1
|
Huang S, Xu Y, Guo Y, Zhang Y, Tang Y, Liang C, Gao L, Yao B, Wang X. Aspirin increases estrogen levels in the placenta to prevent preeclampsia by regulating placental metabolism and transport function. Biochem Pharmacol 2024; 230:116561. [PMID: 39343179 DOI: 10.1016/j.bcp.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Preeclampsia is a unique multisystem progressive disease during pregnancy, which seriously endangers the health of pregnant women and fetuses. In clinical practice, aspirin is recommended for the prevention of preeclampsia, but the mechanism by which aspirin prevents preeclampsia has not yet been revealed. This report comprehensively evaluates the effects of aspirin on the expression and activity of placental metabolic enzymes and transporters. We found that after aspirin administration, only the expression of organic anion transporter 4 (OAT4) in the placenta showed a significant increase at both mRNA and protein levels, consistent with the results in JAR cells. Meanwhile, studies on the metabolic enzyme activity in the placenta showed a high upregulation of CYP19A1 activity. Subsequently, significant increases in endogenous substrates of OAT4 and CYP19A1 (dehydroepiandrosterone sulfate (DHEAS) and androstenedione) as well as estrone were detected in placental tissue. In summary, aspirin enhances the transport of DHEAS through OAT4 and promotes the metabolism of androstenedione through CYP19A1, thereby increasing estrogen levels in the placenta. This may be the mechanism by which aspirin prevents preeclampsia and maintains pregnancy by regulating the metabolism and transport function of the placenta.
Collapse
Affiliation(s)
- Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Liangcai Gao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China.
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, PR China.
| |
Collapse
|
2
|
Chen J, Hong F, Xia H, Shen Y, Chen X, Wu H, Lin G, Zhan R. Investigation of ponatinib metabolism and drug-drug interactions with lycopene and shikonin in vitro and invivo. Chem Biol Interact 2024; 404:111265. [PMID: 39396719 DOI: 10.1016/j.cbi.2024.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Ponatinib is approved for use in patients with chronic myeloid leukemia (CML) who are resistant to or intolerant to prior tyrosine kinase inhibitor (TKI) therapy. Given that ponatinib can induce significant cardiotoxicity when taken, and that most Chinese medicines have cardioprotective effects, it is possible to administer them in combination in clinic to alleviate adverse effects. The quantitative determination of ponatinib and its metabolite N-desmethyl ponatinib was optimized and fully verified by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). And the drug-drug interactions (DDI) of ponatinib with lycopene and shikonin, both in vivo and in vitro, were studied. The results of bioanalytical methodology showed that ponatinib and N-desmethyl ponatinib had good linearity in plasma samples, and their selectivity, accuracy, precision, stability, matrix effect and recovery were all satisfied with the need of quantitative analysis of samples. In animal experiments, compared with the control group, lycopene and shikonin significantly changed the pharmacokinetic parameters of ponatinib, including AUC(0-t), AUC(0-∞) and CLz/F, while having no effect on the pharmacokinetic parameters of N-desmethyl ponatinib. In vitro interaction studies indicated that lycopene showed mixed inhibition mechanism on ponatinib metabolism in both rat liver microsomes (RLM) and human liver microsomes (HLM). And, shikonin displayed mixed inhibition mechanism in RLM and competitive inhibition mechanism in HLM, respectively. In summary, the UPLC-MS/MS method can accurately and sensitively quantify ponatinib and N-desmethyl ponatinib, and provide further reference for clinical drug combination between ponatinib and lycopene or shikonin.
Collapse
Affiliation(s)
- Jie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fengsheng Hong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hualu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ruanjuan Zhan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zhang Y, Gao J, Xu Y, Liu J, Huang S, Li G, Yao B, Sun Z, Wang X. Investigation of cytochrome P450 inhibitory properties of deoxyshikonin, a bioactive compound from Lithospermum erythrorhizon Sieb. et Zucc. Phytother Res 2024; 38:4855-4864. [PMID: 36317387 DOI: 10.1002/ptr.7664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Deoxyshikonin, a natural naphthoquinone compound extracted from Lithospermum erythrorhizon Sieb. et Zucc (Boraginaceae), has a wide range of pharmacological activities, including anti-tumor, anti-bacterial and wound healing effects. However, the inhibitory effect of deoxyshikonin on cytochrome P450 (CYP) remains unclear. This study investigated the potential inhibitory effects of deoxyshikonin on CYP1A2, 2B1/6, 2C9/11, 2D1/6, 2E1 and 3A2/4 enzymes in human and rat liver microsomes (HLMs and RLMs) by the cocktail approach in vitro. The single-point inactivation experiment showed that deoxyshikonin presented no time-dependent inhibition on CYP activities in HLMs and RLMs. Enzyme inhibition kinetics indicated that in HLMs, deoxyshikonin was not only a competitive inhibitor of CYP1A2 and 2E1, but also a mixed inhibitor of CYP2B6, 2C9, 2D6 and 3A4, with Ki of 2.21, 1.78, 1.68, 0.20, 4.08 and 0.44 μM, respectively. In RLMs, deoxyshikonin not only competitively inhibited CYP2B1 and 2E1, but also exhibited mixed inhibition on CYP1A2, 2C11, 2D1 and 3A2, with Ki values of no more than 18.66 μM. In conclusion, due to the low Ki values of deoxythiokonin on CYP enzymes in HLMs, this may lead to drug-drug interactions (DDI) and potential toxicity.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, People's Republic of China
| | - Jing Gao
- The College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, People's Republic of China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, People's Republic of China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, People's Republic of China
| | - Guihong Li
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, People's Republic of China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, People's Republic of China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, People's Republic of China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Shen Y, Liu J, Yao B, Zhang Y, Huang S, Liang C, Huang J, Tang Y, Wang X. Non-alcoholic fatty liver disease changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats. Toxicol Lett 2024; 396:36-47. [PMID: 38663832 DOI: 10.1016/j.toxlet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which can cause serious complications and gradually increase the mortality rate. However, the effects of NAFLD on drug-metabolizing enzymes and transporters remain unclear, which may cause some confusion regarding patient medication. In this study, a NAFLD rat model was constructed by feeding rats with methionine and choline deficiency diets for 6 weeks, and the mRNA and protein levels of drug-metabolizing enzymes and transporter were analyzed by real-time fluorescent quantitative PCR and Western blot, respectively. The activity of drug-metabolizing enzymes was detected by cocktail methods. In the NAFLD rat model, the mRNA expression of phase I enzymes, phase II enzymes, and transporters decreased. At the protein level, only CYP1A1, CYP1B1, CYP2C11, and CYP2J3 presented a decrease. In addition, the activities of CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP3A2, UGT1A1, UGT1A3, UGT1A6, and UGT1A9 decreased. These changes may be caused by the alteration of FXR, HNF4α, LXRα, LXRβ, PXR, and RXR. In conclusion, NAFLD changes the expression and activity of hepatic drug-metabolizing enzymes and transporters in rats, which may affect drug metabolism and pharmacokinetics. In clinical medication, drug monitoring should be strengthened to avoid potential risks.
