: PMC8395234 DOI: 10.3390/ijms22168558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Standard toxicity tests might not be fully adequate for evaluating nanomaterials since their unique features are also responsible for unexpected interactions. The in vitro cytokinesis-block micronucleus (CBMN) test is recommended for genotoxicity testing, but cytochalasin-B (Cyt-B) may interfere with nanoparticles (NP), leading to inaccurate results. Our objective was to determine whether Cyt-B could interfere with MN induction by TiO2 NP in human SH-SY5Y cells, as assessed by CBMN test. Cells were treated for 6 or 24 h, according to three treatment options: co-treatment with Cyt-B, post-treatment, and delayed co-treatment. Influence of Cyt-B on TiO2 NP cellular uptake and MN induction as evaluated by flow cytometry (FCMN) were also assessed. TiO2 NP were significantly internalized by cells, both in the absence and presence of Cyt-B, indicating that this chemical does not interfere with NP uptake. Dose-dependent increases in MN rates were observed in CBMN test after co-treatment. However, FCMN assay only showed a positive response when Cyt-B was added simultaneously with TiO2 NP, suggesting that Cyt-B might alter CBMN assay results. No differences were observed in the comparisons between the treatment options assessed, suggesting they are not adequate alternatives to avoid Cyt-B interference in the specific conditions tested.
Collapse
|
13
|
Moreira L, Costa C, Pires J, Teixeira JP, Fraga S. How can exposure to engineered nanomaterials influence our epigenetic code? A review of the mechanisms and molecular targets. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108385. [PMID: 34893164 DOI: 10.1016/j.mrrev.2021.108385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Evidence suggests that engineered nanomaterials (ENM) can induce epigenetic modifications. In this review, we provide an overview of the epigenetic modulation of gene expression induced by ENM used in a variety of applications: titanium dioxide (TiO2), silver (Ag), gold (Au), silica (SiO2) nanoparticles and carbon-based nanomaterials (CNM). Exposure to these ENM can trigger alterations in cell patterns of DNA methylation, post-transcriptional histone modifications and expression of non-coding RNA. Such effects are dependent on ENM dose and physicochemical properties including size, shape and surface chemistry, as well as on the cell/organism sensitivity. The genes affected are mostly involved in the regulation of the epigenetic machinery itself, as well as in apoptosis, cell cycle, DNA repair and inflammation related pathways, whose long-term alterations might lead to the onset or progression of certain pathologies. In addition, some DNA methylation patterns may be retained as a form of epigenetic memory. Prenatal exposure to ENM may impair the normal development of the offspring by transplacental effects and/or putative transmission of epimutations in imprinting genes. Thus, understanding the impact of ENM on the epigenome is of paramount importance and epigenetic evaluation must be considered when assessing the risk of ENM to human health.
Collapse
Affiliation(s)
- Luciana Moreira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Joana Pires
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto, Portugal.
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
14
|
Ling C, An H, Li L, Wang J, Lu T, Wang H, Hu Y, Song G, Liu S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: a Systematic Review of the Literature and Meta-analysis. Biol Trace Elem Res 2021; 199:2057-2076. [PMID: 32770326 DOI: 10.1007/s12011-020-02311-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
With the wide use of titanium dioxide nanoparticles (TiO2-NPs), the genotoxicity of TiO2-NPs, which is a factor for safety assessment, has attracted people's attention. However, their genotoxic effects in vitro remain controversial due to inconsistent reports. Therefore, a systematic review was conducted followed by a meta-analysis to reveal whether TiO2-NPs cause genotoxicity in vitro. A total of 59 studies were identified in this review through exhaustive database retrieval and exclusion. Meta-analysis results were presented based on different evaluation methods. The results showed that TiO2-NP exposure considerably increased the percentage of DNA in tail and olive tail moment in comet assay. Gene mutation assay revealed that TiO2-NPs could also induce gene mutation. However, TiO2-NP exposure had no effect on micronucleus (MN) formation in the MN assay. Subgroup analysis showed that normal cells were more vulnerable to toxicity induced by TiO2-NPs. Moreover, mixed form and small particles of TiO2-NPs increased the percentage of DNA in tail. In addition, short-term exposure could detect more DNA damage. The size, coating, duration, and concentration of TiO2-NPs influenced MN formation. This study presented that TiO2-NP exposure could cause genotoxicity in vitro. The physicochemical properties of TiO2-NPs and experimental protocols influence the genotoxic effects in vitro. Comet and gene mutation assays may be more sensitive to the detection of TiO2-NP genotoxic effects.