Collapse
Affiliation(s)
- Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
Hu Y, Xie S, Xia H, Chen J, Yang Y, Zhan R. The effect of shikonin on the metabolism of lapatinib in vitro, and in vivo. Toxicol Appl Pharmacol 2024; 482:116797. [PMID: 38160892 DOI: 10.1016/j.taap.2023.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The purpose of this study was to develop an assay for simultaneous determination of lapatinib and its metabolites (N-dealkylated lapatinib and O-dealkylated lapatinib) by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and to determine the interaction between shikonin and lapatinib in vitro, in vivo, in silico and its mechanism of action. METHODS A new UPLC-MS/MS method for the determination of the concentrations of lapatinib and its metabolites was developed. In vivo, Sprague-Dawley (SD) rats were given lapatinib with or without shikonin. In vitro, to study the interaction mechanism, rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP3A4.1 were used for determining enzyme kinetics. Lastly, we used in silico molecular docking to investigate the molecular mechanism of inhibition. RESULTS The selectivity, precision, accuracy, stability, matrix effect and recovery of UPLC-MS/MS all met the requirements of quantitative analysis of biological samples. Administration of lapatinib combined with shikonin resulted in significantly increased pharmacokinetic parameters (AUC(0-t) and Cmax) of lapatinib, indicating that shikonin increased the exposure of lapatinib in rats. Moreover, in vitro kinetic measurements indicated that shikonin was a time-independent inhibitor, which inhibited the metabolism of lapatinib through a competitive mechanism in RLMs, while noncompetitive inhibition type in both HLMs and CYP3A4.1. Molecular docking analysis further verified the non-competitive inhibition of shikonin on lapatinib in CYP3A4.1. CONCLUSION We developed an UPLC-MS/MS assay for simultaneous determination of lapatinib and its metabolites. It could be successfully applied to the study of pharmacokinetic interaction of shikonin on the inhibition of lapatinib metabolism in vivo and in vitro. In the end, further studies are needed to determine if such interactions are indeed valid in humans and if the interaction is clinically relevant.
Collapse
Affiliation(s)
- Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Saili Xie
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yunjun Yang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Ruanjuan Zhan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
6
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
7
|
Yan C, Li Q, Sun Q, Yang L, Liu X, Zhao Y, Shi M, Li X, Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. Int J Nanomedicine 2023; 18:1195-1218. [PMID: 36926681 PMCID: PMC10013574 DOI: 10.2147/ijn.s401570] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Lithospermum erythrorhizon, shows great potential in anticancer therapy. However, its further clinical application is significantly restricted by poor bioavailability, adverse effects, and non-selective toxicity. With the development of nanotechnology, nano drug delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. To overcome the shortcoming of SHK, various nano drug delivery systems such as liposomes, polymeric micelles, nanoparticles, nanogels, and nanoemulsions, were developed to achieve efficient delivery for enhanced antitumor effects. Herein, this review summarizes the anticancer pharmacological activities and pharmacokinetics of SHK. Additionally, the latest progress of SHK nanomedicines in cancer therapy is outlined, focusing on long circulation, tumor targeting ability, tumor microenvironment responsive drug release, and nanosystem-mediated combination therapy. Finally, the challenges and prospects of SHK nanomedicines in the future clinical application are spotlighted.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
8
|
Shan L, Shi X, Hu T, Hu J, Guo Z, Song Y, Su D, Zhang X. In vitro differences in toddalolactone metabolism in various species and its effect on cytochrome P450 expression. PHARMACEUTICAL BIOLOGY 2022; 60:1591-1605. [PMID: 35944298 PMCID: PMC9367672 DOI: 10.1080/13880209.2022.2108062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Toddalolactone, the main component of Toddalia asiatica (L.) Lam. (Rutaceae), has anticancer, antihypertension, anti-inflammatory, and antifungal activities. OBJECTIVE This study investigated the metabolic characteristics of toddalolactone. MATERIALS AND METHODS Toddalolactone metabolic stabilities were investigated by incubating toddalolactone (20 μM) with liver microsomes from humans, rabbits, mice, rats, dogs, minipigs, and monkeys for 0, 30, 60, and 90 min. The CYP isoforms involved in toddalolactone metabolism were characterized based on chemical inhibition studies and screening assays. The effects of toddalolactone (0, 10, and 50 µM) on CYP1A1 and CYP3A5 protein expression were investigated by immunoblotting. After injecting toddalolactone (10 mg/kg), in vivo pharmacokinetic profiles using six Sprague-Dawley rats were investigated by taking 9-time points, including 0, 0.25, 0.5, 0.75, 1, 2, 4, 6 and 8 h. RESULTS Monkeys showed the greatest metabolic capacity in CYP-mediated and UGT-mediated reaction systems with short half-lives (T1/2) of 245 and 66 min, respectively, while T1/2 of humans in two reaction systems were 673 and 83 min, respectively. CYP1A1 and CYP3A5 were the major CYP isoforms involved in toddalolactone biotransformation. Induction of CYP1A1 protein expression by 50 μM toddalolactone was approximately 50% greater than that of the control (0 μM). Peak plasma concentration (Cmax) for toddalolactone was 0.42 μg/mL, and Tmax occurred at 0.25 h post-dosing. The elimination t1/2 was 1.05 h, and the AUC0-t was 0.46 μg/mL/h. CONCLUSIONS These findings demonstrated the significant species differences of toddalolactone metabolic profiles, which will promote appropriate species selection in further toddalolactone studies.
Collapse
Affiliation(s)
- Lina Shan
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tingting Hu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiayin Hu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhe Guo
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yonggui Song
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dan Su
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaoyong Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
9
|
Hu J, Hu T, Guo Z, Song Y, Shan L, Shi X. Species Difference in the Metabolism of Mulberrin in Vitro and Its Inhibitory Effect on Cytochrome P450 and UDP-Glucuronosyltransferase Enzymes. Chem Pharm Bull (Tokyo) 2022; 70:669-678. [PMID: 36184449 DOI: 10.1248/cpb.c22-00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the interspecies difference in metabolism of mulberrin and examine the interaction between mulberrin and CYP enzymes or recombinant human uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes. Liver microsomes from human (HLMs), Beagle dog (DLMs), minipig (PLMs), monkey (MLMs), rabbit (RLMs), rat (RAMs), and mouse (MIMs) were used to investigate metabolic diversity among different species. Additionally, recombinant human supersomes were used to confirm that metabolic enzymes are involved in the biotransformation of mulberrin. We also evaluated the influence of mulberrin on protein expression by Western blot analysis. Mulberrin metabolism showed significant interspecies differences. We found four and two metabolites in phase I and II reaction systems, respectively. In phase I metabolism profiles of mulberrin for HLMs, PLMs and MLMs conformed to the classic Michaelis-Menten kinetics, RAMs and MIMs followed biphasic kinetics; phase II reaction of mulberrin in HLMs, DLMs, PLMs, MLMs, RLMs, RAMs and MIMs followed biphasic kinetics. UGT1A1 were the major CYP isoforms responsible for the metabolism of mulberrin. Mulberrin showed potent inhibitory effects against CYP3A4, CYP2C9, CYP2E1, UGT1A1, UGT1A3 and UGT2B7 with IC50 values of 54.21, 9.93, 39.12, 3.84, 2.01, 16.36 µM, respectively. According to Western blot analysis, mulberrin can upregulate the protein expression of CYP2C19, and downregulate the expression levels of CYP3A5 and CYP2C9 in HepG2 cells as concentration increased. The interspecies comparisons can help find other species with metabolic pathways similar to those in humans for future in vivo studies.
Collapse
Affiliation(s)
- Jiayin Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Tingting Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Zhe Guo
- The First Affiliated Hospital of Jinzhou Medical University
| | - Yonggui Song
- Jiangxi University of Traditional Chinese Medicine
| | - Lina Shan
- The First Affiliated Hospital of Jinzhou Medical University
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University
| |
Collapse
|
10
|
Wang X, Fa J, Zhang Y, Huang S, Liu J, Gao J, Xing L, Liu Z, Wang X. Evaluation of Herb–Drug Interaction Between Danshen and Rivaroxaban in Rat and Human Liver Microsomes. Front Pharmacol 2022; 13:950525. [PMID: 35928264 PMCID: PMC9343791 DOI: 10.3389/fphar.2022.950525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
The combination of Salvia miltiorrhiza (Danshen) and rivaroxaban is a promising treatment option in clinical practice in China, but the herb–drug interaction between Danshen and rivaroxaban remains unclear. Therefore, this study aims to reveal the interaction between Danshen and rivaroxaban. We not only investigated the inhibitory properties of Danshen tablet on rivaroxaban metabolism in rat and human liver microsomes but also evaluated the inhibitory effects of Danshen tablet and its eight active components (dihydrotanshinone I, tanshinone I, tanshinone IIA, cryptotanshinone, danshensu, salvianolic acid A, salvianolic acid B, and salvianolic acid C) on cytochrome P450 (CYP) enzymes. The results showed that Danshen tablet potently inhibited the metabolism of rivaroxaban in rat and human liver microsomes. In the CYP inhibition study, we found that dihydrotanshinone I, the active component of Danshen tablet, potently inhibited the activities of rat CYP3A and CYP2J, with IC50 values at 13.85 and 6.39 μM, respectively. In further inhibition kinetic study, we found that Danshen tablet is a mixed inhibitor in rivaroxaban metabolism in rat and human liver microsomes, with the Ki value at 0.72 and 0.25 mg/ml, respectively. In conclusion, there is a potential interaction between Danshen tablet and rivaroxaban. Danshen tablet inhibits the metabolism of rivaroxaban, which may be because its lipid-soluble components such as dihydrotanshinone I strongly inhibit the activities of CYP enzymes, especially CYP3A and CYP2J. Therefore, when Danshen tablet and rivaroxaban are used simultaneously in the clinic, it is necessary to strengthen the drug monitoring of rivaroxaban and adjust the dosage.