Collapse
Affiliation(s)
- Chunmei Ling
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei An
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Jiaqi Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Tianjiao Lu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Sixiu Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Corsini E, Cubadda F, De Groot D, FitzGerald R, Gunnare S, Gutleb AC, Mast J, Mortensen A, Oomen A, Piersma A, Plichta V, Ulbrich B, Van Loveren H, Benford D, Bignami M, Bolognesi C, Crebelli R, Dusinska M, Marcon F, Nielsen E, Schlatter J, Vleminckx C, Barmaz S, Carfí M, Civitella C, Giarola A, Rincon AM, Serafimova R, Smeraldi C, Tarazona J, Tard A, Wright M. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J 2021; 19:e06585. [PMID: 33976718 PMCID: PMC8101360 DOI: 10.2903/j.efsa.2021.6585] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.
Collapse
|
16
|
Pogribna M, Hammons G. Epigenetic Effects of Nanomaterials and Nanoparticles. J Nanobiotechnology 2021; 19:2. [PMID: 33407537 PMCID: PMC7789336 DOI: 10.1186/s12951-020-00740-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The rise of nanotechnology and widespread use of engineered nanomaterials in everyday human life has led to concerns regarding their potential effect on human health. Adverse effects of nanomaterials and nanoparticles on various molecular and cellular alterations have been well-studied. In contrast, the role of epigenetic alterations in their toxicity remains relatively unexplored. This review summarizes current evidence of alterations in cytosine DNA methylation and histone modifications in response to nanomaterials and nanoparticles exposures in vivo and in vitro. This review also highlights existing knowledge gaps regarding the role of epigenetic alterations in nanomaterials and nanoparticles toxicity. Additionally, the role of epigenetic changes as potential translational biomarkers for detecting adverse effects of nanomaterials and nanoparticles is discussed.
Collapse
Affiliation(s)
- Marta Pogribna
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| | - George Hammons
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
17
|
Dose-independent genotoxic response in A549 cell line exposed to fungicide Iprodione. Arch Toxicol 2020; 95:1071-1079. [PMID: 33245377 DOI: 10.1007/s00204-020-02954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
The fungicide Iprodione is widely applied in vegetables and raises concern for human health. The A549 human lung carcinoma cell line is a suitable model for assessing the toxicological effects of drugs. The goal of this work was to evaluate the genotoxicity and oxidative stress in the A549 cell line exposed to sublethal concentrations from 3 to 100 µg/mL Iprodione considering LC50 = 243.4 µg/mL Iprodione, as determined by the MTT assay. Generalized Linear Mixed Models (GLMM) were performed to determine the association between the responses NDI, MNim and MNib and the explanatory variables. Iprodione and solvent were relativized to the control whereas the concentration was included as numeric variable. ANOVA was used for the comparison of treatments. The coefficients of linear association between the explanatory variables and NDI, and the coefficients of logistic association between explanatory variables and MNim were not significant. However, these coefficients showed significant association with MNib only for Iprodione treatment but not for Iprodione concentration, indicating lack of dose-response relationship. Genotoxicity risk assessment indicated that the increase in Iprodione concentrations increased slightly the probability of belonging to the genotoxic category. ANOVA showed significant differences in MNib, and non-significant differences in NDI and MNim among treatments. The oxidative stress analysis performed at 3, 12, and 25 μg/mL Iprodione showed a significant and linear increase in SOD, and a significant and linear decrease in GSH and GST. The Dunnett test was significant for GSH at 12 and SOD at 25 μg/mL.