Collapse
Affiliation(s)
- Xu Wang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Fa
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Junqing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Xing
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
- *Correspondence: Zongjun Liu, ; Xin Wang,
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Zongjun Liu, ; Xin Wang,
| |
Collapse
|
11
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
12
|
Xu Y, Lu J, Guo Y, Zhang Y, Liu J, Huang S, Zhang Y, Gao L, Wang X. Hypercholesterolemia reduces the expression and function of hepatic drug metabolizing enzymes and transporters in rats. Toxicol Lett 2022; 364:1-11. [PMID: 35654319 DOI: 10.1016/j.toxlet.2022.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
Abstract
Hypercholesterolemia, one of the most common lipid metabolic diseases, may cause severe complications and even death. However, the effect of hypercholesterolemia on drug-metabolizing enzymes and transporters remains unclear. In this report, we established a rat model of diet-induced hypercholesterolemia. Quantitative real-time PCR and Western blot analysis were used to study the mRNA and protein expression of drug-metabolizing enzymes and transporters. The functions of these enzymes and transporters were evaluated by the cocktail assay. In hypercholesterolemic rats, the expression of phase I enzymes (CYP1A2, CYP2C11, CYP2E1, CYP3A1/2, CYP4A1 and FMO1/3) and phase II enzymes (UGT1A1/3, PROG, AZTG, SULT1A1, NAT1 and GSTT1) decreased. In addition, the mRNA levels of drug transporter Slco1a1/2, Slco1b2, Slc22a5, Abcc2, Abcb1a and Abcg2 decreased in rats with hypercholesterolemia, while Abcb1b and Abcc3 increased. The decreased expression of hepatic phase I and II enzymes and transporters may be caused by the changes of CAR, FXR, PXR, and Hnf4α levels. In conclusion, diet-induced hypercholesterolemia changes the expression and function of hepatic drug-metabolizing enzymes and transporters in rats, thereby possibly affecting drug metabolism and pharmacokinetics. In clinical hyperlipidemia, patients should strengthen drug monitoring to avoid possible drug exposure mediated risks.
Collapse
Affiliation(s)
- Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jian Lu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yanfang Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Liangcai Gao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
13
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
14
|
Lan T, Fang P, Ye X, Lan X, Xu RA. Evaluation of herb-drug interaction of ambrisentan with shikonin based on UPLC-MS/MS. PHARMACEUTICAL BIOLOGY 2021; 59:1133-1138. [PMID: 34410882 PMCID: PMC8381972 DOI: 10.1080/13880209.2021.1964544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Ambrisentan is an oral endothelin-receptor antagonist (ERA). However, there is no report on the interaction between ambrisentan and shikonin. OBJECTIVE To investigate the effect of shikonin on ambrisentan metabolism in vivo and in vitro. MATERIALS AND METHODS This study developed an ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for simultaneous determination of ambrisentan and (S)-4-hydroxymethyl ambrisentan in rat plasma. Twelve male Sprague-Dawley (SD) rats were divided into two groups (n = 6): the control group and shikonin (20 mg/kg) group. The pharmacokinetics of ambrisentan (2.5 mg/kg) were investigated after 30 min. Additionally, human and rat liver microsomes were used to investigate the herb-drug interaction. RESULTS The UPLC-MS/MS method was shown to be accurate, precise and reliable, and was successfully applied to the herb-drug interaction study of ambrisentan with shikonin. When co-administrated with 20 mg/kg shikonin, the Cmax and AUC(0-∞) of ambrisentan were significantly increased by 44.96 and 16.65%, respectively (p < 0.05). In addition, there were modest decreases in (S)-4-hydroxymethyl ambrisentan Cmax and AUC(0-∞) in the presence of shikonin (p < 0.05), which indicated that these results were in accordance with the inhibition of shikonin on ambrisentan metabolism. Moreover, enzyme kinetic study indicated that shikonin had an inhibitory effect on human and rat microsomes where the IC50 values of shikonin were 5.865 and 6.358 μM, respectively. CONCLUSIONS Our study indicated that shikonin could inhibit ambrisentan metabolism. Further studies need to be carried out to verify whether similar interaction truly apply in humans and whether this interaction has clinical significance.
Collapse
Affiliation(s)
- Tian Lan
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Ping Fang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuemei Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xia Lan
- Chongqing University Cancer Hospital, Chongqing, China
| | - Ren-ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Risk assessment of the inhibition of hydroxygenkwanin on human and rat cytochrome P450 by cocktail method. Toxicol In Vitro 2021; 79:105281. [PMID: 34843882 DOI: 10.1016/j.tiv.2021.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Hydroxygenkwanin (HGK), a natural flavonoid extracted from the buds of Daphne genkwa Sieb.et Zucc. (Thymelaeaceae), possesses a wide range of pharmacological activities, including anti-inflammatory, antibacterial and anticancer. However, the inhibitory effect of HGK on cytochrome P450 (CYP) remains unclear. This study investigated the potential inhibitory effects of HGK on CYP1A2, 2B1/6, 2C9/11, 2D1/6, 2E1 and 3A2/4 enzymes in human and rat liver microsomes (HLMs and RLMs) by the cocktail approach. HGK exhibited no time-dependent inhibition of CYP activities in HLMs and RLMs. Enzyme inhibition kinetics indicated that HGK was not only a competitive inhibitor of human CYP1A2 and 2C9, but also competitively inhibited rat CYP1A2 and 2C11 activities, with Ki value at 0.84 ± 0.03, 8.09 ± 0.44, 2.68 ± 0.32 and 8.35 ± 0.31 μM, respectively. Further studies showed that the inhibitory effect of HGK on CYP enzymes was weaker than that of diosmetin, which may be related to the substitution of hydroxyl and methoxy in the A and B rings of the flavone skeleton. Therefore, the low Ki values of HGK for CYP1A2 and 2C may lead to potential drug-drug interactions and toxicity.
Collapse
|
16
|
Erasmus C, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N'Da DD. Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorg Chem 2021; 114:105118. [PMID: 34216896 DOI: 10.1016/j.bioorg.2021.105118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.
Collapse
Affiliation(s)
- Chané Erasmus
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa; Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
17
|
Jin M, Shi D, Jin H, Zhou Z, Wang C. The inhibitory effects of shikonin and β,β-dimethylacrylshikonin on tramadol metabolism in vitro and in vivo. J Pharm Pharmacol 2020; 72:1232-1238. [PMID: 32424860 DOI: 10.1111/jphp.13288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/04/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the possible interaction of shikonin and β,β-dimethylacrylshikonin (DSK) with tramadol. METHODS Human liver microsome (HLM) and rat liver microsome (RLM) incubation experiments were carried out to assess the half-maximal inhibitory concentration (IC50 ) and inhibitory mechanism of shikonin and DSK on tramadol metabolism in vitro. And pharmacokinetics experiments containing low and high doses of shikonin and DSK were performed to confirm the inhibitory effects on tramadol metabolism in vivo. KEY FINDINGS The IC50 of shikonin on tramadol metabolism was 5.66 ± 1.2 μmol/l in HLM and 3.35 ± 1.1 μmol/l in RLM, while that of DSK on tramadol metabolism was 14.33 ± 1.1 μmol/l in HLM and 8.24 ± 1.26 μmol/l in RLM. Moreover, shikonin and DSK showed non-competitive inhibition of the cytochrome P450 enzyme in both HLM and RLM. Oral administration of 10 and 30 mg/kg shikonin inhibited tramadol metabolism in a dose-dependent manner. Furthermore, a dose of 30 mg/kg DSK inhibited the metabolism of tramadol in rats, while the lower dose of 10 mg/kg showed no inhibitory effect. CONCLUSIONS The results of this study suggest that shikonin and DSK can inhibit tramadol metabolism both in vitro and in vivo.
Collapse
Affiliation(s)
- Mi Jin
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dawei Shi
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Jin
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziye Zhou
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenxiang Wang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Wang K, Gao Q, Zhang T, Rao J, Ding L, Qiu F. Inhibition of CYP2C9 by natural products: insight into the potential risk of herb-drug interactions. Drug Metab Rev 2020; 52:235-257. [DOI: 10.1080/03602532.2020.1758714] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
19
|
Kim JH, Choi SM, Shreatha R, Jeong GS, Jeong TC, Lee S. Deoxyshikonin reversibly inhibits cytochrome P450 2B6. Biopharm Drug Dispos 2020; 41:221-225. [PMID: 32364297 DOI: 10.1002/bdd.2230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 11/07/2022]
Abstract
Deoxyshikonin, a natural shikonin derivative, is the major component of Lithospermum erythrorhizon and exhibits various pharmacological effects such as lymphangiogenetic, antibacterial, wound healing, and anticancer effects. To investigate the herb-drug interaction potential associated with deoxyshikonin, the inhibitory effects of deoxyshikonin on eight major cytochrome P450 (CYP) enzymes were examined using cocktail substrate-incubated human liver microsomes. Deoxyshikonin strongly inhibited CYP2B6-catalyzed bupropion hydroxylation, with a Ki value of 3.5 μM, and the inhibition was confirmed using purified human CYP2B6. The inhibition was reversible because the inhibitory effect of deoxyshikonin was not dependent on the preincubation time. The results indicated that deoxyshikonin-induced drug-drug interaction should be considered when any herb containing deoxyshikonin is used for conventional medications.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Su Min Choi
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Riya Shreatha
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
20
|
Fang SQ, Huang J, Zhang F, Ni HM, Chen QL, Zhu JR, Fu ZC, Zhu L, Hao WW, Ge GB. Pharmacokinetic interaction between a Chinese herbal formula Huosu Yangwei oral liquid and apatinib in vitro and in vivo. J Pharm Pharmacol 2020; 72:979-989. [PMID: 32285478 DOI: 10.1111/jphp.13268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
This study aimed to evaluate the inhibitory effects of Huosu Yangwei oral liquid (HSYW) on cytochrome P450 enzymes (CYPs) and to investigate whether this herbal medicine could modulate the pharmacokinetic behaviour of the co-administered CYP-substrate drug apatinib.
Methods
Cytochrome P450 enzymes inhibition assays were conducted in human liver microsomes (HLM) by a LC-MS/MS method for simultaneous determination of the oxidative metabolites of eight probe substrates for hepatic CYPs. The modulatory effects of HSYW on the oxidative metabolism of apatinib were investigated in both HLM and rat liver microsomes (RLM). The influences of HSYW on the pharmacokinetic behaviour of apatinib were investigated in rats.