Collapse
|
18
|
Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, Yang J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front Bioeng Biotechnol 2020; 8:822. [PMID: 32766232 PMCID: PMC7380248 DOI: 10.3389/fbioe.2020.00822] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thousands of different nanoparticles (NPs) involve in our daily life with various origins from food, cosmetics, drugs, etc. It is believed that decreasing the size of materials up to nanometer levels can facilitate their unfavorable absorption since they can pass the natural barriers of live tissues and organs even, they can go across the relatively impermeable membranes. The interaction of these NPs with the biological environment disturbs the natural functions of cells and its components and cause health issues. In the lack of the detailed and comprehensive standard protocols about the toxicity of NPs materials, their control, and effects, this review study focuses on the current research literature about the related factors in toxicity of NPs such as size, concentration, etc. with an emphasis on metal and metal oxide nanoparticles. The goal of the study is to highlight their potential hazard and the advancement of green non-cytotoxic nanomaterials with safe threshold dose levels to resolve the toxicity issues. This study supports the NPs design along with minimizing the adverse effects of nanoparticles especially those used in biological treatments.
Collapse
Affiliation(s)
- Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinfan Yang
- Department of Spine Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahmoud Ebrahimi
- National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingge Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Junlin Yang
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Carriere M, Arnal ME, Douki T. TiO 2 genotoxicity: An update of the results published over the last six years. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503198. [PMID: 32660822 DOI: 10.1016/j.mrgentox.2020.503198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
TiO2 particles are broadly used in daily products, including cosmetics for their UV-absorbing property, food for their white colouring property, water and air purification systems, self-cleaning surfaces and photoconversion electrical devices for their photocatalytic properties. The toxicity of TiO2 nano- and microparticles has been studied for decades, and part of this investigation has been dedicated to the identification of their potential impact on DNA, i.e., their genotoxicity. This review summarizes data retrieved from their genotoxicity testing during the past 6 years, encompassing both in vitro and in vivo studies, mostly performed on lung and intestinal models. It shows that TiO2 particles, both nano- and micro-sized, produce genotoxic damage to a variety of cell types, even at low, realistic doses.
Collapse
Affiliation(s)
- Marie Carriere
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Marie-Edith Arnal
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| | - Thierry Douki
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 38000, Grenoble, France.
| |
Collapse
|
20
|
Pogribna M, Koonce NA, Mathew A, Word B, Patri AK, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology 2020; 14:534-553. [PMID: 32031460 DOI: 10.1080/17435390.2020.1723730] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022]
Abstract
Nanoscale titanium dioxide (TiO2) is manufactured in wide scale, with a range of applications in consumer products. Significant toxicity of TiO2 nanoparticles has, however, been recognized, suggesting considerable risk to human health. To evaluate fully their toxicity, assessment of the epigenetic action of these nanoparticles is critical. However, only few studies are available examining capability of nanoparticles to alter epigenetic integrity. In the present study, the effect of TiO2 nanoparticles exposure on DNA methylation, a major epigenetic mechanism, was investigated in in vitro cellular model systems. A panel of cells relevant to portals of human exposure (Caco-2 (colorectal), HepG2 (liver), NL20 (lung), and A-431 (skin)) was exposed to TiO2 nanoparticles to assess effects on global methylation, gene-specific methylation, and expression levels of DNA methyltransferases, MBD2, and UHRF1. Global methylation was determined by enzyme-linked immunosorbent assay-based immunochemical analysis. Degree of promoter methylation across a defined panel of genes was evaluated using EpiTect Methyl II Signature PCR System Array technology. Expression of DNMT1, DNMT3a, DNMT3b, MBD2, and URHF1 was quantified by qRT-PCR. Decrease in global DNA methylation in cell lines Caco-2, HepG2, and A-431 exposed to TiO2 nanoparticles was shown. Across four cell lines, eight genes (CDKN1A, DNAJC15, GADD45A, GDF15, INSIG1, SCARA3, TP53, and BNIP3) were identified in which promotors were methylated after exposure. Altered expression of these genes is associated with disease etiology. The results also revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a, DNMT3b, MBD2, and UHRF1) in TiO2 exposed cells, which was cell type dependent. Findings from this study clearly demonstrate the impact of TiO2 nanoparticles exposure on DNA methylation in multiple cell types, supporting potential involvement of this epigenetic mechanism in the toxicity of TiO2 nanoparticles. Hence for complete assessment of potential risk from nanoparticle exposure, epigenetic studies are critical.
Collapse
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Nathan A Koonce
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Ammu Mathew
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Anil K Patri
- Nanotechology Core, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
21
|
Asghari A, Hosseini M, Beheshti F, Shafei MN, Mehri S. Inducible nitric oxide inhibitor aminoguanidine, ameliorated oxidative stress, interleukin-6 concentration and improved brain-derived neurotrophic factor in the brain tissues of neonates born from titanium dioxide nanoparticles exposed rats. J Matern Fetal Neonatal Med 2019; 32:3962-3973. [PMID: 29788817 DOI: 10.1080/14767058.2018.1480602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/22/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Introduction: An interaction between oxidative stress, neuroinflammation, and nitric oxide (NO) has been suggested to have a role neurotoxicity. The aim of current research was to investigate the effect of aminoguanidine (AG) as an inducible NO synthase (iNOS) inhibitor, on brain-derived neurotrophic factor (BDNF), oxidative stress, and interleukin-6 (IL-6) concentrations in the brain tissues of neonates born from the rats exposed to titanium dioxide nanoparticles (TiO2 NPs) during gestation. Methods: The pregnant rats were grouped into three and received: (1) saline, (2) TiO2 (200 mg/kg, gavage), and (3) TiO2-AG [200 mg/kg intraperitoneal (IP)]. The treatment was started since the second gestation day up to the delivery time. The neonates born from the rats were deeply anesthetized, sacrificed, and the brains were collected for biochemical evaluations. Results: The neonates born from the rats exposed to TiO2 showed a lower BDNF (p < .001) but a higher IL-6 (p < .01) concentrations in their hippocampal tissue. TiO2 exposure also increased malondialdehyde (MDA) (p < .001) and NO metabolites (p < .001), while diminished thiol (p < .001), superoxide (SOD) (p < .001), and catalase (CAT) (p < .001) in all hippocampal, cortical, and cerebellar tissues. Administration of AG improved BDNF (p < .01) but attenuated IL-6 (p < .01) concentrations in the hippocampal tissue. AG also decreased MDA (p < .001) and NO metabolites (p < .01-p < .001), while increased thiol (p < .01-p < .001), SOD (p < .001), and CAT (p < .05-p < .001) in all cerebellar, hippocampal, cortical, and tissues. Conclusion: The results of the current research revealed that iNOS inhibitor AG, ameliorated oxidative stress, IL-6 concentration, and improved BDNF in the brain tissues of neonates born from TiO2 NPs exposed rats.
Collapse
Affiliation(s)
- Amir Asghari
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farimah Beheshti
- Department of Basic Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences , Torbat Heydariyeh , Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
22
|
Mottola F, Iovine C, Santonastaso M, Romeo ML, Pacifico S, Cobellis L, Rocco L. NPs-TiO 2 and Lincomycin Coexposure Induces DNA Damage in Cultured Human Amniotic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1511. [PMID: 31652841 PMCID: PMC6915627 DOI: 10.3390/nano9111511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Maria Luisa Romeo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Luigi Cobellis
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
- Sant' Anna e San Sebastiano Hospital, 81100 Caserta, Italy.