Key findings
Huosu Yangwei oral liquid inhibited all tested CYPs in human liver preparations, with the IC50 values ranged from 0.3148 to 2.642 mg/ml. HSYW could also inhibit the formation of two major oxidative metabolites of apatinib in liver microsomes from both human and rat. In-vivo assays demonstrated that HSYW could significantly prolong the plasma half-life of apatinib by 7.4-fold and increase the AUC0–inf (nm·h) of apatinib by 43%, when HSYW (10 ml/kg) was co-administered with apatinib (10 mg/kg) in rats.
Conclusions
Huosu Yangwei oral liquid could inhibit mammalian CYPs and modulated the metabolic half-life of apatinib both in vitro and in vivo.
Collapse
Affiliation(s)
- Sheng-Quan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Huang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, China
| | - Feng Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Mei Ni
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-Ran Zhu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Chao Fu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| | - Wei-Wei Hao
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Qinghai Hospital of Traditional Chinese Medicine, Xining, China
| |
Collapse
|
21
|
Luo H, Xu Y, Sun D, Cheng Y, Sun Z, Gao J, Zhang Y, Wang X. Assessment of the inhibition risk of paris saponins, bioactive compounds from Paris polyphylla, on CYP and UGT enzymes via cocktail inhibition assays. Regul Toxicol Pharmacol 2020; 113:104637. [PMID: 32145316 DOI: 10.1016/j.yrtph.2020.104637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 11/17/2022]
Abstract
Paris saponins, also known as polyphyllins, are natural compounds extracted from Paris polyphylla, which have many pharmacological activities, such as anti-inflammation and anti-cancer. In particular, paris saponin I, II, VII and polyphyllin VI are the components of the quality standard for Paris polyphylla. However, the inhibition risk of polyphyllins on cytochrome P450 (CYP) and UDP-glucuronosyltransferases (UGT) remains unclear. Therefore, this report investigated the potential inhibitory effects of paris saponin I, II, VII and polyphyllin VI on the activities of CYP (CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP2E1 and CYP3A2) and UGT (UGT1A1, UGT1A3, UGT1A6, PROG and AZTG) through cocktail inhibition assays in vitro. In the study of CYP, polyphyllin VI exhibited weak inhibition on CYP2D1 activity in rat liver microsomes with IC50 value at 45.2 μM, while paris saponin VII weakly inhibited CYP2C11 and CYP2E1 activities with IC50 value at 42.0 and 67.7 μM, respectively. In the study of UGT, none of the four steroidal saponins showed significant inhibition risk. In conclusion, paris saponin I, II, VII and polyphyllin VI have very low potential to cause the possible toxicity and drug interactions involving CYP and UGT enzymes, indicating that they are safe enough to take with drugs.
Collapse
Affiliation(s)
- Han Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongyi Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
| | - Jing Gao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
22
|
Liao Z, Zhu Z, Li L, Wang L, Wang H, Jiang Y, Cao Y. Metabonomics on Candida albicans indicate the excessive H3K56ac is involved in the antifungal activity of Shikonin. Emerg Microbes Infect 2020; 8:1243-1253. [PMID: 31452461 PMCID: PMC6735332 DOI: 10.1080/22221751.2019.1657362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Development of antifungal agents with novel mechanism and low toxicity are essential due to the prevalence of the infectious diseases caused by Candida albicans. The current study employed a new research method, which combined the ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry, to investigate the intrinsic mechanism of Shikonin (SK) against C. albicans. The levels of 27 metabolites, which mainly involved in histone deacetylation, amino acid synthesis, lipid synthesis, nitrogen metabolism, tricarboxylic acid cycle, oxidative stress and glycolysis, were remarkably changed upon SK treatment. Specially, the down-regulation of nicotinamide (NAM) upon SK treatment indicated the suppression of the deacetylation of the histone H3 on lysine 56 residue (H3K56). Further experiment confirmed that the level of H3K56 acetylation (H3K56ac) was dramatically increased upon SK treatment which was mediated by HST3, the gene encoding the H3K56 deacetylase (Hst3p). Our results demonstrated that SK is the first natural compound reported to execute antifungal activity directly via boosting H3K56ac mediated by HST3. Importantly, this finding shed new light on the mechanisms to relieve the side effects or reverse the drug tolerance, as well as the development of agents for antifungal therapies.