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
23
|
De Matteis V, Cascione M, Toma CC, Pellegrino P, Rizzello L, Rinaldi R. Tailoring Cell Morphomechanical Perturbations Through Metal Oxide Nanoparticles. NANOSCALE RESEARCH LETTERS 2019; 14:109. [PMID: 30923929 PMCID: PMC6439097 DOI: 10.1186/s11671-019-2941-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/14/2019] [Indexed: 05/17/2023]
Abstract
The nowadays growing use of nanoparticles (NPs) in commercial products does not match a comprehensive understanding of their potential harmfulness. More in vitro investigations are required to address how the physicochemical properties of NPs guide their engulfment within cells and their intracellular trafficking, fate, and toxicity. These nano-bio interactions have not been extensively addressed yet, especially from a mechanical viewpoint. Cell mechanic is a critical indicator of cell health because it regulates processes like cell migration, tissue integrity, and differentiation via cytoskeleton rearrangements. Here, we investigated in vitro the elasticity perturbation of Caco-2 and A549 cell lines, in terms of Young's modulus modification induced by SiO2NPS and TiO2NPS. TiO2NPs demonstrated stronger effects on cell elasticity compared to SiO2NPs, as they induced significant morphological and morphometric changes in actin network. TiO2NPS increased the elasticity in Caco-2 cells, while opposite effects have been observed on A549 cells. These results demonstrate the existence of a correlation between the alteration of cell elasticity and NPs toxicity that depends, in turn, on the NPs physicochemical properties and the specific cell tested.
Collapse
Affiliation(s)
- Valeria De Matteis
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Mariafrancesca Cascione
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Chiara Cristina Toma
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Paolo Pellegrino
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| | - Loris Rizzello
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano, 73100 Lecce, Italy
| |
Collapse
|
24
|
Li J, Yang S, Lei R, Gu W, Qin Y, Ma S, Chen K, Chang Y, Bai X, Xia S, Wu C, Xing G. Oral administration of rutile and anatase TiO 2 nanoparticles shifts mouse gut microbiota structure. NANOSCALE 2018; 10:7736-7745. [PMID: 29658026 DOI: 10.1039/c8nr00386f] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The widespread application of TiO2 nanoparticles (NPs) as additives in foods such as gum, candy and puddings has dramatically increased the human ingestion and accumulation of these nanomaterials. Although the toxicity of TiO2 NPs has been extensively studied, their impact on gut microbiota in vivo still needs further research. In this study, TiO2 NPs with two main crystalline phases anatase and rutile were orally administrated to mice for 28 days. The dynamic influences of anatase and rutile on gut microbiota structures were investigated at doses equivalent to those consumed by people who love to eat candies. The results showed that titanium accumulated in the spleen, lung, and kidney but had no significant effects on organ histology. Gavage of rutile NPs but not anatase NPs resulted in longer intestinal villi and irregular arrangement of villus epithelial cells. Treatment with TiO2 NPs did not decrease gut microbiota diversity but shifted their structures in a time-dependent manner. Rutile NPs had a more pronounced influence on the gut microbiota than anatase NPs. The most influenced phylum was Proteobacteria, which was significantly increased by rutile but not by anatase. At the genus level, Prevotella was significantly decreased by both the TiO2 NPs, Rhodococcus was enriched by rutile NPs, and Bacteroides was increased by anatase NPs. Overall, these results suggested that chronic overconsumption of TiO2 NP-containing foods is likely to deteriorate the gastrointestinal tract and change the structures of microbiota. The crystalline phases may play an important role in mediating the intestinal impact of TiO2 NPs.
Collapse
Affiliation(s)
- Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Møller P, Jensen DM, Wils RS, Andersen MHG, Danielsen PH, Roursgaard M. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models. Nanotoxicology 2017; 11:1237-1256. [DOI: 10.1080/17435390.2017.1406549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Pernille Høgh Danielsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Martin A, Sarkar A. Overview on biological implications of metal oxide nanoparticle exposure to human alveolar A549 cell line. Nanotoxicology 2017; 11:713-724. [PMID: 28830283 DOI: 10.1080/17435390.2017.1366574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal oxides (MeOx) are exponentially being used in a wide range of applications and are the largest class of commercially produced nanomaterials. This presents unprecedented human exposure. Thus, understanding nanoparticle induced cellular stress can greatly help design strategies to combat them. Scores of studies have been carried out to understand the effects of MeOx nanoparticle exposure on human alveolar cells, which are highly susceptible to aerosolized matter. There is a huge redundancy of information generated, also, a lack of a comprehensive conglomeration of this information. We have built here in a sincere summary of the cellular responses reported till date as a direct consequence of MeOx nanoparticle exposure on human alveolar (A549) cells. Detailed accounts of cellular morphology modulation, generation of reactive oxygen species (ROS) and oxidative stress, inflammation and cytokine release, genotoxic and epi-genotoxic insults, toxicological trend, nanoparticle internalization, modes of cell death, protein synthesis, and membrane damage among others are discussed. Finally, to aid predictability of the highly dynamic and multifactorial nature of this toxicity, we have hypothesized models that describe the ensuing mechanisms based on common patterns discovered throughout our literature survey.
Collapse
Affiliation(s)
- Ansie Martin
- a Department of Biological Sciences , CMBL, BITS Pilani K K Birla Goa Campus , Zuarinagar , India
| | - Angshuman Sarkar
- a Department of Biological Sciences , CMBL, BITS Pilani K K Birla Goa Campus , Zuarinagar , India
| |
Collapse
|
27
|
Bianchi MG, Allegri M, Chiu M, Costa AL, Blosi M, Ortelli S, Bussolati O, Bergamaschi E. Lipopolysaccharide Adsorbed to the Bio-Corona of TiO 2 Nanoparticles Powerfully Activates Selected Pro-inflammatory Transduction Pathways. Front Immunol 2017; 8:866. [PMID: 28824614 PMCID: PMC5540950 DOI: 10.3389/fimmu.2017.00866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
It is known that the adsorption of bioactive molecules provides engineered nanoparticles (NPs) with novel biological activities. However, the biological effects of the adsorbed molecules may also be modified by the interaction with NP. Bacterial lipopolysaccharide (LPS), a powerful pro-inflammatory compound, is a common environmental contaminant and is present in several body compartments such as the gut. We recently observed that the co-incubation of LPS with TiO2 NPs markedly potentiates its pro-inflammatory effects on murine macrophages, suggesting that, when included in a NP bio-corona, LPS activity is enhanced. To distinguish the effects of adsorbed LPS from those of the free endotoxin, a pellet fraction, denominated P25/LPS, was isolated by centrifugation from a mixture of P25 TiO2 NP (128 µg/ml) and LPS (10 ng/ml) in the presence of fetal bovine serum. Western blot analysis of the pellet eluate indicated that the P25/LPS fraction contained, besides proteins, also LPS, pointing to the presence of LPS-doped NP. The effects of adsorbed or free LPS were then compared in Raw264.7 murine macrophages. RT-PCR was used to evaluate the induction of cytokine genes, whereas active, phosphorylated isoforms of proteins involved in signaling pathways were assessed with western blot. At a nominal LPS concentration of 40 pg/ml, P25/LPS induced the expression of both NF-κB and IRF3-dependent cytokines at levels comparable with those observed with free LPS (10 ng/ml), although with different time courses. Moreover, compared to free LPS, P25/LPS caused a more sustained phosphorylation of p38 MAPK and a more prolonged induction of STAT1-dependent genes. Cytochalasin B partially inhibited the induction of Tnfa by P25/LPS, but not by free LPS, and suppressed the induction of IRF3-dependent genes by either P25/LPS or free LPS. These data suggest that, when included in the bio-corona of TiO2 NP, LPS exhibits enhanced and time-shifted pro-inflammatory effects. Thus, in assessing the hazard of NP in real life, the enhanced effects of adsorbed bioactive molecules should be taken into account.
Collapse
Affiliation(s)
| | - Manfredi Allegri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Anna L Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Science and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|