Collapse
Affiliation(s)
- ZeBin Liao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University , Shanghai , People's Republic of China.,Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University , Shanghai , People's Republic of China
| | - Ling Li
- School of Pharmacy, Second Military Medical University , Shanghai , People's Republic of China
| | - Liang Wang
- School of Pharmacy, Second Military Medical University , Shanghai , People's Republic of China
| | - Hui Wang
- School of Pharmacy, Second Military Medical University , Shanghai , People's Republic of China
| | - YuanYing Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
23
|
Zhu Y, Zhong Y, Long X, Zhu Z, Zhou Y, Ye H, Zeng X, Zheng X. Deoxyshikonin isolated from Arnebia euchroma inhibits colorectal cancer by down-regulating the PI3K/Akt/mTOR pathway. PHARMACEUTICAL BIOLOGY 2019; 57:412-423. [PMID: 31230505 PMCID: PMC6600065 DOI: 10.1080/13880209.2019.1626447] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 03/16/2019] [Accepted: 04/17/2019] [Indexed: 05/12/2023]
Abstract
Context: Shikonins, a series of natural occurring naphthoquinones extracted from Arnebia euchroma (Royle) Jonst. (Boraginaceae), have antitumor activities and low toxicity. Objective: To illuminate potential activity and mechanism of shikonins against colorectal cancer (CRC). Materials and methods: Five shikonins were isolated from A. euchroma, and elucidated by extensive spectroscopic analysis. Anti-proliferative activities of shikonins (0-100 μg/mL) on human colorectal cells were evaluated by MTT and CCK-8 for 24 or 48 h. Cell apoptosis and cycle distribution were examined by FCM analysis. The expression of PI3K/Akt/mTOR pathway mRNAs and proteins was analysed by RT-PCR and Western blot, respectively. Cell viability, cell apoptosis, cell cycle and protein expression were measured, when co-treated with PI3K/Akt/mTOR pathway inhibitors. The in vivo activity of deoxyshikonin was evaluated using xenograft tumour model. Results: Deoxyshikonin and another four shikonins were isolated and identified. Deoxyshikonin exhibited anti-proliferative activity with IC50 of 10.97 μM against HT29 cells. Moreover, the percentage of early apoptotic cells and G0/G1 cells increased from 1 to 29% and 44 to 67% with 0-50 μg/mL deoxyshikonin, respectively. Deoxyshikonin also down-regulated the expression of PI3K, p-PI3K, Akt, p-Akt308 and mTOR proteins in HT29 and DLD-1 cells. Moreover, LY294002, NVP-BEZ235 and MK-2206 can make deoxyshikonin more cell proliferation inhibited, cell cycle arrested at G0/G1 and apoptosis promoted. In vivo study, the weight of tumour tissues at deoxyshikonin groups was significantly reduced compared with the control group, and PI3K, p-PI3K, Akt, p-Akt308 and mTOR expression was decreased. Discussion and conclusions: We can conclude that deoxyshikonin isolated from Arnebia euchroma inhibited CRC through the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Yu Zhong
- Analysis Center of Guangdong Medical University, Zhanjiang, China
| | - Xun Long
- The Third People’s Hospital of Bijie, Bijie, China
| | - Zhu Zhu
- Sino-American Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch, Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
- Department of Infectious disease, Shenzhen People’s Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Xuebao Zheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Shan L, Zhang G, Guo Z, Shi X. In vitro investigation of permeability and metabolism of licoricidin. Life Sci 2019; 234:116770. [DOI: 10.1016/j.lfs.2019.116770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023]
|
25
|
Zhang B, Zhan G, Fang Q, Wang F, Li Y, Zhang Y, Zhao L, Zhang G, Li B. Evaluation of cytochrome P450 3A4‑mediated drug‑drug interaction potential between P2Y12 inhibitors and statins. Mol Med Rep 2019; 20:4713-4722. [PMID: 31545497 DOI: 10.3892/mmr.2019.10692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/06/2019] [Indexed: 11/05/2022] Open
Abstract
Ticagrelor and prasugrel are widely used in the treatment of acute coronary syndrome. The co‑administration of ticagrelor or prasugrel with statins in the clinic has already drawn a great deal of attention. The aims of the present study were to evaluate the safety and effectiveness, and guide the rational clinical use of, co‑administration of ticagrelor or prasugrel with statins by exploring potential drug interactions. The activity of cytochrome P450 family 3 subfamily A member 4 (CYP3A4) was detected, and its protein and mRNA expression levels were measured in a rat model and liver microsomes to evaluate the effect of the drug combinations on CYP3A4. High performance liquid chromatography, western blotting and reverse transcription‑quantitative PCR were used to perform these investigations. The in vitro experiments suggested that ticagrelor inhibited CYP3A4 activity, with IC50 and inhibitor constant (Ki) values of 68.74 and 26.47 µM, respectively; prasugrel also inhibited CYP3A4, activity with IC50 and Ki values of 16.24 and 10.84 µM, respectively. When different dosages of the antagonists were combined with simvastatin or atorvastatin, the metabolic rate was reduced more effectively at higher dosages when compared with lower dosages. An in vivo pharmacokinetic study demonstrated that the co‑administration of ticagrelor or prasugrel with simvastatin caused an increase in the principal pharmacokinetic parameters of the probe drug dapsone [area under the concentration/time curve (AUC)0‑t, AUC0‑∞ and t1/2] and a decrease in clearance compared with ticagrelor, prasugrel or simvastatin alone. Additional studies confirmed that the two investigated P2Y12 inhibitors were able to decrease the protein level of CYP3A4 by promoting protein degradation through the proteasomal pathway, and combination with statins such as simvastatin had a synergistic inhibitory effect on CYP3A4 activity. These results demonstrated that the co‑administration of P2Y12 inhibitors with simvastatin could markedly inhibit the activity of CYP3A4, and these findings will further influence the assessment of the clinical effectiveness (reduced or enhanced efficacy) and safety (bleeding and rhabdomyolysis) in the clinic.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ge Zhan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qing Fang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fang Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuhao Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lei Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Guocui Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
26
|
Cheng Y, Tang S, Chen A, Zhang Y, Liu M, Wang X. Evaluation of the inhibition risk of shikonin on human and rat UDP-glucuronosyltransferases (UGT) through the cocktail approach. Toxicol Lett 2019; 312:214-221. [PMID: 31128210 DOI: 10.1016/j.toxlet.2019.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023]
Abstract
Shikonin, a natural red colorant, is widely used for food garnishment and cosmetic ingredient in the world. Shikonin also possesses a variety of pharmacological actions, including anti-inflammation and anti-cancer activities. However, little is known about its effects on the UDP-glucuronosyltransferases (UGT) activity. Therefore, the aim of this study was to evaluate the effect of shikonin on the UGT1A1, UGT1A3, UGT1A6, UGT1A9 and UGT2B7 activities via the human and rat liver microsomal assay and cocktail approach. The results showed shikonin inhibited human and rat liver microsomal UGT activity only in a dose-dependent manner. The further enzyme kinetic studies demonstrated that shikonin was not only a competitive inhibitor of human UGT1A1, UGT1A9, and UGT2B7, but also presented competitive inhibition on rat UGT1A1 and AZTG reactions. In conclusion, shikonin as a reversible inhibitor of UGT enzyme has a high-risk potential to cause the possible toxicity, especially drug-drug or food-drug interactions.
Collapse
Affiliation(s)
- Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuowen Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, United States
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
27
|
Li Y, He Y, Shao T, Pei H, Guo W, Mi D, Krimm I, Zhang Y, Wang P, Wang X, Liu M, Yi Z, Chen Y. Modification and Biological Evaluation of a Series of 1,5-Diaryl-1,2,4-triazole Compounds as Novel Agents against Pancreatic Cancer Metastasis through Targeting Myoferlin. J Med Chem 2019; 62:4949-4966. [DOI: 10.1021/acs.jmedchem.9b00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yunqi Li
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Ting Shao
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haixiang Pei
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dazhao Mi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Isabelle Krimm
- Université de Lyon, CNRS, Université Claude-Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, Villeurbanne 69100, France
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| |
Collapse
|
28
|
A UHPLC-MS/MS method coupled with liquid-liquid extraction for the quantitation of phenacetin, omeprazole, metoprolol, midazolam and their metabolites in rat plasma and its application to the study of four CYP450 activities. J Pharm Biomed Anal 2018; 163:204-210. [PMID: 30317077 DOI: 10.1016/j.jpba.2018.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022]
Abstract
Drug-drug interactions (DDIs) are thought to be associated with the inhibition of cytochrome P450 activities. The cocktail method with analysis of the metabolism of two or more probe drugs is used to determine CYP450 activities. In this study, we established a UHPLC-MS/MS method for simultaneous quantitation of four CYP450 probe drugs (phenacetin, omeprazole, metoprolol and midazolam) and their metabolites (acetaminophen, 5'-hydroxy omeprazole, α-hydroxy metoprolol and 1'-hydroxy midazolam) in rat plasma. Sample preparation by plasma protein precipitation was combined with a liquid-liquid extraction method. The separation was carried out on a ZORBAX Eclipse Plus C18 Rapid Resolution High Definition column with a gradient elution, using water containing 0.1% formic acid (A) and acetonitrile (B) in a run time of only 3.0 min. Detection was conducted with a 6420 series triple-quadrupole tandem mass spectrometer, using ESI in positive ion mode with multiple reaction monitoring (MRM). The calibration curves were linear over the concentration range 10-5000 ng/mL for phenacetin, omeprazole, metoprolol and midazolam, and 1-500 ng/mL for their metabolites. Intra- and inter-day precisions were within 15%, and the accuracies were in the range of 87-112%. The method was successfully applied to the pharmacokinetic study of probe drugs/metabolites and DDIs with 3-n-butylphthalide (NBP) after administration of a single oral dose of phenacetin, omeprazole, metoprolol and midazolam in rats.
Collapse
|
29
|
Design and optimization of the cocktail assay for rapid assessment of the activity of UGT enzymes in human and rat liver microsomes. Toxicol Lett 2018; 295:379-389. [PMID: 30036684 DOI: 10.1016/j.toxlet.2018.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022]
Abstract
Along with the prevalence of drug combination therapies, an increasing number of cases about drug-drug interactions (DDI) have been reported, which has drawn a lot of attention due to the potential toxicity and/or therapeutic failure. Pharmacokinetic interactions based on drug metabolic enzymes should be responsible for a great many of DDI. UDP-glucuronosyltransferases (UGT) as the main phase II metabolic enzymes are involved in the metabolism of many endogenous and exogenous substrates. Herein, we designed and optimized a validated cocktail method for the simultaneous evaluation of drug-mediated inhibition of the main five UGT isoforms using respective specific probe substrates (estradiol for UGT1A1, chenodeoxycholic acid for UGT1A3, serotonin for UGT1A6, propofol for UGT1A9/PROG and zidovudine for UGT2B7/AZTG) in human and rat liver microsomes by liquid chromatography-tandem mass spectrometry (LCMS/MS). Moreover, we investigated the risk of interactions among UGT probe substrates, and validated the cocktail method by known positive inhibitors of UGT isoforms. To minimize the substrates interaction, we developed two cocktail subgroups which were further optimized via exploring the experimental conditions. In particular, the cocktail inhibition assay for rapid assessment of in vitro rat UGTs was firstly reported and the values of Km in the liver microsomes from humans and rats were close to each other in the specific UGT subtype. In conclusion, this study has successfully established the cocktail approach to explore UGT activity, especially for UGT inhibition in a fast and efficient way.
Collapse
|
30
|
Zhu Y, Zhong Y, Zhou Y, Liu Y, Huang Q, Huang Z, Wang Y, Ye H, Zeng X, Zheng X. Acetylshikonin Inhibits Colorectal Cancer Growth via PI3K/Akt/mTOR Signaling Pathway. Chin Med 2018. [DOI: 10.4236/cm.2018.93008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|